/usr/share/pyshared/cogent/app/infernal.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 | #!/usr/bin/env python
"""
Provides an application controller for the commandline version of:
Infernal 1.0 and 1.0.2 only.
"""
from cogent.app.parameters import FlagParameter, ValuedParameter, FilePath
from cogent.app.util import CommandLineApplication, ResultPath, get_tmp_filename
from cogent.parse.fasta import MinimalFastaParser
from cogent.parse.rfam import MinimalRfamParser, ChangedSequence, \
ChangedRnaSequence, ChangedDnaSequence
from cogent.parse.infernal import CmsearchParser
from cogent.core.moltype import DNA, RNA
from cogent.core.alignment import SequenceCollection, Alignment, DataError
from cogent.format.stockholm import stockholm_from_alignment
from cogent.struct.rna2d import ViennaStructure, wuss_to_vienna
from os import remove
__author__ = "Jeremy Widmann"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Jeremy Widmann"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Jeremy Widmann"
__email__ = "jeremy.widmann@colorado.edu"
__status__ = "Development"
MOLTYPE_MAP = {'DNA':'--dna',\
DNA:'--dna',\
'RNA':'--rna',\
RNA:'--rna',\
}
SEQ_CONSTRUCTOR_MAP = {'DNA':ChangedDnaSequence,\
DNA:ChangedDnaSequence,\
'RNA':ChangedRnaSequence,\
RNA:ChangedRnaSequence,\
}
class Cmalign(CommandLineApplication):
"""cmalign application controller."""
_options = {
# -o <f> Save the alignment in Stockholm format to a file <f>. The default
# is to write it to standard output.
'-o':ValuedParameter(Prefix='-',Name='o',Delimiter=' '),\
# -l Turn on the local alignment algorithm. Default is global.
'-l':FlagParameter(Prefix='-',Name='l'),\
# -p Annotate the alignment with posterior probabilities calculated using
# the Inside and Outside algorithms.
'-p':FlagParameter(Prefix='-',Name='p'),\
# -q Quiet; suppress the verbose banner, and only print the resulting
# alignment to stdout.
'-q':FlagParameter(Prefix='-',Name='q'),\
# --informat <s> Assert that the input seqfile is in format <s>. Do not run
# Babelfish format autodection. Acceptable formats are: FASTA, EMBL,
# UNIPROT, GENBANK, and DDBJ. <s> is case-insensitive.
'--informat':ValuedParameter(Prefix='--',Name='informat',Delimiter=' '),\
# --mpi Run as an MPI parallel program. (see User's Guide for details).
'--mpi':FlagParameter(Prefix='--',Name='mpi'),\
# Expert Options
# --optacc Align sequences using the Durbin/Holmes optimal accuracy
# algorithm. This is default behavior, so this option is probably useless.
'--optacc':FlagParameter(Prefix='--',Name='optacc'),\
# --cyk Do not use the Durbin/Holmes optimal accuracy alignment to align the
# sequences, instead use the CYK algorithm which determines the optimally
# scoring alignment of the sequence to the model.
'--cyk':FlagParameter(Prefix='--',Name='cyk'),\
# --sample Sample an alignment from the posterior distribution of
# alignments.
'--sample':FlagParameter(Prefix='--',Name='sample'),\
# -s <n> Set the random number generator seed to <n>, where <n> is a
# positive integer. This option can only be used in combination with
# --sample. The default is to use time() to generate a different seed for
# each run, which means that two different runs of cmalign --sample on the
# same alignment will give slightly different results. You can use this
# option to generate reproducible results.
'-s':ValuedParameter(Prefix='-',Name='s',Delimiter=' '),\
# --viterbi Do not use the CM to align the sequences, instead use the HMM
# Viterbi algorithm to align with a CM Plan 9 HMM.
'--viterbi':FlagParameter(Prefix='--',Name='viterbi'),\
# --sub Turn on the sub model construction and alignment procedure.
'--sub':FlagParameter(Prefix='--',Name='sub'),\
# --small Use the divide and conquer CYK alignment algorithm described in
# SR Eddy, BMC Bioinformatics 3:18, 2002.
'--small':FlagParameter(Prefix='--',Name='small'),\
# --hbanded This option is turned on by default. Accelerate alignment by
# pruning away regions of the CM DP matrix that are deemed negligible by
# an HMM.
'--hbanded':FlagParameter(Prefix='--',Name='hbanded'),\
# --nonbanded Turns off HMM banding.
'--nonbanded':FlagParameter(Prefix='--',Name='nonbanded'),\
# --tau <x> Set the tail loss probability used during HMM band calculation
# to <x>.
'--tau':ValuedParameter(Prefix='--',Name='tau',Delimiter=' '),\
# --mxsize <x> Set the maximum allowable DP matrix size to <x> megabytes.
'--mxsize':ValuedParameter(Prefix='--',Name='mxsize',Delimiter=' '),\
# --rna Output the alignments as RNA sequence alignments. This is true by
# default.
'--rna':FlagParameter(Prefix='--',Name='rna'),\
# --dna Output the alignments as DNA sequence alignments.
'--dna':FlagParameter(Prefix='--',Name='dna'),\
# --matchonly Only include match columns in the output alignment, do not
# include any insertions relative to the consensus model.
'--matchonly':FlagParameter(Prefix='--',Name='matchonly'),\
# --resonly Only include match columns in the output alignment that have at
# least 1 residue (non-gap character) in them.
'--resonly':FlagParameter(Prefix='--',Name='resonly'),\
# --fins Change the behavior of how insert emissions are placed in the
# alignment.
'--fins':FlagParameter(Prefix='--',Name='fins'),\
# --onepost Modifies behavior of the -p option. Use only one character
# instead of two to annotate the posterior probability of each aligned
# residue.
'--onepost':FlagParameter(Prefix='--',Name='onepost'),\
# --withali <f> Reads an alignment from file <f> and aligns it as a single
# object to the CM; e.g. the alignment in <f> is held fixed.
'--withali':ValuedParameter(Prefix='--',Name='withali',Delimiter=' '),\
# --withpknots Must be used in combination with --withali <f>. Propogate
# structural information for any pseudoknots that exist in <f> to the
# output alignment.
'--withpknots':FlagParameter(Prefix='--',Name='withpknots'),\
# --rf Must be used in combination with --withali <f>. Specify that the
# alignment in <f> has the same "#=GC RF" annotation as the alignment file
# the CM was built from using cmbuild and further that the --rf option was
# supplied to cmbuild when the CM was constructed.
'--rf':FlagParameter(Prefix='--',Name='rf'),\
# --gapthresh <x> Must be used in combination with --withali <f>. Specify
# that the --gapthresh <x> option was supplied to cmbuild when the CM was
# constructed from the alignment file <f>.
'--gapthresh':ValuedParameter(Prefix='--',Name='gapthresh',Delimiter=' '),\
# --tfile <f> Dump tabular sequence tracebacks for each individual sequence
# to a file <f>. Primarily useful for debugging.
'--tfile':ValuedParameter(Prefix='--',Name='tfile',Delimiter=' '),\
}
_parameters = {}
_parameters.update(_options)
_command = "cmalign"
_suppress_stderr=True
def getHelp(self):
"""Method that points to the Infernal documentation."""
help_str = \
"""
See Infernal documentation at:
http://infernal.janelia.org/
"""
return help_str
def _tempfile_as_multiline_string(self, data):
"""Write a multiline string to a temp file and return the filename.
data: a multiline string to be written to a file.
* Note: the result will be the filename as a FilePath object
(which is a string subclass).
"""
filename = FilePath(self.getTmpFilename(self.TmpDir))
data_file = open(filename,'w')
data_file.write(data)
data_file.close()
return filename
def _alignment_out_filename(self):
if self.Parameters['-o'].isOn():
refined_filename = self._absolute(str(\
self.Parameters['-o'].Value))
else:
raise ValueError, 'No alignment output file specified.'
return refined_filename
def _get_result_paths(self,data):
result = {}
if self.Parameters['-o'].isOn():
out_name = self._alignment_out_filename()
result['Alignment'] = ResultPath(Path=out_name,IsWritten=True)
return result
class Cmbuild(CommandLineApplication):
"""cmbuild application controller."""
