/usr/share/pyshared/Bio/AlignIO/StockholmIO.py is in python-biopython 1.58-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 | # Copyright 2006-2010 by Peter Cock. All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""
Bio.AlignIO support for the "stockholm" format (used in the PFAM database).
You are expected to use this module via the Bio.AlignIO functions (or the
Bio.SeqIO functions if you want to work directly with the gapped sequences).
For example, consider a Stockholm alignment file containing the following::
# STOCKHOLM 1.0
#=GC SS_cons .................<<<<<<<<...<<<<<<<........>>>>>>>..
AP001509.1 UUAAUCGAGCUCAACACUCUUCGUAUAUCCUC-UCAAUAUGG-GAUGAGGGU
#=GR AP001509.1 SS -----------------<<<<<<<<---..<<-<<-------->>->>..--
AE007476.1 AAAAUUGAAUAUCGUUUUACUUGUUUAU-GUCGUGAAU-UGG-CACGA-CGU
#=GR AE007476.1 SS -----------------<<<<<<<<-----<<.<<-------->>.>>----
#=GC SS_cons ......<<<<<<<.......>>>>>>>..>>>>>>>>...............
AP001509.1 CUCUAC-AGGUA-CCGUAAA-UACCUAGCUACGAAAAGAAUGCAGUUAAUGU
#=GR AP001509.1 SS -------<<<<<--------->>>>>--->>>>>>>>---------------
AE007476.1 UUCUACAAGGUG-CCGG-AA-CACCUAACAAUAAGUAAGUCAGCAGUGAGAU
#=GR AE007476.1 SS ------.<<<<<--------->>>>>.-->>>>>>>>---------------
//
This is a single multiple sequence alignment, so you would probably load this
using the Bio.AlignIO.read() function:
>>> from Bio import AlignIO
>>> align = AlignIO.read("Stockholm/simple.sth", "stockholm")
>>> print align
SingleLetterAlphabet() alignment with 2 rows and 104 columns
UUAAUCGAGCUCAACACUCUUCGUAUAUCCUC-UCAAUAUGG-G...UGU AP001509.1
AAAAUUGAAUAUCGUUUUACUUGUUUAU-GUCGUGAAU-UGG-C...GAU AE007476.1
>>> for record in align:
... print record.id, len(record)
AP001509.1 104
AE007476.1 104
This example file is clearly using RNA, so you might want the alignment object
(and the SeqRecord objects it holds) to reflect this, rather than simple using
the default single letter alphabet as shown above. You can do this with an
optional argument to the Bio.AlignIO.read() function:
>>> from Bio import AlignIO
>>> from Bio.Alphabet import generic_rna
>>> align = AlignIO.read("Stockholm/simple.sth", "stockholm",
... alphabet=generic_rna)
>>> print align
RNAAlphabet() alignment with 2 rows and 104 columns
UUAAUCGAGCUCAACACUCUUCGUAUAUCCUC-UCAAUAUGG-G...UGU AP001509.1
AAAAUUGAAUAUCGUUUUACUUGUUUAU-GUCGUGAAU-UGG-C...GAU AE007476.1
In addition to the sequences themselves, this example alignment also includes
some GR lines for the secondary structure of the sequences. These are
strings, with one character for each letter in the associated sequence:
>>> for record in align:
... print record.id
... print record.seq
... print record.letter_annotations['secondary_structure']
AP001509.1
UUAAUCGAGCUCAACACUCUUCGUAUAUCCUC-UCAAUAUGG-GAUGAGGGUCUCUAC-AGGUA-CCGUAAA-UACCUAGCUACGAAAAGAAUGCAGUUAAUGU
-----------------<<<<<<<<---..<<-<<-------->>->>..---------<<<<<--------->>>>>--->>>>>>>>---------------
AE007476.1
AAAAUUGAAUAUCGUUUUACUUGUUUAU-GUCGUGAAU-UGG-CACGA-CGUUUCUACAAGGUG-CCGG-AA-CACCUAACAAUAAGUAAGUCAGCAGUGAGAU
