/usr/share/pyshared/Bio/PDB/DSSP.py is in python-biopython 1.58-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 | # Copyright (C) 2002, Thomas Hamelryck (thamelry@binf.ku.dk)
# This code is part of the Biopython distribution and governed by its
# license. Please see the LICENSE file that should have been included
# as part of this package.
"""Use the DSSP program to calculate secondary structure and accessibility.
You need to have a working version of DSSP (and a license, free for academic
use) in order to use this. For DSSP, see U{http://www.cmbi.kun.nl/gv/dssp/}.
The DSSP codes for secondary structure used here are:
- H Alpha helix (4-12)
- B Isolated beta-bridge residue
- E Strand
- G 3-10 helix
- I pi helix
- T Turn
- S Bend
- - None
"""
import os
import re
import tempfile
from Bio.SCOP.Raf import to_one_letter_code
from Bio.PDB.AbstractPropertyMap import AbstractResiduePropertyMap
from Bio.PDB.PDBExceptions import PDBException
from Bio.PDB.PDBParser import PDBParser
# Match C in DSSP
_dssp_cys=re.compile('[a-z]')
# Maximal ASA of amino acids
# Values from Sander & Rost, (1994), Proteins, 20:216-226
# Used for relative accessibility
MAX_ACC={}
MAX_ACC["ALA"]=106.0
MAX_ACC["CYS"]=135.0
MAX_ACC["ASP"]=163.0
MAX_ACC["GLU"]=194.0
MAX_ACC["PHE"]=197.0
MAX_ACC["GLY"]=84.0
MAX_ACC["HIS"]=184.0
MAX_ACC["ILE"]=169.0
MAX_ACC["LYS"]=205.0
MAX_ACC["LEU"]=164.0
MAX_ACC["MET"]=188.0
MAX_ACC["ASN"]=157.0
MAX_ACC["PRO"]=136.0
MAX_ACC["GLN"]=198.0
MAX_ACC["ARG"]=248.0
MAX_ACC["SER"]=130.0
MAX_ACC["THR"]=142.0
MAX_ACC["VAL"]=142.0
MAX_ACC["TRP"]=227.0
MAX_ACC["TYR"]=222.0
def ss_to_index(ss):
"""
Secondary structure symbol to index.
H=0
E=1
C=2
"""
if ss=='H':
return 0
if ss=='E':
return 1
if ss=='C':
return 2
assert 0
def dssp_dict_from_pdb_file(in_file, DSSP="dssp"):
"""
Create a DSSP dictionary from a PDB file.
Example:
>>> dssp_dict=dssp_dict_from_pdb_file("1fat.pdb")
>>> aa, ss, acc=dssp_dict[('A', 1)]
@param in_file: pdb file
@type in_file: string
@param DSSP: DSSP executable (argument to os.system)
@type DSSP: string
@return: a dictionary that maps (chainid, resid) to
amino acid type, secondary structure code and
accessibility.
@rtype: {}
"""
out_file = tempfile.NamedTemporaryFile(suffix='.dssp')
out_file.flush() # needed?
os.system("%s %s > %s" % (DSSP, in_file, out_file.name))
out_dict, keys = make_dssp_dict(out_file.name)
out_file.close()
return out_dict, keys
def make_dssp_dict(filename):
"""
Return a DSSP dictionary that maps (chainid, resid) to
aa, ss and accessibility, from a DSSP file.
@param filename: the DSSP output file
@type filename: string
"""
dssp = {}
handle = open(filename, "r")
try:
start = 0
keys = []
for l in handle.readlines():
sl = l.split()
if sl[1] == "RESIDUE":
# Start parsing from here
start = 1
continue
if not start:
continue
if l[9] == " ":
# Skip -- missing residue
continue
resseq = int(l[5:10])
icode = l[10]
chainid = l[11]
aa = l[13]
ss = l[16]
if ss == " ":
ss = "-"
try:
acc = int(l[34:38])
phi = float(l[103:109])
psi = float(l[109:115])
except ValueError, exc:
# DSSP output breaks its own format when there are >9999
# residues, since only 4 digits are allocated to the seq num
# field. See 3kic chain T res 321, 1vsy chain T res 6077.
# Here, look for whitespace to figure out the number of extra
# digits, and shift parsing the rest of the line by that amount.
if l[34] != ' ':
shift = l[34:].find(' ')
acc = int((l[34+shift:38+shift]))
phi = float(l[103+shift:109+shift])
psi = float(l[109+shift:115+shift])
else:
raise ValueError, exc
res_id = (" ", resseq, icode)
dssp[(chainid, res_id)] = (aa, ss, acc, phi, psi)
keys.append((chainid, res_id))
finally:
handle.close()
return dssp, keys
class DSSP(AbstractResiduePropertyMap):
"""
Run DSSP on a pdb file, and provide a handle to the
DSSP secondary structure and accessibility.
Note that DSSP can only handle one model.
