/usr/share/pyshared/bitarray-0.3.5.egg-info is in python-bitarray 0.3.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | Metadata-Version: 1.0
Name: bitarray
Version: 0.3.5
Summary: efficient arrays of booleans -- C extension
Home-page: http://pypi.python.org/pypi/bitarray/
Author: Ilan Schnell
Author-email: ilanschnell@gmail.com
License: PSF
Description: ===============
Bitarray module
===============
This module provides an object type which efficiently represents an array
of booleans. Bitarrays are sequence types and behave very much like usual
lists. Eight bits are represented by one byte in contiguous block of
memory. The user can select between two representations; little-endian
and big-endian. Most of the functionality is implemented in C.
Methods for accessing the machine representation are provided.
This can be useful when bit level access to binary files is required,
such as portable bitmap image files (.pbm). Also, when dealing with
compressed data which uses variable bit length encoding, you may find
this module useful.
Requires Python 2.5 or greater,
see `PEP 353 <http://www.python.org/dev/peps/pep-0353/>`_.
Key features
------------
* On 32bit machines, a bitarray object can contain up to 2^34 elements,
that is 16 Gbits (on 64bit machines up to 2^63 elements in theory).
* All functionality implemented in C.
* Bitarray objects behave very much like a list object, in particular
slicing (including slice assignment and deletion) is supported.
* The bit endianness can be specified for each bitarray object, see below.
* Packing and unpacking to other binary data formats,
e.g. `numpy.ndarray <http://www.scipy.org/Tentative_NumPy_Tutorial>`_,
is possible.
* Fast methods for encoding and decoding variable bit length prefix codes
* Sequential search
* Bitwise operations: ``&, |, ^, &=, |=, ^=, ~``
* Pickling and unpickling of bitarray objects possible.
Installation
------------
bitarray can be installed from source::
$ tar xzf bitarray-0.3.5.tar.gz
$ cd bitarray-0.3.5
$ python setup.py install
On Unix systems, the latter command may have to be executed with root
privileges.
If you have `setuptools <http://pypi.python.org/pypi/setuptools/>`_
installed, you can easy_install bitarray.
Once you have installed the package, you may want to test it::
$ python -c 'import bitarray; bitarray.test()'
bitarray is installed in: /usr/local/lib/python2.5/site-packages/bitarray
bitarray version: 0.3.5
2.5.2 (r252:60911, Jul 17 2008, 10:38:24)
[GCC 4.2.1 (SUSE Linux)]
.........................................................................
..........
----------------------------------------------------------------------
Ran 90 tests in 2.420s
OK
You can always import the function test,
and ``test().wasSuccessful()`` will return True when the test went OK.
Using the module
----------------
As mentioned above, bitarray objects behave very much like lists, so
there is not too new to learn. The biggest difference to list objects
is the ability to access the machine representation of the object.
When doing so, the bit endianness is of importance, this issue is
explained in detail in the section below. Here, we demonstrate the
basic usage of bitarray objects:
>>> from bitarray import bitarray
>>> a = bitarray() # create empty bitarray
>>> a.append(True)
>>> a.extend([False, True, True])
>>> a
bitarray('1011')
Bitarray objects can be instantiated in different ways:
>>> a = bitarray(2**20) # bitarray of length 1048576 (uninitialized)
>>> bitarray('1001011') # from a string
bitarray('1001011')
>>> lst = [True, False, False, True, False, True, True]
>>> bitarray(lst) # from list, tuple, iterable
bitarray('1001011')
Bits can be assigned from any Python object, if the value can be interpreted
as a truth value. You can think of this as Python's built-in function bool()
being applied, whenever casting an object:
>>> a = bitarray([42, '', True, {}, 'foo', None])
>>> a
bitarray('101010')
>>> a.append(a) # note that bool(a) is True
>>> a.count(42) # counts occurrences of True (not 42)
4L
>>> a.remove('') # removes first occurrence of False
>>> a
bitarray('110101')
Like lists, bitarray objects support slice assignment and deletion:
>>> a = bitarray(50)
>>> a.setall(False)
>>> a[11:37:3] = 9 * bitarray([True])
>>> a
bitarray('00000000000100100100100100100100100100000000000000')
>>> del a[12::3]
>>> a
bitarray('0000000000010101010101010101000000000')
>>> a[-6:] = bitarray('10011')
>>> a
bitarray('000000000001010101010101010100010011')
>>> a += bitarray('000111')
>>> a[9:]
bitarray('001010101010101010100010011000111')
In addition, slices can be assigned to booleans, which is easier (and
faster) than assigning to a bitarray in which all values are the same:
>>> a = 20 * bitarray('0')
>>> a[1:15:3] = True
>>> a
bitarray('01001001001001000000')
This is easier and faster than:
>>> a = 20 * bitarray('0')
>>> a[1:15:3] = 5 * bitarray('1')
>>> a
bitarray('01001001001001000000')
Note that in the latter we have to create a temporary bitarray whose length
must be known or calculated.
