This file is indexed.

/usr/share/pyshared/PyMca/SimpleMath.py is in pymca 4.5.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#/*##########################################################################
# Copyright (C) 2004-2012 European Synchrotron Radiation Facility
#
# This file is part of the PyMCA X-ray Fluorescence Toolkit developed at
# the ESRF by the Beamline Instrumentation Software Support (BLISS) group.
#
# This toolkit is free software; you can redistribute it and/or modify it 
# under the terms of the GNU General Public License as published by the Free
# Software Foundation; either version 2 of the License, or (at your option) 
# any later version.
#
# PyMCA is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# PyMCA; if not, write to the Free Software Foundation, Inc., 59 Temple Place,
# Suite 330, Boston, MA 02111-1307, USA.
#
# PyMCA follows the dual licensing model of Trolltech's Qt and Riverbank's PyQt
# and cannot be used as a free plugin for a non-free program. 
#
# Please contact the ESRF industrial unit (industry@esrf.fr) if this license 
# is a problem for you.
#############################################################################*/
import numpy.oldnumeric as Numeric
import numpy
try:
    from PyMca import SGModule
except ImportError:
    import SGModule
    
class SimpleMath(object):
    def derivate(self,xdata,ydata, xlimits=None):
        x=numpy.array(xdata, copy=False, dtype=numpy.float)
        y=numpy.array(ydata, copy=False, dtype=numpy.float)
        if xlimits is not None:
            i1=numpy.nonzero((xdata>=xlimits[0])&\
                               (xdata<=xlimits[1]))[0]
            x=numpy.take(x,i1)
            y=numpy.take(y,i1)
        i1 = numpy.argsort(x)
        x=numpy.take(x,i1)
        y=numpy.take(y,i1)  
        deltax=x[1:] - x[:-1]
        i1=numpy.nonzero(abs(deltax)>0.0000001)[0]
        x=numpy.take(x, i1)
        y=numpy.take(y, i1)
        minDelta = deltax.min()
        xInter = numpy.arange(x[0]-minDelta,x[-1]+minDelta,minDelta)
        yInter = numpy.interp(xInter, x, y, left=y[0], right=y[-1])
        if len(yInter) > 50:
            npoints = 5
        else:
            npoints = 3
        degree = 1
        order = 1
        coeff = SGModule.calc_coeff(npoints, degree, order)
        N = int(numpy.size(coeff-1)/2)
        yInterPrime = numpy.convolve(yInter, coeff, mode='valid')/minDelta
        i1 = numpy.nonzero((x>=xInter[N+1]) & (x <= xInter[-N]))[0]
        x = numpy.take(x, i1)
        result = numpy.interp(x, xInter[(N+1):-N],
                              yInterPrime[1:],
                              left=yInterPrime[1],
                              right=yInterPrime[-1])
        return x, result

    def average(self,xdata0,ydata0):
        #check if all the x axis are identical (no interpolation needed)
        allthesamex=1
        x0=xdata0[0]
        for xaxis in xdata0:
            if len(x0) == len(xaxis):
                if numpy.alltrue(x0==xaxis):
                    pass
                else:
                    allthesamex=0
                    break
            else:
                allthesamex=0
                break

        if allthesamex:
            xdata=[]
            ydata=[]
            i=0
            for x0 in xdata0:
                x=Numeric.array(x0)
                xdata.append(x)
                ydata.append(Numeric.array(ydata0[i]))
                i=i+1
                
            finalx=Numeric.array(x0)
            finalx=xdata0[0]
            finaly=Numeric.zeros(Numeric.shape(finalx),Numeric.Float)
            i = 0
            for x0 in xdata0:
                finaly += ydata[i]
                i=i+1
        else:
            #sort the data
            xdata=[]
            ydata=[]
            i=0
            for x0 in xdata0:
                x=Numeric.array(x0)
                i1=Numeric.argsort(x)
                xdata.append(Numeric.take(x,i1))
                ydata.append(Numeric.take(Numeric.array(ydata0[i]),i1))
                i=i+1         
            
            #get the max and the min x axis
            xmin=xdata[0][0]
            xmax=xdata[0][-1]
            for x in xdata:
                if xmin < x[0]:
                    xmin=x[0]
                if xmax > x[-1]:
                    xmax=x[-1]
            #take the data in between
            x=[]
            y=[]
            i=0
            minimumLength = len(xdata[0])
            for x0 in xdata:
                i1=Numeric.nonzero((x0>=xmin) & (x0<=xmax))
                x.append(Numeric.take(x0,i1))
                y.append(Numeric.take(Numeric.array(ydata[i]),i1))
                if len(x0) < minimumLength:
                    minimumLength = len(x0)
                i=i+1

            if minimumLength < 2:
                raise ValueError("Not enough points to take a meaningfull average")
            #take as x axis the first
            finalx=x[0]
            for i in range(len(x)):
                if x[i][0] > finalx[0]:
                    finalx = x[i] 
            finaly=Numeric.zeros(Numeric.shape(finalx),Numeric.Float)
            j=-1
            allthesamex=0
            for p in range(len(finalx)):
              point=finalx[p] 
              i=0
              j=j+1
              try:            
                for x0 in x:
                    if allthesamex:
                        finaly[p]+=y[i][p]
                    else:
                        i1=max(Numeric.nonzero(x0<=point))
                        i2=min(Numeric.nonzero(x0>=point))
                        if i1 >= i2:
                            #take the point as it is
                            finaly[p]+=y[i][i1]
                        else:
                            #interpolation
                            A=(x0[i2]-point)/(x0[i2]-x0[i1])
                            B=1.-A
                            finaly[p]+=A*y[i][i1]+B*y[i][i2]
                    i=i+1
              except:
                break
        if allthesamex:
              finalx=finalx[0:]
              finaly=finaly[0:]/len(xdata0)      
        else:
              finalx=finalx[0:j]
              finaly=finaly[0:j]/len(xdata0)
     
        return finalx,finaly

    def smooth(self, *var, **kw):
        """
        smooth(self,*vars,**kw)
        Usage: self.smooth(y)
               self.smooth(y=y)
               self.smooth()
        """
        if 'y' in kw:
            ydata=kw['y']
        elif len(var) > 0:
            ydata=var[0]
        else:
            ydata=self.y
        f=[0.25,0.5,0.25]
        result=numpy.array(ydata, copy=False, dtype=numpy.float)
        if len(result) > 1:
            result[1:-1]=Numeric.convolve(result,f,mode=0)
            result[0]=0.5*(result[0]+result[1])
            result[-1]=0.5*(result[-1]+result[-2])
        return result
        
if __name__ == "__main__":
    x = numpy.arange(100.)*0.25
    y = x*x + 2 * x
    a = SimpleMath()
    #print(a.average(x,y))
    xplot, yprime = a.derivate(x, y)
    print("Found:")
    for i in range(0,10):
        print("x = %f  y'= %f expected = %f" % (xplot[i], yprime[i], 2*xplot[i]+2))