-----------------<<<<<<<<-----<<.<<-------->>.>>----------.<<<<<--------->>>>>.-->>>>>>>>---------------
Any general annotation for each row is recorded in the SeqRecord's annotations
dictionary. You can output this alignment in many different file formats
using Bio.AlignIO.write(), or the MultipleSeqAlignment object's format method:
>>> print align.format("fasta")
>AP001509.1
UUAAUCGAGCUCAACACUCUUCGUAUAUCCUC-UCAAUAUGG-GAUGAGGGUCUCUAC-A
GGUA-CCGUAAA-UACCUAGCUACGAAAAGAAUGCAGUUAAUGU
>AE007476.1
AAAAUUGAAUAUCGUUUUACUUGUUUAU-GUCGUGAAU-UGG-CACGA-CGUUUCUACAA
GGUG-CCGG-AA-CACCUAACAAUAAGUAAGUCAGCAGUGAGAU
<BLANKLINE>
Most output formats won't be able to hold the annotation possible in a
Stockholm file:
>>> print align.format("stockholm")
# STOCKHOLM 1.0
#=GF SQ 2
AP001509.1 UUAAUCGAGCUCAACACUCUUCGUAUAUCCUC-UCAAUAUGG-GAUGAGGGUCUCUAC-AGGUA-CCGUAAA-UACCUAGCUACGAAAAGAAUGCAGUUAAUGU
#=GS AP001509.1 AC AP001509.1
#=GS AP001509.1 DE AP001509.1
#=GR AP001509.1 SS -----------------<<<<<<<<---..<<-<<-------->>->>..---------<<<<<--------->>>>>--->>>>>>>>---------------
AE007476.1 AAAAUUGAAUAUCGUUUUACUUGUUUAU-GUCGUGAAU-UGG-CACGA-CGUUUCUACAAGGUG-CCGG-AA-CACCUAACAAUAAGUAAGUCAGCAGUGAGAU
#=GS AE007476.1 AC AE007476.1
#=GS AE007476.1 DE AE007476.1
#=GR AE007476.1 SS -----------------<<<<<<<<-----<<.<<-------->>.>>----------.<<<<<--------->>>>>.-->>>>>>>>---------------
//
<BLANKLINE>
Note that when writing Stockholm files, AlignIO does not break long sequences
up and interleave them (as in the input file shown above). The standard
allows this simpler layout, and it is more likely to be understood by other
tools.
Finally, as an aside, it can sometimes be useful to use Bio.SeqIO.parse() to
iterate over the alignment rows as SeqRecord objects - rather than working
with Alignnment objects. Again, if you want to you can specify this is RNA:
>>> from Bio import SeqIO
>>> from Bio.Alphabet import generic_rna
>>> for record in SeqIO.parse("Stockholm/simple.sth", "stockholm",
... alphabet=generic_rna):
... print record.id
... print record.seq
... print record.letter_annotations['secondary_structure']
AP001509.1
UUAAUCGAGCUCAACACUCUUCGUAUAUCCUC-UCAAUAUGG-GAUGAGGGUCUCUAC-AGGUA-CCGUAAA-UACCUAGCUACGAAAAGAAUGCAGUUAAUGU
-----------------<<<<<<<<---..<<-<<-------->>->>..---------<<<<<--------->>>>>--->>>>>>>>---------------
AE007476.1
AAAAUUGAAUAUCGUUUUACUUGUUUAU-GUCGUGAAU-UGG-CACGA-CGUUUCUACAAGGUG-CCGG-AA-CACCUAACAAUAAGUAAGUCAGCAGUGAGAU
-----------------<<<<<<<<-----<<.<<-------->>.>>----------.<<<<<--------->>>>>.-->>>>>>>>---------------
Remember that if you slice a SeqRecord, the per-letter-annotions like the
secondary structure string here, are also sliced:
>>> sub_record = record[10:20]
>>> print sub_record.seq
AUCGUUUUAC
>>> print sub_record.letter_annotations['secondary_structure']
-------<<<
"""
__docformat__ = "epytext en" #not just plaintext
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from Bio.Align import MultipleSeqAlignment
from Interfaces import AlignmentIterator, SequentialAlignmentWriter
class StockholmWriter(SequentialAlignmentWriter):
"""Stockholm/PFAM alignment writer."""