Bit endianness
--------------
Since a bitarray allows addressing of individual bits, where the machine
represents 8 bits in one byte, there two obvious choices for this mapping;
little- and big-endian.
When creating a new bitarray object, the endianness can always be
specified explicitly:
>>> a = bitarray(endian='little')
>>> a.fromstring('A')
>>> a
bitarray('10000010')
>>> b = bitarray('11000010', endian='little')
>>> b.tostring()
'C'
Here the low-bit comes first because little-endian means that increasing
numeric significance corresponds to an increasing address (or index).
So a[0] is the lowest and least significant bit, and a[7] is the highest
and most significant bit.
>>> a = bitarray(endian='big')
>>> a.fromstring('A')
>>> a
bitarray('01000001')
>>> a[6] = 1
>>> a.tostring()
'C'
Here the high-bit comes first because big-endian
means "most-significant first".
So a[0] is now the lowest and most significant bit, and a[7] is the highest
and least significant bit.
The bit endianness is a property attached to each bitarray object.
When comparing bitarray objects, the endianness (and hence the machine
representation) is irrelevant; what matters is the mapping from indices
to bits:
>>> bitarray('11001', endian='big') == bitarray('11001', endian='little')
True
Bitwise operations (``&, |, ^, &=, |=, ^=, ~``) are implemented efficiently
using the corresponding byte operations in C, i.e. the operators act on the
machine representation of the bitarray objects. Therefore, one has to be
cautious when applying the operation to bitarrays with different endianness.
When converting to and from machine representation, using
the ``tostring``, ``fromstring``, ``tofile`` and ``fromfile`` methods,
the endianness matters:
>>> a = bitarray(endian='little')
>>> a.fromstring('\x01')
>>> a
bitarray('10000000')
>>> b = bitarray(endian='big')
>>> b.fromstring('\x80')
>>> b
bitarray('10000000')
>>> a == b
True
>>> a.tostring() == b.tostring()
False
The endianness can not be changed once an object is created.
However, since creating a bitarray from another bitarray just copies the
memory representing the data, you can create a new bitarray with different
endianness:
>>> a = bitarray('11100000', endian='little')
>>> a
bitarray('11100000')
>>> b = bitarray(a, endian='big')
>>> b
bitarray('00000111')
>>> a == b
False
>>> a.tostring() == b.tostring()
True
The default bit endianness is currently big-endian, however this may change
in the future, and when dealing with the machine representation of bitarray
objects, it is recommended to always explicitly specify the endianness.
Unless, explicitly converting to machine representation, using
the ``tostring``, ``fromstring``, ``tofile`` and ``fromfile`` methods,
the bit endianness will have no effect on any computation, and you
can safely ignore setting the endianness, and other details of this section.
Variable bit length prefix codes
--------------------------------
The method ``encode`` takes a dictionary mapping symbols to bitarrays
and an iterable, and extends the bitarray object with the encoded symbols
found while iterating. For example:
>>> d = {'H':bitarray('111'), 'e':bitarray('0'),
... 'l':bitarray('110'), 'o':bitarray('10')}
...
>>> a = bitarray()
>>> a.encode(d, 'Hello')
>>> a
bitarray('111011011010')
Note that the string ``'Hello'`` is an iterable, but the symbols are not
limited to characters, any hashable Python object can be a symbol.
Taking the same dictionary, we can apply the ``decode`` method which will
return a list of the symbols:
>>> a.decode(d)
['H', 'e', 'l', 'l', 'o']
>>> ''.join(a.decode(d))
'Hello'
Since symbols are not limited to being characters, it is necessary to return
them as elements of a list, rather than simply returning the joined string.
Reference
---------
**The bitarray class:**
``bitarray([initial][endian=string])``
Return a new bitarray object whose items are bits initialized from
the optional initial, and endianness.
If no object is provided, the bitarray is initialized to have length zero.
The initial object may be of the following types:
int, long
Create bitarray of length given by the integer. The initial values
in the array are random, because only the memory allocated.
string
Create bitarray from a string of '0's and '1's.
list, tuple, iterable
Create bitarray from a sequence, each element in the sequence is
converted to a bit using truth value value.
bitarray
Create bitarray from another bitarray. This is done by copying the
memory holding the bitarray data, and is hence very fast.
The optional keyword arguments 'endian' specifies the bit endianness of the
created bitarray object.
Allowed values are 'big' and 'little' (default is 'big').