_options = {
# -n <s> Name the covariance model <s>. (Does not work if alifile contains
# more than one alignment).
'-n':ValuedParameter(Prefix='-',Name='n',Delimiter=' '),\
# -A Append the CM to cmfile, if cmfile already exists.
'-A':FlagParameter(Prefix='-',Name='A'),\
# -F Allow cmfile to be overwritten. Normally, if cmfile already exists,
# cmbuild exits with an error unless the -A or -F option is set.
'-F':FlagParameter(Prefix='-',Name='F'),\
# -v Run in verbose output mode instead of using the default single line
# tabular format. This output format is similar to that used by older
# versions of Infernal.
'-v':FlagParameter(Prefix='-',Name='v'),\
# --iins Allow informative insert emissions for the CM. By default, all CM
# insert emission scores are set to 0.0 bits.
'--iins':FlagParameter(Prefix='--',Name='iins'),\
# --Wbeta<x> Set the beta tail loss probability for query-dependent banding
# (QDB) to <x> The QDB algorithm is used to determine the maximium length
# of a hit to the model. For more information on QDB see (Nawrocki and
# Eddy, PLoS Computational Biology 3(3): e56).
'--Wbeta':ValuedParameter(Prefix='--',Name='Wbeta',Delimiter=' '),\
# Expert Options
# --rsearch <f> Parameterize emission scores a la RSEARCH, using the
# RIBOSUM matrix in file <f>. For more information see the RSEARCH
# publication (Klein and Eddy, BMC Bioinformatics 4:44, 2003). Actually,
# the emission scores will not exactly With --rsearch enabled, all
# alignments in alifile must contain exactly one sequence or the --call
# option must also be enabled.
'--rsearch':ValuedParameter(Prefix='--',Name='rsearch',Delimiter=' '),\
# --binary Save the model in a compact binary format. The default is a more
# readable ASCII text format.
'--binary':FlagParameter(Prefix='--',Name='binary'),\
# --rf Use reference coordinate annotation (#=GC RF line, in Stockholm) to
# determine which columns are consensus, and which are inserts.
'--rf':FlagParameter(Prefix='--',Name='rf'),\
# --gapthresh <x> Set the gap threshold (used for determining which columns
# are insertions versus consensus; see --rf above) to <x>. The default is
# 0.5.
'--gapthresh':ValuedParameter(Prefix='--',Name='gapthresh',Delimiter=' '),\
# --ignorant Strip all base pair secondary structure information from all
# input alignments in alifile before building the CM(s).
'--ignorant':FlagParameter(Prefix='--',Name='ignorant'),\
# --wgsc Use the Gerstein/Sonnhammer/Chothia (GSC) weighting algorithm.
# This is the default unless the number of sequences in the alignment
# exceeds a cutoff (see --pbswitch), in which case the default becomes
# the faster Henikoff position-based weighting scheme.
'--wgsc':FlagParameter(Prefix='--',Name='wgsc'),\
# --wblosum Use the BLOSUM filtering algorithm to weight the sequences,
# instead of the default GSC weighting.
'--wblosum':FlagParameter(Prefix='--',Name='wblosum'),\
# --wpb Use the Henikoff position-based weighting scheme. This weighting
# scheme is automatically used (overriding --wgsc and --wblosum) if the
# number of sequences in the alignment exceeds a cutoff (see --pbswitch).
'--wpb':FlagParameter(Prefix='--',Name='wpb'),\
# --wnone Turn sequence weighting off; e.g. explicitly set all sequence
# weights to 1.0.
'--wnone':FlagParameter(Prefix='--',Name='wnone'),\
# --wgiven Use sequence weights as given in annotation in the input
# alignment file. If no weights were given, assume they are all 1.0.
# The default is to determine new sequence weights by the Gerstein/
# Sonnhammer/Chothia algorithm, ignoring any annotated weights.
'--wgiven':FlagParameter(Prefix='--',Name='wgiven'),\
# --pbswitch <n> Set the cutoff for automatically switching the weighting
# method to the Henikoff position-based weighting scheme to <n>. If the
# number of sequences in the alignment exceeds <n> Henikoff weighting is
# used. By default <n> is 5000.
'--pbswitch':ValuedParameter(Prefix='--',Name='pbswitch',Delimiter=' '),\
# --wid <x> Controls the behavior of the --wblosum weighting option by
# setting the percent identity for clustering the alignment to <x>.
'--wid':ValuedParameter(Prefix='--',Name='wid',Delimiter=' '),\
# --eent Use the entropy weighting strategy to determine the effective
# sequence number that gives a target mean match state relative entropy.
'--wgiven':FlagParameter(Prefix='--',Name='wgiven'),\
# --enone Turn off the entropy weighting strategy. The effective sequence
# number is just the number of sequences in the alignment.
'--wgiven':FlagParameter(Prefix='--',Name='wgiven'),\
# --ere <x> Set the target mean match state entropy as <x>. By default the
# target entropy 1.46 bits.
'--ere':ValuedParameter(Prefix='--',Name='ere',Delimiter=' '),\
# --null <f> Read a null model from <f>. The null model defines the
# probability of each RNA nucleotide in background sequence, the default
# is to use 0.25 for each nucleotide.
'--null':ValuedParameter(Prefix='--',Name='null',Delimiter=' '),\
# --prior <f> Read a Dirichlet prior from <f>, replacing the default mixture
# Dirichlet.
'--prior':ValuedParameter(Prefix='--',Name='prior',Delimiter=' '),\
# --ctarget <n> Cluster each alignment in alifile by percent identity.
# find a cutoff percent id threshold that gives exactly <n> clusters and
# build a separate CM from each cluster. If <n> is greater than the number
# of sequences in the alignment the program will not complain, and each
# sequence in the alignment will be its own cluster. Each CM will have a
# positive integer appended to its name indicating the order in which it
# was built.
'--ctarget':ValuedParameter(Prefix='--',Name='ctarget',Delimiter=' '),\