#These dictionaries should be kept in sync with those
#defined in the StockholmIterator class.
pfam_gr_mapping = {"secondary_structure" : "SS",
"surface_accessibility" : "SA",
"transmembrane" : "TM",
"posterior_probability" : "PP",
"ligand_binding" : "LI",
"active_site" : "AS",
"intron" : "IN"}
#Following dictionary deliberately does not cover AC, DE or DR
pfam_gs_mapping = {"organism" : "OS",
"organism_classification" : "OC",
"look" : "LO"}
def write_alignment(self, alignment):
"""Use this to write (another) single alignment to an open file.
Note that sequences and their annotation are recorded
together (rather than having a block of annotation followed
by a block of aligned sequences).
"""
count = len(alignment)
self._length_of_sequences = alignment.get_alignment_length()
self._ids_written = []
#NOTE - For now, the alignment object does not hold any per column
#or per alignment annotation - only per sequence.
if count == 0:
raise ValueError("Must have at least one sequence")
if self._length_of_sequences == 0:
raise ValueError("Non-empty sequences are required")
self.handle.write("# STOCKHOLM 1.0\n")
self.handle.write("#=GF SQ %i\n" % count)
for record in alignment:
self._write_record(record)
self.handle.write("//\n")
def _write_record(self, record):
"""Write a single SeqRecord to the file"""
if self._length_of_sequences != len(record.seq):
raise ValueError("Sequences must all be the same length")
#For the case for stockholm to stockholm, try and use record.name
seq_name = record.id
if record.name is not None:
if "accession" in record.annotations:
if record.id == record.annotations["accession"]:
seq_name = record.name
#In the Stockholm file format, spaces are not allowed in the id
seq_name = seq_name.replace(" ","_")
if "start" in record.annotations \
and "end" in record.annotations:
suffix = "/%s-%s" % (str(record.annotations["start"]),
str(record.annotations["end"]))
if seq_name[-len(suffix):] != suffix:
seq_name = "%s/%s-%s" % (seq_name,
str(record.annotations["start"]),
str(record.annotations["end"]))
if seq_name in self._ids_written:
raise ValueError("Duplicate record identifier: %s" % seq_name)
self._ids_written.append(seq_name)
self.handle.write("%s %s\n" % (seq_name, record.seq.tostring()))
#The recommended placement for GS lines (per sequence annotation)
#is above the alignment (as a header block) or just below the
#corresponding sequence.
#
#The recommended placement for GR lines (per sequence per column
#annotation such as secondary structure) is just below the
#corresponding sequence.
#
#We put both just below the corresponding sequence as this allows
#us to write the file using a single pass through the records.
#AC = Accession
if "accession" in record.annotations:
self.handle.write("#=GS %s AC %s\n" \
% (seq_name, self.clean(record.annotations["accession"])))
elif record.id:
self.handle.write("#=GS %s AC %s\n" \
% (seq_name, self.clean(record.id)))
#DE = description
if record.description:
self.handle.write("#=GS %s DE %s\n" \
% (seq_name, self.clean(record.description)))
#DE = database links
for xref in record.dbxrefs:
self.handle.write("#=GS %s DR %s\n" \
% (seq_name, self.clean(xref)))
#GS = other per sequence annotation
for key, value in record.annotations.iteritems():
if key in self.pfam_gs_mapping:
data = self.clean(str(value))
if data:
self.handle.write("#=GS %s %s %s\n" \
% (seq_name,
self.clean(self.pfam_gs_mapping[key]),
data))
else:
#It doesn't follow the PFAM standards, but should we record
#this data anyway?
pass
#GR = per row per column sequence annotation
for key, value in record.letter_annotations.iteritems():
if key in self.pfam_gr_mapping and len(str(value))==len(record.seq):
data = self.clean(str(value))
if data:
self.handle.write("#=GR %s %s %s\n" \
% (seq_name,
self.clean(self.pfam_gr_mapping[key]),
data))
else:
#It doesn't follow the PFAM standards, but should we record
#this data anyway?
pass
class StockholmIterator(AlignmentIterator):
"""Loads a Stockholm file from PFAM into MultipleSeqAlignment objects.
The file may contain multiple concatenated alignments, which are loaded
and returned incrementally.
This parser will detect if the Stockholm file follows the PFAM
conventions for sequence specific meta-data (lines starting #=GS
and #=GR) and populates the SeqRecord fields accordingly.
Any annotation which does not follow the PFAM conventions is currently
ignored.
If an accession is provided for an entry in the meta data, IT WILL NOT
be used as the record.id (it will be recorded in the record's
annotations). This is because some files have (sub) sequences from
different parts of the same accession (differentiated by different
start-end positions).
