This file is indexed.

/usr/share/pyshared/Bio/MaxEntropy.py is in python-biopython 1.58-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright 2001 by Jeffrey Chang.  All rights reserved.
# This code is part of the Biopython distribution and governed by its
# license.  Please see the LICENSE file that should have been included
# as part of this package.

"""
Maximum Entropy code.

Uses Improved Iterative Scaling:
XXX ref

# XXX need to define terminology

"""

import numpy

class MaxEntropy(object):
    """Holds information for a Maximum Entropy classifier.

    Members:
    classes      List of the possible classes of data.
    alphas       List of the weights for each feature.
    feature_fns  List of the feature functions.

    """
    def __init__(self):
        self.classes = []
        self.alphas = []
        self.feature_fns = []

def calculate(me, observation):
    """calculate(me, observation) -> list of log probs

    Calculate the log of the probability for each class.  me is a
    MaxEntropy object that has been trained.  observation is a vector
    representing the observed data.  The return value is a list of
    unnormalized log probabilities for each class.

    """
    scores = []
    assert len(me.feature_fns) == len(me.alphas)
    for klass in me.classes:
        lprob = 0.0
        for fn, alpha in zip(me.feature_fns, me.alphas):
            lprob += fn(observation, klass) * alpha
        scores.append(lprob)
    return scores

def classify(me, observation):
    """classify(me, observation) -> class

    Classify an observation into a class.

    """
    scores = calculate(me, observation)
    max_score, klass = scores[0], me.classes[0]
    for i in range(1, len(scores)):
        if scores[i] > max_score:
            max_score, klass = scores[i], me.classes[i]
    return klass

def _eval_feature_fn(fn, xs, classes):
    """_eval_feature_fn(fn, xs, classes) -> dict of values

    Evaluate a feature function on every instance of the training set
    and class.  fn is a callback function that takes two parameters: a
    training instance and a class.  Return a dictionary of (training
    set index, class index) -> non-zero value.  Values of 0 are not
    stored in the dictionary.

    """
    values = {}
    for i in range(len(xs)):
        for j in range(len(classes)):
            f = fn(xs[i], classes[j])
            if f != 0:
                values[(i, j)] = f
    return values

def _calc_empirical_expects(xs, ys, classes, features):
    """_calc_empirical_expects(xs, ys, classes, features) -> list of expectations

    Calculate the expectation of each function from the data.  This is
    the constraint for the maximum entropy distribution.  Return a
    list of expectations, parallel to the list of features.

    """
    # E[f_i] = SUM_x,y P(x, y) f(x, y)
    #        = 1/N f(x, y)
    class2index = {}
    for index, key in enumerate(classes):
        class2index[key] = index
    ys_i = [class2index[y] for y in ys]
    
    expect = []
    N = len(xs)
    for feature in features:
        s = 0
        for i in range(N):
            s += feature.get((i, ys_i[i]), 0)
        expect.append(float(s) / N)
    return expect

def _calc_model_expects(xs, classes, features, alphas):
    """_calc_model_expects(xs, classes, features, alphas) -> list of expectations.

    Calculate the expectation of each feature from the model.  This is
    not used in maximum entropy training, but provides a good function
    for debugging.

    """
    # SUM_X P(x) SUM_Y P(Y|X) F(X, Y)
    # = 1/N SUM_X SUM_Y P(Y|X) F(X, Y)
    p_yx = _calc_p_class_given_x(xs, classes, features, alphas)

    expects = []
    for feature in features:
        sum = 0.0
        for (i, j), f in feature.iteritems():
            sum += p_yx[i][j] * f
        expects.append(sum/len(xs))
    return expects

def _calc_p_class_given_x(xs, classes, features, alphas):
    """_calc_p_class_given_x(xs, classes, features, alphas) -> matrix

    Calculate P(y|x), where y is the class and x is an instance from
    the training set.  Return a XSxCLASSES matrix of probabilities.

    """
    prob_yx = numpy.zeros((len(xs), len(classes)))

    # Calculate log P(y, x).
    assert len(features) == len(alphas)
    for feature, alpha in zip(features, alphas):
        for (x, y), f in feature.iteritems():
            prob_yx[x][y] += alpha * f
    # Take an exponent to get P(y, x)
    prob_yx = numpy.exp(prob_yx)
    # Divide out the probability over each class, so we get P(y|x).
    for i in range(len(xs)):
        z = sum(prob_yx[i])
        prob_yx[i] = prob_yx[i] / z

    #prob_yx = []
    #for i in range(len(xs)):
    #    z = 0.0   # Normalization factor for this x, over all classes.
    #    probs = [0.0] * len(classes)
    #    for j in range(len(classes)):
    #        log_p = 0.0   # log of the probability of f(x, y)
    #        for k in range(len(features)):
    #            log_p += alphas[k] * features[k].get((i, j), 0.0)
    #        probs[j] = numpy.exp(log_p)
    #        z += probs[j]
    #    # Normalize the probabilities for this x.
    #    probs = map(lambda x, z=z: x/z, probs)
    #    prob_yx.append(probs)
    return prob_yx

def _calc_f_sharp(N, nclasses, features):
    """_calc_f_sharp(N, nclasses, features) -> matrix of f sharp values."""
    # f#(x, y) = SUM_i feature(x, y)
    f_sharp = numpy.zeros((N, nclasses))
    for feature in features:
        for (i, j), f in feature.iteritems():
            f_sharp[i][j] += f
    return f_sharp