# --cmaxid <x> Cluster each sequence alignment in alifile by percent
# identity. Define clusters at the cutoff fractional id similarity of <x>
# and build a separate CM from each cluster.
'--cmaxid':ValuedParameter(Prefix='--',Name='cmaxid',Delimiter=' '),\
# --call Build a separate CM from each sequence in each alignment in
# alifile. Naming of CMs takes place as described above for --ctarget.
'--call':FlagParameter(Prefix='--',Name='call'),\
# --corig After building multiple CMs using --ctarget, --cmindiff or --call
# as described above, build a final CM using the complete original
# alignment from alifile.
'--corig':FlagParameter(Prefix='--',Name='corig'),\
# --cdump<f> Dump the multiple alignments of each cluster to <f> in
# Stockholm format. This option only works in combination with --ctarget,
# --cmindiff or --call.
'--cdump':ValuedParameter(Prefix='--',Name='cdump',Delimiter=' '),\
# --refine <f> Attempt to refine the alignment before building the CM using
# expectation-maximization (EM). The final alignment (the alignment used
# to build the CM that gets written to cmfile) is written to <f>.
'--refine':ValuedParameter(Prefix='--',Name='refine',Delimiter=' '),\
# --gibbs Modifies the behavior of --refine so Gibbs sampling is used
# instead of EM.
'--gibbs':FlagParameter(Prefix='--',Name='gibbs'),\
# -s <n> Set the random seed to <n>, where <n> is a positive integer.
# This option can only be used in combination with --gibbs. The default is
# to use time() to generate a different seed for each run, which means
# that two different runs of cmbuild --refine <f> --gibbs on the same
# alignment will give slightly different results. You can use this option
# to generate reproducible results.
'-s':ValuedParameter(Prefix='-',Name='s',Delimiter=' '),\
# -l With --refine, turn on the local alignment algorithm, which allows the
# alignment to span two or more subsequences if necessary (e.g. if the
# structures of the query model and target sequence are only partially
# shared), allowing certain large insertions and deletions in the
# structure to be penalized differently than normal indels. The default is
# to globally align the query model to the target sequences.
'-l':ValuedParameter(Prefix='-',Name='l',Delimiter=' '),\
# -a With --refine, print the scores of each individual sequence alignment.
'-a':ValuedParameter(Prefix='-',Name='a',Delimiter=' '),\
# --cyk With --refine, align with the CYK algorithm.
'--cyk':FlagParameter(Prefix='--',Name='cyk'),\
# --sub With --refine, turn on the sub model construction and alignment
# procedure.
'--sub':FlagParameter(Prefix='--',Name='sub'),\
# --nonbanded With --refine, do not use HMM bands to accelerate alignment.
# Use the full CYK algorithm which is guaranteed to give the optimal
# alignment. This will slow down the run significantly, especially for
# large models.
'--nonbanded':FlagParameter(Prefix='--',Name='nonbanded'),\
# --tau <x> With --refine, set the tail loss probability used during HMM
# band calculation to <f>. This is the amount of probability mass within
# the HMM posterior probabilities that is considered negligible. The
# default value is 1E-7. In general, higher values will result in greater
# acceleration, but increase the chance of missing the optimal alignment
# due to the HMM bands.
'--tau':ValuedParameter(Prefix='--',Name='tau',Delimiter=' '),\
# --fins With --refine, change the behavior of how insert emissions are
# placed in the alignment.
'--fins':FlagParameter(Prefix='--',Name='fins'),\
# --mxsize <x> With --refine, set the maximum allowable matrix size for
# alignment to <x> megabytes.
'--mxsize':ValuedParameter(Prefix='--',Name='mxsize',Delimiter=' '),\
# --rdump<x> With --refine, output the intermediate alignments at each
# iteration of the refinement procedure (as described above for --refine )
# to file <f>.
'--rdump':ValuedParameter(Prefix='--',Name='rdump',Delimiter=' '),\
}
_parameters = {}
_parameters.update(_options)
_command = "cmbuild"
_suppress_stderr=True
def getHelp(self):
"""Method that points to the Infernal documentation."""
help_str = \
"""
See Infernal documentation at:
http://infernal.janelia.org/
"""
return help_str
def _refine_out_filename(self):
if self.Parameters['--refine'].isOn():
refined_filename = self._absolute(str(\
self.Parameters['--refine'].Value))
else:
raise ValueError, 'No refine output file specified.'
return refined_filename
def _cm_out_filename(self):
if self.Parameters['-n'].isOn():
refined_filename = self._absolute(str(\
self.Parameters['-n'].Value))
else:
raise ValueError, 'No cm output file specified.'
return refined_filename
def _tempfile_as_multiline_string(self, data):
"""Write a multiline string to a temp file and return the filename.
data: a multiline string to be written to a file.
* Note: the result will be the filename as a FilePath object
(which is a string subclass).
"""
filename = FilePath(self.getTmpFilename(self.TmpDir))
data_file = open(filename,'w')
data_file.write(data)
data_file.close()
return filename
def _get_result_paths(self,data):
result = {}
if self.Parameters['--refine'].isOn():
out_name = self._refine_out_filename()
result['Refined'] = ResultPath(Path=out_name,IsWritten=True)
if self.Parameters['-n'].isOn():
cm_name = self._cm_out_filename()
result['CmFile'] = ResultPath(Path=cm_name,IsWritten=True)
return result
class Cmcalibrate(CommandLineApplication):
"""cmcalibrate application controller."""