Example:
>>> p = PDBParser()
>>> structure = p.get_structure("1MOT", "1MOT.pdb")
>>> model = structure[0]
>>> dssp = DSSP(model, "1MOT.pdb")
>>> # DSSP data is accessed by a tuple (chain_id, res_id)
>>> a_key = dssp.keys()[2]
>>> # residue object, secondary structure, solvent accessibility,
>>> # relative accessiblity, phi, psi
>>> dssp[a_key]
(<Residue ALA het= resseq=251 icode= >,
'H',
72,
0.67924528301886788,
-61.200000000000003,
-42.399999999999999)
"""
def __init__(self, model, pdb_file, dssp="dssp"):
"""
@param model: the first model of the structure
@type model: L{Model}
@param pdb_file: a PDB file
@type pdb_file: string
@param dssp: the dssp executable (ie. the argument to os.system)
@type dssp: string
"""
# create DSSP dictionary
dssp_dict, dssp_keys = dssp_dict_from_pdb_file(pdb_file, dssp)
dssp_map = {}
dssp_list = []
def resid2code(res_id):
"""Serialize a residue's resseq and icode for easy comparison."""
return '%s%s' % (res_id[1], res_id[2])
# Now create a dictionary that maps Residue objects to
# secondary structure and accessibility, and a list of
# (residue, (secondary structure, accessibility)) tuples
for key in dssp_keys:
chain_id, res_id = key
chain = model[chain_id]
try:
res = chain[res_id]
except KeyError:
# In DSSP, HET field is not considered in residue identifier.
# Thus HETATM records may cause unnecessary exceptions.
# (See 3jui chain A res 593.)
# Try the lookup again with all HETATM other than water
res_seq_icode = resid2code(res_id)
for r in chain:
if r.id[0] not in (' ', 'W'):
# Compare resseq + icode
if resid2code(r.id) == res_seq_icode:
# Found a matching residue
res = r
break
else:
raise KeyError(res_id)
# For disordered residues of point mutations, BioPython uses the
# last one as default, But DSSP takes the first one (alternative
# location is blank, A or 1). See 1h9h chain E resi 22.
# Here we select the res in which all atoms have altloc blank, A or
# 1. If no such residues are found, simply use the first one appears
# (as DSSP does).
if res.is_disordered() == 2:
for rk in res.disordered_get_id_list():
# All atoms in the disordered residue should have the same
# altloc, so it suffices to check the altloc of the first
# atom.
altloc = res.child_dict[rk].get_list()[0].get_altloc()
if altloc in tuple('A1 '):
res.disordered_select(rk)
break
else:
# Simply select the first one
res.disordered_select(res.disordered_get_id_list()[0])
# Sometimes point mutations are put into HETATM and ATOM with altloc
# 'A' and 'B'.
# See 3piu chain A residue 273:
# <Residue LLP het=H_LLP resseq=273 icode= >
# <Residue LYS het= resseq=273 icode= >
# DSSP uses the HETATM LLP as it has altloc 'A'
# We check the altloc code here.
elif res.is_disordered() == 1:
# Check altloc of all atoms in the DisorderedResidue. If it
# contains blank, A or 1, then use it. Otherwise, look for HET
# residues of the same seq+icode. If not such HET residues are
# found, just accept the current one.
altlocs = set(a.get_altloc() for a in res.get_unpacked_list())
if altlocs.isdisjoint('A1 '):
# Try again with all HETATM other than water
res_seq_icode = resid2code(res_id)
for r in chain:
if r.id[0] not in (' ', 'W'):
if (resid2code(r.id) == res_seq_icode and
r.get_list()[0].get_altloc() in tuple('A1 ')):
res = r
break
aa, ss, acc, phi, psi = dssp_dict[key]
res.xtra["SS_DSSP"] = ss
res.xtra["EXP_DSSP_ASA"] = acc
res.xtra["PHI_DSSP"] = phi
res.xtra["PSI_DSSP"] = psi
# Relative accessibility
resname = res.get_resname()
try:
rel_acc = acc/MAX_ACC[resname]
except KeyError:
# Invalid value for resname
rel_acc = 'NA'
else:
if rel_acc > 1.0:
rel_acc = 1.0
res.xtra["EXP_DSSP_RASA"] = rel_acc
# Verify if AA in DSSP == AA in Structure
# Something went wrong if this is not true!
# NB: DSSP uses X often
resname = to_one_letter_code.get(resname, 'X')
if resname == "C":
# DSSP renames C in C-bridges to a,b,c,d,...
# - we rename it back to 'C'
if _dssp_cys.match(aa):
aa = 'C'
# Take care of HETATM again
if (resname != aa) and (res.id[0] == ' ' or aa != 'X'):
raise PDBException("Structure/DSSP mismatch at %s" % res)
dssp_map[key] = ((res, ss, acc, rel_acc, phi, psi))
dssp_list.append((res, ss, acc, rel_acc, phi, psi))
AbstractResiduePropertyMap.__init__(self, dssp_map, dssp_keys,
dssp_list)
if __name__ == "__main__":
import sys
p = PDBParser()
s = p.get_structure('X', sys.argv[1])
model = s[0]
d = DSSP(model, sys.argv[1])
for r in d:
print r
print "Handled", len(d), "residues"
print d.keys()
if ('A', 1) in d:
print d[('A', 1)]
print s[0]['A'][1].xtra
# Secondary structure
print ''.join(d[key][1] for key in d.keys())
|