Note that setting the bit endianness only has an effect when accessing the
machine representation of the bitarray, i.e. when using the methods: tofile,
fromfile, tostring, fromstring.
**A bitarray object supports the following methods:**
``all()``
Returns True when all bits in the array are True.
``any()``
Returns True when any bit in the array is True.
``append(x)``
Append the value bool(x) to the end of the bitarray.
``buffer_info()``
Return a tuple (address, size, endianness, unused, allocated) giving the
current memory address, the size (in bytes) used to hold the bitarray's
contents, the bit endianness as a string, the number of unused bits
(e.g. a bitarray of length 11 will have a buffer size of 2 bytes and
5 unused bits), and the size (in bytes) of the allocated memory.
``bytereverse()``
For all bytes representing the bitarray, reverse the bit order (in-place).
Note: This method changes the actual machine values representing the
bitarray; it does not change the endianness of the bitarray object.
``copy()``
Return a copy of the bitarray.
``count([x])``
Return number of occurrences of x in the bitarray. x defaults to True.
``decode(code)``
Given a prefix code (a dict mapping symbols to bitarrays),
decode the content of the bitarray and return the list of symbols.
``encode(code, iterable)``
Given a prefix code (a dict mapping symbols to bitarrays),
iterates over iterable object with symbols, and extends the bitarray
with the corresponding bitarray for each symbols.
``endian()``
Return the bit endianness as a string (either 'little' or 'big').
``extend(object)``
Append bits to the end of the bitarray. The objects which can be passed
to this method are the same iterable objects which can given to a bitarray
object upon initialization.
``fill()``
Returns the number of bits added (0..7) at the end of the array.
When the length of the bitarray is not a multiple of 8, increase the length
slightly such that the new length is a multiple of 8, and set the few new
bits to False.
``fromfile(f [, n])``
Read n bytes from the file object f and append them to the bitarray
interpreted as machine values. When n is omitted, as many bytes are
read until EOF is reached.
``fromstring(string)``
Append from a string, interpreting the string as machine values.
``index(x)``
Return index of the first occurrence of x in the bitarray.
It is an error when x does not occur in the bitarray
``insert(i, x)``
Insert a new item x into the bitarray before position i.
``invert(x)``
Invert all bits in the array (in-place),
i.e. convert each 1-bit into a 0-bit and vice versa.
``length()``
Return the length, i.e. number of bits stored in the bitarray.
This method is preferred over __len__, [used when typing ``len(a)``],
since __len__ will fail for a bitarray object with 2^31 or more elements
on a 32bit machine, whereas this method will return the correct value,
on 32bit and 64bit machines.
``pack(string)``
Extend the bitarray from a string, where each characters corresponds to
a single bit. The character '\x00' maps to bit 0 and all other characters
map to bit 1.
This method, as well as the unpack method, are meant for efficient
transfer of data between bitarray objects to other python objects
(for example NumPy's ndarray object) which have a different view of memory.
``pop([i])``
Return the i-th element and delete it from the bitarray. i defaults to -1.
``remove(x)``
Remove the first occurrence of x in the bitarray.
``reverse()``
Reverse the order of bits in the array (in-place).
``search(x[, limit])``
Given a bitarray x (or an object which can be converted to a bitarray),
returns the start positions of x matching self as a list.
The optional argument limits the number of search results to the integer
specified. By default, all search results are returned.
``setall(x)``
Set all bits in the bitarray to bool(x).
``sort(reverse=False)``
Sort the bits in the array (in-place).
``to01()``
Return a string containing '0's and '1's, representing the bits in the
bitarray object.
Note: To extend a bitarray from a string containing '0's and '1's,
use the extend method.
``tofile(f)``
Write all bits (as machine values) to the file object f.
When the length of the bitarray is not a multiple of 8,
the remaining bits (1..7) are set to 0.
``tolist()``
Return an ordinary list with the items in the bitarray.
Note: To extend a bitarray with elements from a list,
use the extend method.
``tostring()``
Return the string representing (machine values) of the bitarray.
When the length of the bitarray is not a multiple of 8, the few remaining
bits (1..7) are set to 0.
``unpack(zero='\x00', one='\xff')``
Return a string containing one character for each bit in the bitarray,
using the specified mapping.
Note that unpack('0', '1') has the same effect as to01().
See also the pack method.
**Functions defined in the module:**
``test(verbosity=1)``
Run self-test.
``bits2bytes(n)``
Return the number of bytes necessary to store n bits.
Platform: UNKNOWN
Classifier: License :: OSI Approved :: Python Software Foundation License
Classifier: Development Status :: 4 - Beta
Classifier: Intended Audience :: Developers
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: C
Classifier: Programming Language :: Python
Classifier: Topic :: Utilities
|