_options = {
# -s <n> Set the random number generator seed to <n>, where <n> is a
# positive integer. The default is to use time() to generate a different
# seed for each run, which means that two different runs of cmcalibrate on
# the same CM will give slightly different E-value and HMM filter
# threshold parameters. You can use this option to generate reproducible
# results.
'-s':ValuedParameter(Prefix='-',Name='s',Delimiter=' '),\
# --forecast <n> Predict the running time of the calibration for cmfile and
# provided options and exit, DO NOT perform the calibration.
'--forecast':ValuedParameter(Prefix='--',Name='forecast',Delimiter=' '),\
# --mpi Run as an MPI parallel program.
'--mpi':FlagParameter(Prefix='--',Name='mpi'),\
# Expert Options
# --exp-cmL-glc <x> Set the length of random sequence to search for the CM
# glocal exponential tail fits to <x> megabases (Mb).
'--exp-cmL-glc':ValuedParameter(Prefix='--',Name='exp-cmL-glc',\
Delimiter=' '),\
# --exp-cmL-loc <x> Set the length of random sequence to search for the CM
# local exponential tail fits to <x> megabases (Mb).
'--exp-cmL-loc':ValuedParameter(Prefix='--',Name='exp-cmL-loc',\
Delimiter=' '),\
# --exp-hmmLn-glc <x> Set the minimum random sequence length to search for
# the HMM glocal exponential tail fits to <x> megabases (Mb).
'--exp-hmmLn-glc':ValuedParameter(Prefix='--',Name='exp-hmmLn-glc',\
Delimiter=' '),\
# --exp-hmmLn-loc <x> Set the minimum random sequence length to search for
# the HMM local exponential tail fits to <x> megabases (Mb).
'--exp-hmmLn-loc':ValuedParameter(Prefix='--',Name='exp-hmmLn-loc',\
Delimiter=' '),\
# --exp-hmmLx <x> Set the maximum random sequence length to search when
# determining HMM E-values to <x> megabases (Mb).
'--exp-hmmLx':ValuedParameter(Prefix='--',Name='exp-hmmLx',Delimiter=' '),\
# --exp-fract <x> Set the HMM/CM fraction of dynamic programming
# calculations to <x>.
'--exp-fract':ValuedParameter(Prefix='--',Name='exp-fract',Delimiter=' '),\
# --exp-tailn-cglc <x> During E-value calibration of glocal CM search modes
# fit the exponential tail to the high scores in the histogram tail that
# includes <x> hits per Mb searched.
'--exp-tailn-cglc':ValuedParameter(Prefix='--',Name='exp-tailn-cglc',\
Delimiter=' '),\
# --exp-tailn-cloc <x> During E-value calibration of local CM search modes
# fit the exponential tail to the high scores in the histogram tail that
# includes <x> hits per Mb searched.
'--exp-tailn-cloc':ValuedParameter(Prefix='--',Name='exp-tailn-cloc',\
Delimiter=' '),\
# --exp-tailn-hglc <x> During E-value calibration of glocal HMM search modes
# fit the exponential tail to the high scores in the histogram tail that
# includes <x> hits per Mb searched.
'--exp-tailn-hglc':ValuedParameter(Prefix='--',Name='exp-tailn-hglc',\
Delimiter=' '),\
# --exp-tailn-hloc <x> During E-value calibration of local HMM search modes
# fit the exponential tail to the high scores in the histogram tail that
# includes <x> hits per Mb searched.
'--exp-tailn-hloc':ValuedParameter(Prefix='--',Name='exp-tailn-hloc',\
Delimiter=' '),\
# --exp-tailp <x> Ignore the --exp-tailn prefixed options and fit the <x>
# fraction right tail of the histogram to exponential tails, for all
# search modes.
'--exp-tailp':ValuedParameter(Prefix='--',Name='exp-tailp',Delimiter=' '),\
# --exp-tailxn <n> With --exp-tailp enforce that the maximum number of hits
# in the tail that is fit is <n>.
'--exp-tailxn':ValuedParameter(Prefix='--',Name='exp-tailxn',\
Delimiter=' '),\
# --exp-beta <x> During E-value calibration, by default query-dependent
# banding (QDB) is used to accelerate the CM search algorithms with a beta
# tail loss probability of 1E-15.
'--exp-beta':ValuedParameter(Prefix='--',Name='exp-beta',Delimiter=' '),\
# --exp-no-qdb Turn of QDB during E-value calibration. This will slow down
# calibration, and is not recommended unless you plan on using --no-qdb in
# cmsearch.
'--exp-no-qdb':FlagParameter(Prefix='--',Name='exp-no-qdb'),\
# --exp-hfile <f> Save the histograms fit for the E-value calibration to
# file <f>. The format of this file is two tab delimited columns.
'--exp-hfile':ValuedParameter(Prefix='--',Name='exp-hfile',Delimiter=' '),\
# --exp-sfile <f> Save a survival plot for the E-value calibration to file
# <f>. The format of this file is two tab delimited columns.
'--exp-sfile':ValuedParameter(Prefix='--',Name='exp-sfile',Delimiter=' '),\
# --exp-qqfile <f> Save a quantile-quantile plot for the E-value calibration
# to file <f>. The format of this file is two tab delimited columns.
'--exp-qqfile':ValuedParameter(Prefix='--',Name='exp-qqfile',\
Delimiter=' '),\
# --exp-ffile <f> Save statistics on the exponential tail statistics to file
# <f>. The file will contain the lambda and mu values for exponential
# tails fit to tails of different sizes.
'--exp-ffile':ValuedParameter(Prefix='--',Name='exp-ffile',Delimiter=' '),\
# --fil-N <n> Set the number of sequences sampled and searched for the HMM
# filter threshold calibration to <n>. By default, <n> is 10,000.
'--fil-N':ValuedParameter(Prefix='--',Name='fil-N',Delimiter=' '),\
# --fil-F <x> Set the fraction of sample sequences the HMM filter must be
# able to recognize, and allow to survive, to <x>, where <x> is a positive
# real number less than or equal to 1.0. By default, <x> is 0.995.
'--fil-F':ValuedParameter(Prefix='--',Name='fil-F',Delimiter=' '),\
# --fil-xhmm <x> Set the target number of dynamic programming calculations
# for a HMM filtered CM QDB search with beta = 1E-7 to <x> times the
# number of calculations required to do an HMM search. By default, <x> is
# 2.0.
'--fil-xhmm':ValuedParameter(Prefix='--',Name='fil-xhmm',Delimiter=' '),\
# --fil-tau <x> Set the tail loss probability during HMM band calculation
# for HMM filter threshold calibration to <x>.
'--fil-tau':ValuedParameter(Prefix='--',Name='fil-tau',Delimiter=' '),\
# --fil-gemit During HMM filter calibration, always sample sequences from a
# globally configured CM, even when calibrating local modes.
'--fil-gemit':FlagParameter(Prefix='--',Name='fil-gemit'),\
# --fil-dfile <f> Save statistics on filter threshold calibration, including
# HMM and CM scores for all sampled sequences, to file <f>.
'--fil-dfile':ValuedParameter(Prefix='--',Name='fil-dfile',Delimiter=' '),\
# --mxsize <x> Set the maximum allowable DP matrix size to <x> megabytes.
'--mxsize':ValuedParameter(Prefix='--',Name='mxsize',Delimiter=' '),\
}
_parameters = {}
_parameters.update(_options)
_command = "cmcalibrate"
_suppress_stderr=True
def getHelp(self):
"""Method that points to the Infernal documentation."""
help_str = \
"""
See Infernal documentation at:
http://infernal.janelia.org/
"""
return help_str
class Cmemit(CommandLineApplication):
"""cmemit application controller."""
_options = {
# -o <f> Save the synthetic sequences to file <f> rather than writing them
# to stdout.
'-o':ValuedParameter(Prefix='-',Name='o',Delimiter=' '),\
# -n <n> Generate <n> sequences. Default is 10.
'-n':ValuedParameter(Prefix='-',Name='n',Delimiter=' '),\
# -u Write the generated sequences in unaligned format (FASTA). This is the
# default, so this option is probably useless.
'-u':FlagParameter(Prefix='-',Name='u'),\
# -a Write the generated sequences in an aligned format (STOCKHOLM) with
# consensus structure annotation rather than FASTA.
'-a':FlagParameter(Prefix='-',Name='a'),\
# -c Predict a single majority-rule consensus sequence instead of sampling
# sequences from the CM's probability distribution.
'-c':FlagParameter(Prefix='-',Name='c'),\
# -l Configure the CMs into local mode before emitting sequences. See the
# User's Guide for more information on locally configured CMs.
'-l':FlagParameter(Prefix='-',Name='l'),\
# -s <n> Set the random seed to <n>, where <n> is a positive integer. The
# default is to use time() to generate a different seed for each run,
# which means that two different runs of cmemit on the same CM will give
# different results. You can use this option to generate reproducible
# results.
'-s':ValuedParameter(Prefix='-',Name='s',Delimiter=' '),\
# --rna Specify that the emitted sequences be output as RNA sequences. This
# is true by default.
'--rna':FlagParameter(Prefix='--',Name='rna'),\
# --dna Specify that the emitted sequences be output as DNA sequences. By
# default, the output alphabet is RNA.
'--dna':FlagParameter(Prefix='--',Name='dna'),\
# --tfile <f> Dump tabular sequence parsetrees (tracebacks) for each emitted
# sequence to file <f>. Primarily useful for debugging.
'--tfile':ValuedParameter(Prefix='--',Name='tfile',Delimiter=' '),\
# --exp <x> Exponentiate the emission and transition probabilities of the CM
# by <x> and then renormalize those distributions before emitting
# sequences.
'--exp':ValuedParameter(Prefix='--',Name='exp',Delimiter=' '),\
# --begin <n> Truncate the resulting alignment by removing all residues
# before consensus column <n>, where <n> is a positive integer no greater
# than the consensus length of the CM. Must be used in combination with
# --end and either -a or --shmm (a developer option).
'--begin':ValuedParameter(Prefix='--',Name='begin',Delimiter=' '),\
# --end <n> Truncate the resulting alignment by removing all residues after
# consensus column <n>, where <n> is a positive integer no greater than
# the consensus length of the CM. Must be used in combination with --begin
# and either -a or --shmm (a developer option).
'--end':ValuedParameter(Prefix='--',Name='end',Delimiter=' '),\
}
_parameters = {}
_parameters.update(_options)
_command = "cmemit"
_suppress_stderr=True
def getHelp(self):
"""Method that points to the Infernal documentation."""
help_str = \
"""
See Infernal documentation at:
http://infernal.janelia.org/
"""
return help_str
class Cmscore(CommandLineApplication):
"""cmscore application controller."""
