This file is indexed.

/usr/share/pyshared/PyMca/PyMcaPlugins/BM05TwoThetaPlugin.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import Plugin1DBase
import numpy
from numpy import cos, sin
import sys
import os
try:
    from PyMca import PyMcaQt as qt
    from PyMca import PyMcaDirs
    PYMCADIR = True
except ImportError:
    print "BM5TwoThetaPlugin Using huge PyQt4 import"
    import PyQt4.Qt as qt
    PYMCADIR = False

try:
    from PyMca import QPyMcaMatplotlibSave
    import matplotlib
    MATPLOTLIB = True
except ImportError:
    MATPLOTLIB = False

DEBUG = 0

class ConfigurationWidget(qt.QDialog):
    def __init__(self, parent=None):
        qt.QDialog.__init__(self, parent)
        self.setWindowTitle("BM05 Theta - Theta Analyzer Mesh Plugin")
        self.mainLayout = qt.QGridLayout(self)
        self.mainLayout.setMargin(6)
        self.mainLayout.setSpacing(2)
        labelList = ['Beam Energy (keV):',
                     'd-spacing (Angstrom):',
                     'Angle between diffraction and sample surface plane (deg):']
        row = 0
        col = 0
        self._lineEdit = []
        for text in labelList:
            label = qt.QLabel(self)
            label.setText(text)
            w = qt.QLineEdit(self)
            w._v = qt.QDoubleValidator(w)
            w.setValidator(w._v)
            self.mainLayout.addWidget(label, row, col)
            self.mainLayout.addWidget(w, row, col+1)
            row += 1
            self._lineEdit.append(w)

        hbox = qt.QWidget(self)
        hboxLayout = qt.QHBoxLayout(hbox)
        self.okButton = qt.QPushButton(hbox)
        self.okButton.setAutoDefault(False)
        self.okButton.setText("Accept")

        self.dismissButton = qt.QPushButton(hbox)
        self.dismissButton.setAutoDefault(False)
        self.dismissButton.setText("Dismiss")

        hboxLayout.addWidget(self.okButton)
        hboxLayout.addWidget(self.dismissButton)

        self.mainLayout.addWidget(hbox, row, 0, 1, 2)
        self.connect(self.okButton, qt.SIGNAL('clicked()'), self.accept)
        self.connect(self.dismissButton, qt.SIGNAL('clicked()'), self.reject)

    def setParameters(self, ddict):
        keys = ['energy', 'dspacing', 'phi']
        for i in range(3):
            key = keys[i]
            if ddict.has_key(key):
                self._lineEdit[i].setText("%.7g" % ddict[key])

    def getParameters(self):
        ddict={}
        keys = ['energy', 'dspacing', 'phi']
        for i in range(3):
            key = keys[i]
            ddict[key] = float(self._lineEdit[i].text())
        return ddict

class BM05TwoThetaPlugins(Plugin1DBase.Plugin1DBase):
    def __init__(self, plotWindow, **kw):
        Plugin1DBase.Plugin1DBase.__init__(self, plotWindow, **kw)
        self.methodDict = {'Configure':[self._configure,
                                        "Setup Energy, dspacing and offset",
                                        None],
                           'Convert':[self._convert,
                                      "Convert to Q space",
                                      None],
                           'Last result':[self._showLast,
                                         "Show image of last result",
                                          None],
                           'Save':[self._save,
                                   'Save last result',
                                   None]}
        #scan 281
        self._configuration = {'energy':    15.0,   #in keV
                'dspacing':  1.1084186,              #in A
                #'tthoffset': 43.78,                 # in deg
                'phi':  (180/numpy.pi)*numpy.arccos(8./numpy.sqrt(3.*24.))}
        """
        #scan 195 and 57
        self._configuration = {'energy':    24.0,   #in keV
                'dspacing':  3.1350812,              #in A
                #'tthoffset': 43.78,                 # in deg
                'phi':  0}
        """
        self.configurationWidget = None
        self.matplotlibWidget = None
        self.__lastScan = None
        
    #Methods to be implemented by the plugin
    def getMethods(self, plottype=None):
        """
        A list with the NAMES  associated to the callable methods
        that are applicable to the specified plot.