Wrap-around alignments are not supported - each sequences must be on
a single line. However, interlaced sequences should work.
For more information on the file format, please see:
http://www.bioperl.org/wiki/Stockholm_multiple_alignment_format
http://www.cgb.ki.se/cgb/groups/sonnhammer/Stockholm.html
For consistency with BioPerl and EMBOSS we call this the "stockholm"
format.
"""
#These dictionaries should be kept in sync with those
#defined in the PfamStockholmWriter class.
pfam_gr_mapping = {"SS" : "secondary_structure",
"SA" : "surface_accessibility",
"TM" : "transmembrane",
"PP" : "posterior_probability",
"LI" : "ligand_binding",
"AS" : "active_site",
"IN" : "intron"}
#Following dictionary deliberately does not cover AC, DE or DR
pfam_gs_mapping = {"OS" : "organism",
"OC" : "organism_classification",
"LO" : "look"}
def next(self):
try:
line = self._header
del self._header
except AttributeError:
line = self.handle.readline()
if not line:
#Empty file - just give up.
raise StopIteration
if not line.strip() == '# STOCKHOLM 1.0':
raise ValueError("Did not find STOCKHOLM header")
#import sys
#print >> sys.stderr, 'Warning file does not start with STOCKHOLM 1.0'
# Note: If this file follows the PFAM conventions, there should be
# a line containing the number of sequences, e.g. "#=GF SQ 67"
# We do not check for this - perhaps we should, and verify that
# if present it agrees with our parsing.
seqs = {}
ids = []
gs = {}
gr = {}
gf = {}
passed_end_alignment = False
while 1:
line = self.handle.readline()
if not line: break #end of file
line = line.strip() #remove trailing \n
if line == '# STOCKHOLM 1.0':
self._header = line
break
elif line == "//":
#The "//" line indicates the end of the alignment.
#There may still be more meta-data
passed_end_alignment = True
elif line == "":
#blank line, ignore
pass
elif line[0] != "#":
#Sequence
#Format: "<seqname> <sequence>"
assert not passed_end_alignment
parts = [x.strip() for x in line.split(" ",1)]
if len(parts) != 2:
#This might be someone attempting to store a zero length sequence?
raise ValueError("Could not split line into identifier " \
+ "and sequence:\n" + line)
id, seq = parts
if id not in ids:
ids.append(id)
seqs.setdefault(id, '')
seqs[id] += seq.replace(".","-")
elif len(line) >= 5:
#Comment line or meta-data
if line[:5] == "#=GF ":
#Generic per-File annotation, free text
#Format: #=GF <feature> <free text>
feature, text = line[5:].strip().split(None,1)
#Each feature key could be used more than once,
#so store the entries as a list of strings.
if feature not in gf:
gf[feature] = [text]
else:
gf[feature].append(text)
elif line[:5] == '#=GC ':
#Generic per-Column annotation, exactly 1 char per column
#Format: "#=GC <feature> <exactly 1 char per column>"
pass
elif line[:5] == '#=GS ':
#Generic per-Sequence annotation, free text
#Format: "#=GS <seqname> <feature> <free text>"
id, feature, text = line[5:].strip().split(None,2)
#if id not in ids:
# ids.append(id)
if id not in gs:
gs[id] = {}
if feature not in gs[id]:
gs[id][feature] = [text]
else:
gs[id][feature].append(text)
elif line[:5] == "#=GR ":
#Generic per-Sequence AND per-Column markup
#Format: "#=GR <seqname> <feature> <exactly 1 char per column>"
id, feature, text = line[5:].strip().split(None,2)
#if id not in ids:
# ids.append(id)
if id not in gr:
gr[id] = {}
if feature not in gr[id]:
gr[id][feature] = ""
gr[id][feature] += text.strip() # append to any previous entry
#TODO - Should we check the length matches the alignment length?