_options = {
# -n <n> Set the number of sequences to generate and align to <n>. This
# option is incompatible with the --infile option.
'-n':ValuedParameter(Prefix='-',Name='n',Delimiter=' '),\
# -l Turn on the local alignment algorithm, which allows the alignment to
# span two or more subsequences if necessary (e.g. if the structures of
# the query model and target sequence are only partially shared), allowing
# certain large insertions and deletions in the structure to be penalized
# differently than normal indels. The default is to globally align the
# query model to the target sequences.
'-l':FlagParameter(Prefix='-',Name='l'),\
# -s <n> Set the random seed to <n>, where <n> is a positive integer. The
# default is to use time() to generate a different seed for each run,
# which means that two different runs of cmscore on the same CM will give
# different results. You can use this option to generate reproducible
# results. The random number generator is used to generate sequences to
# score, so -s is incompatible with the --infile option which supplies
# the sequences to score in an input file.
'-s':ValuedParameter(Prefix='-',Name='s',Delimiter=' '),\
# -a Print individual timings and score comparisons for each sequence in
# seqfile. By default only summary statistics are printed.
'-a':FlagParameter(Prefix='-',Name='a'),\
# --sub Turn on the sub model construction and alignment procedure.
'--sub':FlagParameter(Prefix='--',Name='sub'),\
# --mxsize <x> Set the maximum allowable DP matrix size to <x> megabytes.
'--mxsize':ValuedParameter(Prefix='--',Name='mxsize',Delimiter=' '),\
# --mpi Run as an MPI parallel program.
'--mpi':FlagParameter(Prefix='--',Name='mpi'),\
# Expert Options
# --emit Generate sequences to score by sampling from the CM.
'--emit':FlagParameter(Prefix='--',Name='emit'),\
# --random Generate sequences to score by sampling from the CMs null
# distribution. This option turns the --emit option off.
'--random':FlagParameter(Prefix='--',Name='random'),\
# --infile <f> Sequences to score are read from the file <f>. All the
# sequences from <f> are read and scored, the -n and -s options are
# incompatible with --infile.
'--infile':ValuedParameter(Prefix='--',Name='infile',Delimiter=' '),\
# --outfile <f> Save generated sequences that are scored to the file <f> in
# FASTA format. This option is incompatible with the --infile option.
'--outfile':ValuedParameter(Prefix='--',Name='outfile',Delimiter=' '),\
# --Lmin <n1> Must be used in combination with --random and --Lmax <n2>.
'--Lmin':ValuedParameter(Prefix='--',Name='Lmin',Delimiter=' '),\
# --pad Must be used in combination with --emit and --search. Add <n> cm->W
# (max hit length) minus L (sequence <x> length) residues to the 5' and 3'
# end of each emitted sequence <x>.
'--pad':FlagParameter(Prefix='--',Name='pad'),\
# --hbanded Specify that the second stage alignment algorithm be HMM banded
# CYK. This option is on by default.
'--hbanded':FlagParameter(Prefix='--',Name='hbanded'),\
# --tau <x> For stage 2 alignment, set the tail loss probability used during
# HMM band calculation to <x>.
'--tau':ValuedParameter(Prefix='--',Name='tau',Delimiter=' '),\
# --aln2bands With --search, when calculating HMM bands, use an HMM
# alignment algorithm instead of an HMM search algorithm.
'--aln2bands':FlagParameter(Prefix='--',Name='aln2bands'),\
# --hsafe For stage 2 HMM banded alignment, realign any sequences with a
# negative alignment score using non-banded CYK to guarantee finding the
# optimal alignment.
'--hsafe':FlagParameter(Prefix='--',Name='hsafe'),\
# --nonbanded Specify that the second stage alignment algorithm be standard,
# non-banded, non-D&C CYK. When --nonbanded is enabled, the program fails
# with a non-zero exit code and prints an error message if the parsetree
# score for any sequence from stage 1 D&C alignment and stage 2 alignment
# differs by more than 0.01 bits. In theory, this should never happen as
# both algorithms are guaranteed to determine the optimal parsetree. For
# larger RNAs (more than 300 residues) if memory is limiting, --nonbanded
# should be used in combination with --scoreonly.
'--nonbanded':FlagParameter(Prefix='--',Name='nonbanded'),\
# --scoreonly With --nonbanded during the second stage standard non-banded
# CYK alignment, use the "score only" variant of the algorithm to save
# memory, and don't recover a parse tree.
'--scoreonly':FlagParameter(Prefix='--',Name='scoreonly'),\
# --viterbi Specify that the second stage alignment algorithm be Viterbi to
# a CM Plan 9 HMM.
'--viterbi':FlagParameter(Prefix='--',Name='viterbi'),\
# --search Run all algorithms in scanning mode, not alignment mode.
'--search':FlagParameter(Prefix='--',Name='search'),\
# --inside With --search Compare the non-banded scanning Inside algorithm to
# the HMM banded scanning Inside algorith, instead of using CYK versions.
'--inside':FlagParameter(Prefix='--',Name='inside'),\
# --forward With --search Compare the scanning Forward scoring algorithm
# against CYK.
'--forward':FlagParameter(Prefix='--',Name='forward'),\
# --taus <n> Specify the first alignment algorithm as non-banded D&C CYK,
# and multiple stages of HMM banded CYK alignment. The first HMM banded
# alignment will use tau=1E-<x>, which will be the highest value of tau
# used. Must be used in combination with --taue.
'--taus':ValuedParameter(Prefix='--',Name='taus',Delimiter=' '),\
# --taue <n> Specify the first alignment algorithm as non-banded D&C CYK,
# and multiple stages of HMM banded CYK alignment. The final HMM banded
# alignment will use tau=1E-<x>, which will be the lowest value of tau
# used. Must be used in combination with --taus.
'--taue':ValuedParameter(Prefix='--',Name='taue',Delimiter=' '),\
# --tfile <f> Print the parsetrees for each alignment of each sequence to
# file <f>.
'--tfile':ValuedParameter(Prefix='--',Name='tfile',Delimiter=' '),\
}
_parameters = {}
_parameters.update(_options)
_command = "cmscore"
_suppress_stderr=True
def getHelp(self):
"""Method that points to the Infernal documentation."""
help_str = \
"""
See Infernal documentation at:
http://infernal.janelia.org/
"""
return help_str
class Cmsearch(CommandLineApplication):
"""cmsearch application controller."""