        Plot type can be "SCAN", "MCA", None, ...        
        """
        names = self.methodDict.keys()
        names.sort()
        return names

    def getMethodToolTip(self, name):
        """
        Returns the help associated to the particular method name or None.
        """
        return self.methodDict[name][1]

    def getMethodPixmap(self, name):
        """
        Returns the pixmap associated to the particular method name or None.
        """
        return self.methodDict[name][2]

    def applyMethod(self, name):
        """
        The plugin is asked to apply the method associated to name.
        """
        if DEBUG:
                apply(self.methodDict[name][0])
        else:
            try:
                apply(self.methodDict[name][0])
            except:
                import sys
                print sys.exc_info()
        return

    def _configure(self):
        if self.configurationWidget is None:
            self.configurationWidget = ConfigurationWidget()
        self.configurationWidget.setParameters(self._configuration)
        ret = self.configurationWidget.exec_()
        if ret == qt.QDialog.Accepted:
            self._configuration.update(self.configurationWidget.getParameters())
            self.configurationWidget.setParameters(self._configuration)

    def _getFilteredActiveCurve(self):
        activeCurve = self.getActiveCurve()
        if activeCurve is None:
            return None
        x, y, legend, info = activeCurve [0:4]
        xmin, xmax =self.getGraphXLimits()
        i1 = numpy.nonzero((x >= xmin) & (x <= xmax))
        x = numpy.take(x, i1)
        y = numpy.take(y, i1)

        #sort
        i1 = x.argsort()
        x = numpy.take(x, i1)
        y = numpy.take(y, i1)

        #remove duplicates
        x=x.ravel()
        i1 = numpy.nonzero((x[1:] > x[:-1]))
        x = numpy.take(x, i1)
        y = numpy.take(y, i1)
        
        x.shape = -1
        y.shape = -1

        return [x, y, legend, info]

    def _convert(self):
        if 0:
            x, y, legend, info = self._getFilteredActiveCurve()
        else:
            x, y, legend, info = self.getActiveCurve()
        #print "INFO = ", info
        header = info['Header'][0]
        #print header
        item = header.split()
        if (item[2] != 'mesh') or\
           (item[3] != 'th') or\
           (item[7] not in ['ta', 'tth']):
            raise ValueError, "This does not seem to be a Theta - TwoTheta scan"

        lambdaA = 12.39842/self._configuration['energy']
        thetaBragg = numpy.arcsin(0.5*lambdaA/self._configuration['dspacing'])
        thetaBragg *= 180./numpy.pi

        #print "Lambda      = ", lambdaA
        #print "Theta Bragg = ", thetaBragg
        
        qModule = 2*numpy.pi/lambdaA
        qModuleArray = numpy.ones(x.shape, numpy.float) * qModule

        #offset = self._configuration['tthoffset']
        #theta = 0.5*(x-offset)*(numpy.pi/180.)
        #qy = qModuleArray * numpy.sin(theta)
        #qz = qModuleArray * numpy.cos(theta)

        #I have qy and qz, I need q parallel and q perpendicular
        #to the sample surface
        #Assume an EXACTLY regular mesh for both motors
        th  = float(item[4]) + ((float(item[5]) - float(item[4]))/int(item[6]))*\
                             numpy.arange(int(item[6])+1)
        tth = float(item[8]) + ((float(item[9]) - float(item[8]))/int(item[10]))*\
                             numpy.arange(int(item[10])+1)

        #in the file, first variate th, then tth/analyzer
        th, tth = numpy.meshgrid(th, tth)
        y.shape = th.shape

        """
        th  =  (th - self._configuration['thoffset']) * (numpy.pi/180.)
        if item[7] == 'ta':
            print "BM05 CASE"
            tth = (self._configuration['tthoffset']-tth) * (numpy.pi/180.)
        else:
            tth = (tth - self._configuration['tthoffset']) * (numpy.pi/180.)
        print "ANGLES = ", th.min(), th.max()
        print "ANGLES = ", tth.min(), tth.max()