def _iis_solve_delta(N, feature, f_sharp, empirical, prob_yx,
                     max_newton_iterations, newton_converge):
    # Solve delta using Newton's method for:
    # SUM_x P(x) * SUM_c P(c|x) f_i(x, c) e^[delta_i * f#(x, c)] = 0
    delta = 0.0
    iters = 0
    while iters < max_newton_iterations: # iterate for Newton's method
        f_newton = df_newton = 0.0       # evaluate the function and derivative
        for (i, j), f in feature.iteritems():
            prod = prob_yx[i][j] * f * numpy.exp(delta * f_sharp[i][j])
            f_newton += prod
            df_newton += prod * f_sharp[i][j]
        f_newton, df_newton = empirical - f_newton / N, -df_newton / N

        ratio = f_newton / df_newton
        delta -= ratio
        if numpy.fabs(ratio) < newton_converge:  # converged
            break
        iters = iters + 1
    else:
        raise RuntimeError("Newton's method did not converge")
    return delta

def _train_iis(xs, classes, features, f_sharp, alphas, e_empirical,
               max_newton_iterations, newton_converge):
    """Do one iteration of hill climbing to find better alphas (PRIVATE)."""
    # This is a good function to parallelize.

    # Pre-calculate P(y|x)
    p_yx = _calc_p_class_given_x(xs, classes, features, alphas)

    N = len(xs)
    newalphas = alphas[:]
    for i in range(len(alphas)):
        delta = _iis_solve_delta(N, features[i], f_sharp, e_empirical[i], p_yx,
                                 max_newton_iterations, newton_converge)
        newalphas[i] += delta
    return newalphas


def train(training_set, results, feature_fns, update_fn=None,
          max_iis_iterations=10000, iis_converge=1.0e-5,
          max_newton_iterations=100, newton_converge=1.0e-10):
    """Train a maximum entropy classifier, returns MaxEntropy object.

    Train a maximum entropy classifier on a training set.
    training_set is a list of observations.  results is a list of the
    class assignments for each observation.  feature_fns is a list of
    the features.  These are callback functions that take an
    observation and class and return a 1 or 0.  update_fn is a
    callback function that is called at each training iteration.  It is
    passed a MaxEntropy object that encapsulates the current state of
    the training.

    The maximum number of iterations and the convergence criterion for IIS
    are given by max_iis_iterations and iis_converge, respectively, while
    max_newton_iterations and newton_converge are the maximum number
    of iterations and the convergence criterion for Newton's method.
    """
    if not training_set:
        raise ValueError("No data in the training set.")
    if len(training_set) != len(results):
        raise ValueError("training_set and results should be parallel lists.")

    # Rename variables for convenience.
    xs, ys = training_set, results

    # Get a list of all the classes that need to be trained.
    classes = sorted(set(results))

    # Cache values for all features.
    features = [_eval_feature_fn(fn, training_set, classes)
                for fn in feature_fns]
    # Cache values for f#.
    f_sharp = _calc_f_sharp(len(training_set), len(classes), features)

    # Pre-calculate the empirical expectations of the features.
    e_empirical = _calc_empirical_expects(xs, ys, classes, features)

    # Now train the alpha parameters to weigh each feature.
    alphas = [0.0] * len(features)
    iters = 0
    while iters < max_iis_iterations:
        nalphas = _train_iis(xs, classes, features, f_sharp,
                             alphas, e_empirical,
                             max_newton_iterations, newton_converge)
        diff = map(lambda x, y: numpy.fabs(x-y), alphas, nalphas)
        diff = reduce(lambda x, y: x+y, diff, 0)
        alphas = nalphas
        
        me = MaxEntropy()
        me.alphas, me.classes, me.feature_fns = alphas, classes, feature_fns
        if update_fn is not None:
            update_fn(me)
    
        if diff < iis_converge:   # converged
            break
    else:
        raise RuntimeError("IIS did not converge")

    return me


if __name__ == "__main__":
    #Car data from example Naive Bayes Classifier example by Eric Meisner November 22, 2003
    #http://www.inf.u-szeged.hu/~ormandi/teaching/mi2/02-naiveBayes-example.pdf

    xcar=[
        ['Red',    'Sports', 'Domestic'],
        ['Red',    'Sports', 'Domestic'],
        ['Red',    'Sports', 'Domestic'],
        ['Yellow', 'Sports', 'Domestic'],
        ['Yellow', 'Sports', 'Imported'],
        ['Yellow', 'SUV',    'Imported'],
        ['Yellow', 'SUV',    'Imported'],
        ['Yellow', 'SUV',    'Domestic'],
        ['Red',    'SUV',    'Imported'],
        ['Red',    'Sports', 'Imported']
    ]

    ycar=[
        'Yes',
        'No',
        'Yes',
        'No',
        'Yes',
        'No',
        'Yes',
        'No',
        'No',
        'Yes'
    ]

    #Requires some rules or features
    def udf1(ts, cl):
        if ts[0] =='Red':
            return 0
        else:
            return 1

    def udf2(ts, cl):
        if ts[1] =='Sports':
            return 0
        else:
            return 1

    def udf3(ts, cl):
        if ts[2] =='Domestic':
            return 0
        else:
            return 1

    user_functions=[udf1, udf2, udf3] # must be an iterable type 

    xe=train(xcar, ycar, user_functions)
    for xv,yv in zip(xcar, ycar):
        xc=classify(xe, xv)
        print 'Pred:', xv, 'gives', xc, 'y is', yv