_options = {
# -o <f> Save the high-scoring alignments of hits to a file <f>. The default
# is to write them to standard output.
'-o':ValuedParameter(Prefix='-',Name='o',Delimiter=' '),\
# -g <f> Turn on the 'glocal' alignment algorithm, local with respect to the
# target database, and global with respect to the model. By default, the
# local alignment algorithm is used which is local with respect to both
# the target sequence and the model.
'-g':ValuedParameter(Prefix='-',Name='g',Delimiter=' '),\
# -p Append posterior probabilities to alignments of hits.
'-p':FlagParameter(Prefix='-',Name='p'),\
# -x Annotate non-compensatory basepairs and basepairs that include a gap in
# the left and/or right half of the pair with x's in the alignments of
# hits.
'-x':FlagParameter(Prefix='-',Name='x'),\
# -Z <x> Calculate E-values as if the target database size was <x> megabases
# (Mb). Ignore the actual size of the database. This option is only valid
# if the CM file has been calibrated. Warning: the predictions for timings
# and survival fractions will be calculated as if the database was of size
# <x> Mb, which means they will be inaccurate.
'-Z':ValuedParameter(Prefix='-',Name='Z',Delimiter=' '),\
# --toponly Only search the top (Watson) strand of the sequences in seqfile.
# By default, both strands are searched.
'--toponly':FlagParameter(Prefix='--',Name='toponly'),\
# --bottomonly Only search the bottom (Crick) strand of the sequences in
# seqfile. By default, both strands are searched.
'--bottomonly':FlagParameter(Prefix='--',Name='bottomonly'),\
# --forecast <n> Predict the running time of the search with provided files
# and options and exit, DO NOT perform the search. This option is only
# available with calibrated CM files.
'--forecast':ValuedParameter(Prefix='--',Name='forecast',Delimiter=' '),\
# --informat <s> Assert that the input seqfile is in format <s>. Do not run
# Babelfish format autodection. This increases the reliability of the
# program somewhat, because the Babelfish can make mistakes; particularly
# recommended for unattended, high-throughput runs of @PACKAGE@. <s> is
# case-insensitive. Acceptable formats are: FASTA, EMBL, UNIPROT, GENBANK,
# and DDBJ. <s> is case-insensitive.
'--informat':ValuedParameter(Prefix='--',Name='informat',Delimiter=' '),\
# --mxsize <x> Set the maximum allowable DP matrix size to <x> megabytes.
'--mxsize':ValuedParameter(Prefix='--',Name='mxsize',Delimiter=' '),\
# --mpi Run as an MPI parallel program.
'--mpi':FlagParameter(Prefix='--',Name='mpi'),\
# Expert Options
# --inside Use the Inside algorithm for the final round of searching. This
# is true by default.
'--inside':FlagParameter(Prefix='--',Name='inside'),\
# --cyk Use the CYK algorithm for the final round of searching.
'--cyk':FlagParameter(Prefix='--',Name='cyk'),\
# --viterbi Search only with an HMM. This is much faster but less sensitive
# than a CM search. Use the Viterbi algorithm for the HMM search.
'--viterbi':FlagParameter(Prefix='--',Name='viterbi'),\
# --forward Search only with an HMM. This is much faster but less sensitive
# than a CM search. Use the Forward algorithm for the HMM search.
'--forward':FlagParameter(Prefix='--',Name='forward'),\
# -E <x> Set the E-value cutoff for the per-sequence/strand ranked hit list
# to <x>, where <x> is a positive real number.
'-E':ValuedParameter(Prefix='-',Name='E',Delimiter=' '),\
# -T <x> Set the bit score cutoff for the per-sequence ranked hit list to
# <x>, where <x> is a positive real number.
'-T':ValuedParameter(Prefix='-',Name='T',Delimiter=' '),\
# --nc Set the bit score cutoff as the NC cutoff value used by Rfam curators
# as the noise cutoff score.
'--nc':FlagParameter(Prefix='--',Name='nc'),\
# --ga Set the bit score cutoff as the GA cutoff value used by Rfam curators
# as the gathering threshold.
'--ga':FlagParameter(Prefix='--',Name='ga'),\
# --tc Set the bit score cutoff as the TC cutoff value used by Rfam curators
# as the trusted cutoff.
'--tc':FlagParameter(Prefix='--',Name='tc'),\
# --no-qdb Do not use query-dependent banding (QDB) for the final round of
# search.
'--no-qdb':FlagParameter(Prefix='--',Name='no-qdb'),\
# --beta " <x>" For query-dependent banding (QDB) during the final round of
# search, set the beta parameter to <x> where <x> is any positive real
# number less than 1.0.
'--beta':ValuedParameter(Prefix='--',Name='beta',Delimiter=' '),\
# --hbanded Use HMM bands to accelerate the final round of search.
# Constraints for the CM search are derived from posterior probabilities
# from an HMM. This is an experimental option and it is not recommended
# for use unless you know exactly what you're doing.
'--hbanded':FlagParameter(Prefix='--',Name='hbanded'),\
# --tau <x> Set the tail loss probability during HMM band calculation to
# <x>.
'--tau':ValuedParameter(Prefix='--',Name='tau',Delimiter=' '),\
# --fil-no-hmm Turn the HMM filter off.
'--fil-no-hmm':FlagParameter(Prefix='--',Name='fil-no-hmm'),\
# --fil-no-qdb Turn the QDB filter off.
'--fil-no-qdb':FlagParameter(Prefix='--',Name='fil-no-qdb'),\
# --fil-beta For the QDB filter, set the beta parameter to <x> where <x> is
# any positive real number less than 1.0.
'--fil-beta':FlagParameter(Prefix='--',Name='fil-beta'),\
# --fil-T-qdb <x> Set the bit score cutoff for the QDB filter round to <x>,
# where <x> is a positive real number.
'--fil-T-qdb':ValuedParameter(Prefix='--',Name='fil-T-qdb',Delimiter=' '),\
# --fil-T-hmm <x> Set the bit score cutoff for the HMM filter round to <x>,
# where <x> is a positive real number.
'--fil-T-hmm':ValuedParameter(Prefix='--',Name='fil-T-hmm',Delimiter=' '),\
# --fil-E-qdb <x> Set the E-value cutoff for the QDB filter round. <x>,
# where <x> is a positive real number. Hits with E-values better than
# (less than) or equal to this threshold will survive and be passed to the
# final round. This option is only available if the CM file has been
# calibrated.
'--fil-E-qdb':ValuedParameter(Prefix='--',Name='fil-E-qdb',Delimiter=' '),\
# --fil-E-hmm <x> Set the E-value cutoff for the HMM filter round. <x>,
# where <x> is a positive real number. Hits with E-values better than
# (less than) or equal to this threshold will survive and be passed to the
# next round, either a QDB filter round, or if the QDB filter is disable,
# to the final round of search. This option is only available if the CM
# file has been calibrated.
'--fil-E-hmm':ValuedParameter(Prefix='--',Name='fil-E-hmm',Delimiter=' '),\
# --fil-Smax-hmm <x> Set the maximum predicted survival fraction for an HMM
# filter as <x>, where <x> is a positive real number less than 1.0.
'--fil-Smax-hmm':ValuedParameter(Prefix='--',Name='fil-Smax-hmm',\
Delimiter=' '),\
# --noalign Do not calculate and print alignments of each hit, only print
# locations and scores.
'--noalign':FlagParameter(Prefix='--',Name='noalign'),\
# --aln-hbanded Use HMM bands to accelerate alignment during the hit
# alignment stage.
'--aln-hbanded':FlagParameter(Prefix='--',Name='aln-hbanded'),\
# --aln-optacc Calculate alignments of hits from final round of search using
# the optimal accuracy algorithm which computes the alignment that
# maximizes the summed posterior probability of all aligned residues given
# the model, which can be different from the highest scoring one.
'--aln-optacc':FlagParameter(Prefix='--',Name='aln-optacc'),\
# --tabfile <f> Create a new output file <f> and print tabular results to
# it.
'--tabfile':ValuedParameter(Prefix='--',Name='tabfile',Delimiter=' '),\
# --gcfile <f> Create a new output file <f> and print statistics of the GC
# content of the sequences in seqfile to it.
'--gcfile':ValuedParameter(Prefix='--',Name='gcfile',Delimiter=' '),\
# --rna Output the hit alignments as RNA sequences alignments. This is true
# by default.
'--rna':FlagParameter(Prefix='--',Name='rna'),\
# --dna Output the hit alignments as DNA sequence alignments.
'--dna':FlagParameter(Prefix='--',Name='dna'),\
}
_parameters = {}
_parameters.update(_options)
_command = "cmsearch"
_suppress_stderr=True
def getHelp(self):
"""Method that points to the Infernal documentation."""
help_str = \
"""
See Infernal documentation at:
http://infernal.janelia.org/
"""
return help_str
def _tabfile_out_filename(self):
if self.Parameters['--tabfile'].isOn():
tabfile_filename = self._absolute(str(\
self.Parameters['--tabfile'].Value))
else:
raise ValueError, 'No tabfile output file specified.'
return tabfile_filename
def _tempfile_as_multiline_string(self, data):
"""Write a multiline string to a temp file and return the filename.
data: a multiline string to be written to a file.
* Note: the result will be the filename as a FilePath object
(which is a string subclass).
"""
filename = FilePath(self.getTmpFilename(self.TmpDir))
data_file = open(filename,'w')
data_file.write(data)
data_file.close()
return filename
def _get_result_paths(self,data):
result = {}
if self.Parameters['--tabfile'].isOn():
out_name = self._tabfile_out_filename()
result['SearchResults'] = ResultPath(Path=out_name,IsWritten=True)
return result
class Cmstat(CommandLineApplication):
"""cmstat application controller."""