        #in the file, first variate th, then tth
        qparallel = numpy.zeros(len(tth)*len(th), numpy.float)
        qnormal   = numpy.zeros(len(tth)*len(th), numpy.float)
        rows      = numpy.zeros(len(tth)*len(th), numpy.float)
        columns   = numpy.zeros(len(tth)*len(th), numpy.float)
        """


        #find the maximum and minimum of the intensity
        iMax = y.max()
        iMin = y.min()

        #find the center of mass of all the points above a certain percentage
        #of the difference

        threshold = iMin + 0.01 * (iMax-iMin)                   
        idx = (y >= threshold)
        
        ysum   =   y[idx].sum()
        thMax  =  (y[idx]*th[idx]).sum()/ysum
        tthMax = (y[idx]*tth[idx]).sum()/ysum 

        #print "thMax = ", thMax
        #print "tthMax = ", tthMax

        #FABIO
        if 0:
            thMax  = th.min() + 0.5 * (th.max() - th.min())
            tthMax = tth.min() + 0.5 * (tth.max() - tth.min())



        #at tthMax we should find twice the Bragg angle
        tth = tth - tthMax  #now it is at zero

        #chi -> Value of analiser at Imax should be 2Theta bragg, this gives
        #       me the offset on the analiser angle. From the BM05 geometry,
        #       a positive change in analyser angle corresponds to a negative
        #       change on 2Theta of the same amount.
        chi = 2*thetaBragg - tth
        deltachi = -tth
        
        #psi -> Value of theta at I max should be Bragg angle + phi
        deltapsi = (th-thMax) 
        psi = thetaBragg+deltapsi-self._configuration['phi'] #The minus sign reproduces Tamzin's values

        #make sure we work in radians
        chi *= numpy.pi/180.
        deltachi *= numpy.pi/180.
        psi *= numpy.pi/180.
        deltapsi *= numpy.pi/180.

        qparallel  = cos(chi-psi)*cos(deltachi-deltapsi)-sin(chi-psi)*sin(deltachi-deltapsi)-\
                    (cos(psi)*cos(deltapsi)-sin(psi)*sin(deltapsi)+cos(chi-psi)-cos(psi))
        qparallel /= lambdaA
        

        qnormal  = sin(psi)*cos(deltapsi)+cos(psi)*sin(deltapsi)-sin(psi)-sin(chi-psi)+\
                   sin(chi-psi)*cos(deltachi-deltapsi)+cos(chi-psi)*sin(deltachi-deltapsi)
        qnormal /= lambdaA

        qparallel *= 1.0e4
        qnormal   *= 1.0e4

        self.__lastScan        = "%s" % info['Header'][0]
        self.__lastConfiguration = {}
        self.__lastConfiguration.update(self._configuration)
        self.__lastQParallel = qparallel
        self.__lastQNormal   = qnormal
        self.__lastIntensity = y

        #matplotlib
        #npoints = int(numpy.sqrt(y.shape[0]*y.shape[0]+y.shape[1]*y.shape[1]))
        npoints=128
        qpmin = qparallel.min()
        qpmax = qparallel.max()

        qnmin = qnormal.min()
        qnmax = qnormal.max()

        if 0:
            qmin = min(qpmin, qnmin)
            qmax = max(qpmax, qnmax)
            xi = numpy.linspace(qmin, qmax, npoints)
            yi = numpy.linspace(qmin, qmax, npoints)
        else:
            xi = numpy.linspace(qpmin, qpmax, npoints)
            yi = numpy.linspace(qnmin, qnmax, npoints)
        zi = matplotlib.mlab.griddata(qparallel.ravel(), qnormal.ravel(), y.ravel(), xi, yi)