# For iterlaced sequences the GR data can be split over
# multiple lines
#Next line...
assert len(seqs) <= len(ids)
#assert len(gs) <= len(ids)
#assert len(gr) <= len(ids)
self.ids = ids
self.sequences = seqs
self.seq_annotation = gs
self.seq_col_annotation = gr
if ids and seqs:
if self.records_per_alignment is not None \
and self.records_per_alignment != len(ids):
raise ValueError("Found %i records in this alignment, told to expect %i" \
% (len(ids), self.records_per_alignment))
alignment_length = len(seqs.values()[0])
records = [] #Alignment obj will put them all in a list anyway
for id in ids:
seq = seqs[id]
if alignment_length != len(seq):
raise ValueError("Sequences have different lengths, or repeated identifier")
name, start, end = self._identifier_split(id)
record = SeqRecord(Seq(seq, self.alphabet),
id = id, name = name, description = id,
annotations = {"accession":name})
#Accession will be overridden by _populate_meta_data if an explicit
#accession is provided:
record.annotations["accession"]=name
if start is not None:
record.annotations["start"] = start
if end is not None:
record.annotations["end"] = end
self._populate_meta_data(id, record)
records.append(record)
alignment = MultipleSeqAlignment(records, self.alphabet)
#TODO - Introduce an annotated alignment class?
#For now, store the annotation a new private property:
alignment._annotations = gr
return alignment
else:
raise StopIteration
def _identifier_split(self, identifier):
"""Returns (name,start,end) string tuple from an identier."""
if identifier.find("/")!=-1:
name, start_end = identifier.rsplit("/",1)
if start_end.count("-")==1:
start, end = map(int, start_end.split("-"))
return (name, start, end)
return (identifier, None, None)
def _get_meta_data(self, identifier, meta_dict):
"""Takes an itentifier and returns dict of all meta-data matching it.
For example, given "Q9PN73_CAMJE/149-220" will return all matches to
this or "Q9PN73_CAMJE" which the identifier without its /start-end
suffix.
In the example below, the suffix is required to match the AC, but must
be removed to match the OS and OC meta-data::
# STOCKHOLM 1.0
#=GS Q9PN73_CAMJE/149-220 AC Q9PN73
...
Q9PN73_CAMJE/149-220 NKA...
...
#=GS Q9PN73_CAMJE OS Campylobacter jejuni
#=GS Q9PN73_CAMJE OC Bacteria
This function will return an empty dictionary if no data is found."""
name, start, end = self._identifier_split(identifier)
if name==identifier:
identifier_keys = [identifier]
else:
identifier_keys = [identifier, name]
answer = {}
for identifier_key in identifier_keys:
try:
for feature_key in meta_dict[identifier_key]:
answer[feature_key] = meta_dict[identifier_key][feature_key]
except KeyError:
pass
return answer
def _populate_meta_data(self, identifier, record):
"""Adds meta-date to a SecRecord's annotations dictionary.
This function applies the PFAM conventions."""
seq_data = self._get_meta_data(identifier, self.seq_annotation)
for feature in seq_data:
#Note this dictionary contains lists!
if feature=="AC" : #ACcession number
assert len(seq_data[feature])==1
record.annotations["accession"]=seq_data[feature][0]
elif feature=="DE" : #DEscription
record.description = "\n".join(seq_data[feature])
elif feature=="DR" : #Database Reference
#Should we try and parse the strings?
record.dbxrefs = seq_data[feature]
elif feature in self.pfam_gs_mapping:
record.annotations[self.pfam_gs_mapping[feature]] = ", ".join(seq_data[feature])
else:
#Ignore it?
record.annotations["GS:" + feature] = ", ".join(seq_data[feature])
#Now record the per-letter-annotations
seq_col_data = self._get_meta_data(identifier, self.seq_col_annotation)
for feature in seq_col_data:
#Note this dictionary contains strings!
if feature in self.pfam_gr_mapping:
record.letter_annotations[self.pfam_gr_mapping[feature]] = seq_col_data[feature]
else:
#Ignore it?
record.letter_annotations["GR:" + feature] = seq_col_data[feature]
def _test():
"""Run the Bio.SeqIO module's doctests.
This will try and locate the unit tests directory, and run the doctests
from there in order that the relative paths used in the examples work.
"""
import doctest
import os
if os.path.isdir(os.path.join("..","..","Tests")):
print "Runing doctests..."
cur_dir = os.path.abspath(os.curdir)
os.chdir(os.path.join("..","..","Tests"))
assert os.path.isfile("Stockholm/simple.sth")
doctest.testmod()
os.chdir(cur_dir)
del cur_dir
print "Done"
if __name__ == "__main__":
_test()
|