_options = {
# -g Turn on the 'glocal' alignment algorithm, local with respect to the
# target database, and global with respect to the model. By default, the
# model is configured for local alignment which is local with respect to
# both the target sequence and the model.
'-g':FlagParameter(Prefix='-',Name='g'),\
# -m print general statistics on the models in cmfile and the alignment it
# was built from.
'-m':FlagParameter(Prefix='-',Name='m'),\
# -Z <x> Calculate E-values as if the target database size was <x> megabases
# (Mb). Ignore the actual size of the database. This option is only valid
# if the CM file has been calibrated.
'-Z':ValuedParameter(Prefix='-',Name='Z',Delimiter=' '),\
# --all print all available statistics
'--all':FlagParameter(Prefix='--',Name='all'),\
# --le print local E-value statistics. This option only works if cmfile has
# been calibrated with cmcalibrate.
'--le':FlagParameter(Prefix='--',Name='le'),\
# --ge print glocal E-value statistics. This option only works if cmfile has
# been calibrated with cmcalibrate.
'--ge':FlagParameter(Prefix='--',Name='ge'),\
# --beta <x> With the --search option set the beta parameter for the query-
# dependent banding algorithm stages to <x> Beta is the probability mass
# considered negligible during band calculation. The default is 1E-7.
'--beta':ValuedParameter(Prefix='--',Name='beta',Delimiter=' '),\
# --qdbfile <f> Save the query-dependent bands (QDBs) for each state to file
# <f>
'--qdbfile':ValuedParameter(Prefix='--',Name='qdbfile',Delimiter=' '),\
# Expert Options
# --lfi Print the HMM filter thresholds for the range of relevant CM bit
# score cutoffs for searches with locally configured models using the
# Inside algorithm.
'--lfi':FlagParameter(Prefix='--',Name='lfi'),\
# --gfi Print the HMM filter thresholds for the range of relevant CM bit
# score cutoffs for searches with globally configured models using the
# Inside algorithm.
'--gfi':FlagParameter(Prefix='--',Name='gfi'),\
# --lfc Print the HMM filter thresholds for the range of relevant CM bit
# score cutoffs for searches with locally configured models using the CYK
# algorithm.
'--lfc':FlagParameter(Prefix='--',Name='lfc'),\
# --gfc Print the HMM filter thresholds for the range of relevant CM bit
# score cutoffs for searches with globally configured models using the CYK
# algorithm.
'--gfc':FlagParameter(Prefix='--',Name='gfc'),\
# -E <x> Print filter threshold statistics for an HMM filter if a final CM
# E-value cutoff of <x> were to be used for a run of cmsearch on 1 MB of
# sequence.
'-E':ValuedParameter(Prefix='-',Name='E',Delimiter=' '),\
# -T <x> Print filter threshold statistics for an HMM filter if a final CM
# bit score cutoff of <x> were to be used for a run of cmsearch.
'-T':ValuedParameter(Prefix='-',Name='T',Delimiter=' '),\
# --nc Print filter threshold statistics for an HMM filter if a CM bit score
# cutoff equal to the Rfam NC cutoff were to be used for a run of
# cmsearch.
'--nc':FlagParameter(Prefix='--',Name='nc'),\
# --ga Print filter threshold statistics for an HMM filter if a CM bit score
# cutoff of Rfam GA cutoff value were to be used for a run of cmsearch.
'--ga':FlagParameter(Prefix='--',Name='ga'),\
# --tc Print filter threshold statistics for an HMM filter if a CM bit score
# cutoff equal to the Rfam TC cutoff value were to be used for a run of
# cmsearch.
'--tc':FlagParameter(Prefix='--',Name='tc'),\
# --seqfile <x> With the -E option, use the database size of the database in
# <x> instead of the default database size of 1 MB.
'--seqfile':ValuedParameter(Prefix='--',Name='seqfile',Delimiter=' '),\
# --toponly In combination with --seqfile <x> option, only consider the top
# strand of the database in <x> instead of both strands. --search perform
# an experiment to determine how fast the CM(s) can search with different
# search algorithms.
'--toponly':FlagParameter(Prefix='--',Name='toponly'),\
# --cmL <n> With the --search option set the length of sequence to search
# with CM algorithms as <n> residues. By default, <n> is 1000.
'--cmL':ValuedParameter(Prefix='--',Name='cmL',Delimiter=' '),\
# --hmmL <n> With the --search option set the length of sequence to search
# with HMM algorithms as <n> residues. By default, <n> is 100,000.
'--hmmL':ValuedParameter(Prefix='--',Name='hmmL',Delimiter=' '),\
# --efile <f> Save a plot of cmsearch HMM filter E value cutoffs versus CM
# E-value cutoffs in xmgrace format to file <f>. This option must be used
# in combination with --lfi, --gfi, --lfc or --gfc.
'--efile':ValuedParameter(Prefix='--',Name='efile',Delimiter=' '),\
# --bfile <f> Save a plot of cmsearch HMM bit score cutoffs versus CM bit
# score cutoffs in xmgrace format to file <f>. This option must be used in
# combination with --lfi, --gfi, --lfc or --gfc.
'--bfile':ValuedParameter(Prefix='--',Name='bfile',Delimiter=' '),\
# --sfile <f> Save a plot of cmsearch predicted survival fraction from the
# HMM filter versus CM E value cutoff in xmgrace format to file <f>. This
# option must be used in combination with --lfi, --gfi, --lfc or --gfc.
'--sfile':ValuedParameter(Prefix='--',Name='sfile',Delimiter=' '),\
# --xfile <f> Save a plot of 'xhmm' versus CM E value cutoff in xmgrace
# format to file <f> 'xhmm' is the ratio of the number of dynamic
# programming calculations predicted to be required for the HMM filter and
# the CM search of the filter survivors versus the number of dynamic
# programming calculations for the filter alone. This option must be
# used in combination with --lfi, --gfi, --lfc or --gfc.
'--xfile':ValuedParameter(Prefix='--',Name='xfile',Delimiter=' '),\
# --afile <f> Save a plot of the predicted acceleration for an HMM filtered
# search versus CM E value cutoff in xmgrace format to file <f>. This
# option must be used in combination with --lfi, --gfi, --lfc or --gfc.
'--afile':ValuedParameter(Prefix='--',Name='afile',Delimiter=' '),\
# --bits With --efile, --sfile, --xfile, and --afile use CM bit score
# cutoffs instead of CM E value cutoffs for the x-axis values of the plot.
'--bits':FlagParameter(Prefix='--',Name='bits'),\
}
_parameters = {}
_parameters.update(_options)
_command = "cmstat"
_suppress_stderr=True
def getHelp(self):
"""Method that points to the Infernal documentation."""
help_str = \
"""
See Infernal documentation at:
http://infernal.janelia.org/
"""
return help_str
def cmbuild_from_alignment(aln, structure_string, refine=False, \
return_alignment=False,params=None):
"""Uses cmbuild to build a CM file given an alignment and structure string.
- aln: an Alignment object or something that can be used to construct
one. All sequences must be the same length.
- structure_string: vienna structure string representing the consensus
stucture for the sequences in aln. Must be the same length as the
alignment.
- refine: refine the alignment and realign before building the cm.
(Default=False)
- return_alignment: Return (in Stockholm format) alignment file used to
construct the CM file. This will either be the original alignment
and structure string passed in, or the refined alignment if --refine
was used. (Default=False)
- Note. This will be a string that can either be written to a file
or parsed.
"""
aln = Alignment(aln)
if len(structure_string) != aln.SeqLen:
raise ValueError, """Structure string is not same length as alignment. Structure string is %s long. Alignment is %s long."""%(len(structure_string),\
aln.SeqLen)
else:
struct_dict = {'SS_cons':structure_string}
#Make new Cmbuild app instance.
app = Cmbuild(InputHandler='_input_as_paths',WorkingDir='/tmp',\
params=params)
#turn on refine flag if True.
if refine:
app.Parameters['--refine'].on(get_tmp_filename(app.WorkingDir))
#Get alignment in Stockholm format
aln_file_string = stockholm_from_alignment(aln,GC_annotation=struct_dict)
#get path to alignment filename
aln_path = app._input_as_multiline_string(aln_file_string)
cm_path = aln_path.split('.txt')[0]+'.cm'
app.Parameters['-n'].on(cm_path)
filepaths = [cm_path,aln_path]
res = app(filepaths)
cm_file = res['CmFile'].read()
if return_alignment:
#If alignment was refined, return refined alignment and structure,
# otherwise return original alignment and structure.
if refine:
aln_file_string = res['Refined'].read()
res.cleanUp()
return cm_file, aln_file_string
#Just return cm_file
else:
res.cleanUp()
return cm_file
def cmbuild_from_file(stockholm_file_path, refine=False,return_alignment=False,\
params=None):
"""Uses cmbuild to build a CM file given a stockholm file.
- stockholm_file_path: a path to a stockholm file. This file should
contain a multiple sequence alignment formated in Stockholm format.
This must contain a sequence structure line:
#=GC SS_cons <structure string>
- refine: refine the alignment and realign before building the cm.
(Default=False)
- return_alignment: Return alignment and structure string used to
construct the CM file. This will either be the original alignment
and structure string passed in, or the refined alignment if
--refine was used. (Default=False)
"""
#get alignment and structure string from stockholm file.
info, aln, structure_string = \
list(MinimalRfamParser(open(stockholm_file_path,'U'),\
seq_constructor=ChangedSequence))[0]
#call cmbuild_from_alignment.
res = cmbuild_from_alignment(aln, structure_string, refine=refine, \
return_alignment=return_alignment,params=params)
return res
def cmalign_from_alignment(aln, structure_string, seqs, moltype,\
include_aln=True,refine=False, return_stdout=False,params=None,\
cmbuild_params=None):
"""Uses cmbuild to build a CM file, then cmalign to build an alignment.
- aln: an Alignment object or something that can be used to construct
one. All sequences must be the same length.
- structure_string: vienna structure string representing the consensus
stucture for the sequences in aln. Must be the same length as the
alignment.
- seqs: SequenceCollection object or something that can be used to
construct one, containing unaligned sequences that are to be aligned
to the aligned sequences in aln.
- moltype: Cogent moltype object. Must be RNA or DNA.
- include_aln: Boolean to include sequences in aln in final alignment.
(Default=True)
- refine: refine the alignment and realign before building the cm.