        if self.matplotlibWidget is None:
            self.matplotlibWidget=QPyMcaMatplotlibSave.SaveImageSetup(None, zi)
            parameters = self.matplotlibWidget.getParameters()
            parameters['interpolation'] = 'Bilinear'
            parameters['linlogcolormap'] = 'Logarithmic'
            parameters['colormap'] = 'Jet'
            parameters['colorbar'] = 'Horizontal'
            parameters['xaxis'] = 'On'
            parameters['yaxis'] = 'On'
        else:
            self.matplotlibWidget.setImageData(zi)
            parameters = self.matplotlibWidget.getParameters()
        parameters['title'] = "Scan %s" % (info['Header'][0].split()[1])
        parameters['xlabel'] = 'qparallel(micron-1)'
        parameters['ylabel'] = 'qnormal(micron-1)'
        parameters['xorigin'] = xi[0]
        parameters['xpixelsize'] = xi[1]-xi[0]
        parameters['yorigin'] = yi[0]
        parameters['ypixelsize'] = yi[1]-yi[0]
        #parameters['zoomxmin'] = qpmin
        #parameters['zoomxmax'] = qpmax
        #parameters['zoomymin'] = qnmin
        #parameters['zoomymax'] = qnmax
        #print parameters
        self.matplotlibWidget.setParameters(parameters)
        self.matplotlibWidget.updateClicked()
        self.matplotlibWidget.show()
        self.matplotlibWidget.raise_()
        

    def _showLast(self):
        if self.matplotlibWidget is None:
            return
        self.matplotlibWidget.show()
        self.matplotlibWidget.raise_()

    def _save(self):
        if self.__lastScan is None:
            return
        #self.__lastConfiguration
        qparallel = self.__lastQParallel 
        qnormal = self.__lastQNormal
        y = self.__lastIntensity

        #get the output filename
        fileTypes = "CSV Files (*.csv)\n)"
        message   = "Enter output filename"
        if PYMCADIR:           
            wdir = PyMcaDirs.outputDir
        else:
            wdir = None
        filename = qt.QFileDialog.getSaveFileName(None,
                                                  message,
                                                  wdir,
                                                  fileTypes)
        filename = str(filename)
        if not len(filename):
            return
        if not filename.lower().endswith(".csv"):
            filename += ".csv"

        #write the file
        arrayLabels = ['qparallel(micron-1)', 'qnormal(micron-1)', 'I']
        arrayList = [qparallel, qnormal, y]
        csvseparator = ";"
        header = '"qparallel(micron-1)"'
        for label in arrayLabels[1:]:
            header +='%s"%s"' % (csvseparator,label)
        filehandle=open(filename,'w+')
        filehandle.write('%s\n' % header)
        fileline=""
        for i in range(y.shape[0]):
            for j in range(y.shape[1]):
                fileline += "%.7g" % (arrayList[0][i,j])
                for data in arrayList[1:]:
                    fileline += "%s%.7g" % (csvseparator, data[i,j])
                fileline += "\n"
                filehandle.write("%s" % fileline)
                fileline =""
        filehandle.write("\n") 
        filehandle.close()

MENU_TEXT = "BM05TwoThetaPlugin"
def getPlugin1DInstance(plotWindow, **kw):
    ob = BM05TwoThetaPlugins(plotWindow)
    return ob

if __name__ == "__main__":
    from PyMca import Plot1D
    app = qt.QApplication([])
    #w = ConfigurationWidget()
    #w.exec_()
    #sys.exit(0)
    
    DEBUG = 1
    x = numpy.arange(100.)
    y = x * x
    plot = Plot1D.Plot1D()
    plot.addCurve(x, y, "dummy")
    plot.addCurve(x+100, -x*x)
    plugin = getPlugin1DInstance(plot)
    for method in plugin.getMethods():
        print method, ":", plugin.getMethodToolTip(method)
    plugin.applyMethod(plugin.getMethods()[1])
    curves = plugin.getAllCurves()
    for curve in curves:
        print curve[2]
    print "LIMITS = ", plugin.getGraphYLimits()