(Default=False)
- return_stdout: Boolean to return standard output from infernal. This
includes alignment and structure bit scores and average
probabilities for each sequence. (Default=False)
"""
#NOTE: Must degap seqs or Infernal well seg fault!
seqs = SequenceCollection(seqs,MolType=moltype).degap()
#Create mapping between abbreviated IDs and full IDs
int_map, int_keys = seqs.getIntMap()
#Create SequenceCollection from int_map.
int_map = SequenceCollection(int_map,MolType=moltype)
cm_file, aln_file_string = cmbuild_from_alignment(aln, structure_string,\
refine=refine,return_alignment=True,params=cmbuild_params)
if params is None:
params = {}
params.update({MOLTYPE_MAP[moltype]:True})
app = Cmalign(InputHandler='_input_as_paths',WorkingDir='/tmp',\
params=params)
app.Parameters['--informat'].on('FASTA')
#files to remove that aren't cleaned up by ResultPath object
to_remove = []
#turn on --withali flag if True.
if include_aln:
app.Parameters['--withali'].on(\
app._tempfile_as_multiline_string(aln_file_string))
#remove this file at end
to_remove.append(app.Parameters['--withali'].Value)
seqs_path = app._input_as_multiline_string(int_map.toFasta())
cm_path = app._tempfile_as_multiline_string(cm_file)
#add cm_path to to_remove
to_remove.append(cm_path)
paths = [cm_path,seqs_path]
app.Parameters['-o'].on(get_tmp_filename(app.WorkingDir))
res = app(paths)
info, aligned, struct_string = \
list(MinimalRfamParser(res['Alignment'].readlines(),\
seq_constructor=SEQ_CONSTRUCTOR_MAP[moltype]))[0]
#Make new dict mapping original IDs
new_alignment={}
for k,v in aligned.NamedSeqs.items():
new_alignment[int_keys.get(k,k)]=v
#Create an Alignment object from alignment dict
new_alignment = Alignment(new_alignment,MolType=moltype)
std_out = res['StdOut'].read()
#clean up files
res.cleanUp()
for f in to_remove: remove(f)
if return_stdout:
return new_alignment, struct_string, std_out
else:
return new_alignment, struct_string
def cmalign_from_file(cm_file_path, seqs, moltype, alignment_file_path=None,\
include_aln=False,return_stdout=False,params=None):
"""Uses cmalign to align seqs to alignment in cm_file_path.
- cm_file_path: path to the file created by cmbuild, containing aligned
sequences. This will be used to align sequences in seqs.
- seqs: unaligned sequendes that are to be aligned to the sequences in
cm_file.
- moltype: cogent.core.moltype object. Must be DNA or RNA
- alignment_file_path: path to stockholm alignment file used to create
cm_file.
__IMPORTANT__: This MUST be the same file used by cmbuild
originally. Only need to pass in this file if include_aln=True.
This helper function will NOT check if the alignment file is correct
so you must use it correctly.
- include_aln: Boolean to include sequences in aln_file in final
alignment. (Default=False)
- return_stdout: Boolean to return standard output from infernal. This
includes alignment and structure bit scores and average
probabilities for each sequence. (Default=False)
"""
#NOTE: Must degap seqs or Infernal well seg fault!
seqs = SequenceCollection(seqs,MolType=moltype).degap()
#Create mapping between abbreviated IDs and full IDs
int_map, int_keys = seqs.getIntMap()
#Create SequenceCollection from int_map.
int_map = SequenceCollection(int_map,MolType=moltype)
if params is None:
params = {}
params.update({MOLTYPE_MAP[moltype]:True})
app = Cmalign(InputHandler='_input_as_paths',WorkingDir='/tmp',\
params=params)
app.Parameters['--informat'].on('FASTA')
#turn on --withali flag if True.
if include_aln:
if alignment_file_path is None:
raise DataError, """Must have path to alignment file used to build CM if include_aln=True."""
else:
app.Parameters['--withali'].on(alignment_file_path)
seqs_path = app._input_as_multiline_string(int_map.toFasta())
paths = [cm_file_path,seqs_path]
app.Parameters['-o'].on(get_tmp_filename(app.WorkingDir))
res = app(paths)
info, aligned, struct_string = \
list(MinimalRfamParser(res['Alignment'].readlines(),\
seq_constructor=SEQ_CONSTRUCTOR_MAP[moltype]))[0]
#Make new dict mapping original IDs
new_alignment={}
for k,v in aligned.items():
new_alignment[int_keys.get(k,k)]=v
#Create an Alignment object from alignment dict
new_alignment = Alignment(new_alignment,MolType=moltype)
std_out = res['StdOut'].read()
res.cleanUp()
if return_stdout:
return new_alignment, struct_string, std_out
else:
return new_alignment, struct_string
def cmsearch_from_alignment(aln, structure_string, seqs, moltype, cutoff=0.0,\
refine=False,params=None):
"""Uses cmbuild to build a CM file, then cmsearch to find homologs.
- aln: an Alignment object or something that can be used to construct
one. All sequences must be the same length.
- structure_string: vienna structure string representing the consensus
stucture for the sequences in aln. Must be the same length as the
alignment.
- seqs: SequenceCollection object or something that can be used to
construct one, containing unaligned sequences that are to be
searched.
- moltype: cogent.core.moltype object. Must be DNA or RNA
- cutoff: bitscore cutoff. No sequences < cutoff will be kept in
search results. (Default=0.0). Infernal documentation suggests
a cutoff of log2(number nucleotides searching) will give most
likely true homologs.
- refine: refine the alignment and realign before building the cm.
(Default=False)
"""
#NOTE: Must degap seqs or Infernal well seg fault!
seqs = SequenceCollection(seqs,MolType=moltype).degap()
#Create mapping between abbreviated IDs and full IDs
int_map, int_keys = seqs.getIntMap()
#Create SequenceCollection from int_map.
int_map = SequenceCollection(int_map,MolType=moltype)
cm_file, aln_file_string = cmbuild_from_alignment(aln, structure_string,\
refine=refine,return_alignment=True)
app = Cmsearch(InputHandler='_input_as_paths',WorkingDir='/tmp',\
params=params)
app.Parameters['--informat'].on('FASTA')
app.Parameters['-T'].on(cutoff)
to_remove = []
seqs_path = app._input_as_multiline_string(int_map.toFasta())
cm_path = app._tempfile_as_multiline_string(cm_file)
paths = [cm_path,seqs_path]
to_remove.append(cm_path)
app.Parameters['--tabfile'].on(get_tmp_filename(app.WorkingDir))
res = app(paths)
search_results = list(CmsearchParser(res['SearchResults'].readlines()))
if search_results:
for i,line in enumerate(search_results):
label = line[1]
search_results[i][1]=int_keys.get(label,label)
res.cleanUp()
for f in to_remove:remove(f)
return search_results
def cmsearch_from_file(cm_file_path, seqs, moltype, cutoff=0.0, params=None):
"""Uses cmbuild to build a CM file, then cmsearch to find homologs.
- cm_file_path: path to the file created by cmbuild, containing aligned
sequences. This will be used to search sequences in seqs.
- seqs: SequenceCollection object or something that can be used to
construct one, containing unaligned sequences that are to be
searched.
- moltype: cogent.core.moltype object. Must be DNA or RNA
- cutoff: bitscore cutoff. No sequences < cutoff will be kept in
search results. (Default=0.0). Infernal documentation suggests
a cutoff of log2(number nucleotides searching) will give most
likely true homologs.
"""
#NOTE: Must degap seqs or Infernal well seg fault!
seqs = SequenceCollection(seqs,MolType=moltype).degap()
#Create mapping between abbreviated IDs and full IDs
int_map, int_keys = seqs.getIntMap()
#Create SequenceCollection from int_map.
int_map = SequenceCollection(int_map,MolType=moltype)
app = Cmsearch(InputHandler='_input_as_paths',WorkingDir='/tmp',\
params=params)
app.Parameters['--informat'].on('FASTA')
app.Parameters['-T'].on(cutoff)
seqs_path = app._input_as_multiline_string(int_map.toFasta())
paths = [cm_file_path,seqs_path]
app.Parameters['--tabfile'].on(get_tmp_filename(app.WorkingDir))
res = app(paths)
search_results = list(CmsearchParser(res['SearchResults'].readlines()))
if search_results:
for i,line in enumerate(search_results):
label = line[1]
search_results[i][1]=int_keys.get(label,label)
res.cleanUp()
return search_results
|