/usr/share/pyshared/cogent/app/mafft.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 | #!/usr/bin/env python
"""
Provides an application controller for the commandline version of:
MAFFT v6.602
"""
from cogent.app.parameters import FlagParameter, ValuedParameter, FilePath
from cogent.app.util import CommandLineApplication, ResultPath, \
get_tmp_filename
from random import choice
from cogent.parse.fasta import MinimalFastaParser
from cogent.core.moltype import DNA, RNA, PROTEIN
from cogent.core.alignment import SequenceCollection, Alignment
from cogent.core.tree import PhyloNode
from cogent.parse.tree import DndParser
from os import remove
__author__ = "Jeremy Widmann"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Jeremy Widmann", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Jeremy Widmann"
__email__ = "jeremy.widmann@colorado.edu"
__status__ = "Development"
MOLTYPE_MAP = {'DNA':'--nuc',\
'RNA':'--nuc',\
'PROTEIN':'--amino',\
}
class Mafft(CommandLineApplication):
"""Mafft application controller"""
_options ={
# Algorithm
# Automatically selects an appropriate strategy from L-INS-i, FFT-NS-i
# and FFT-NS-2, according to data size. Default: off (always FFT-NS-2)
'--auto':FlagParameter(Prefix='--',Name='auto'),\
# Distance is calculated based on the number of shared 6mers. Default: on
'--6merpair':FlagParameter(Prefix='--',Name='6merpair'),\
# All pairwise alignments are computed with the Needleman-Wunsch algorithm.
# More accurate but slower than --6merpair. Suitable for a set of globally
# alignable sequences. Applicable to up to ~200 sequences. A combination
# with --maxiterate 1000 is recommended (G-INS-i). Default: off
# (6mer distance is used)
'--globalpair':FlagParameter(Prefix='--',Name='globalpair'),\
# All pairwise alignments are computed with the Smith-Waterman algorithm.
# More accurate but slower than --6merpair. Suitable for a set of locally
# alignable sequences. Applicable to up to ~200 sequences. A combination
# with --maxiterate 1000 is recommended (L-INS-i). Default: off
# (6mer distance is used)
'--localpair':FlagParameter(Prefix='--',Name='localpair'),\
# All pairwise alignments are computed with a local algorithm with the
# generalized affine gap cost (Altschul 1998). More accurate but slower than
# --6merpair. Suitable when large internal gaps are expected. Applicable to
# up to ~200 sequences. A combination with --maxiterate 1000 is recommended
# (E-INS-i). Default: off (6mer distance is used)
'--genafpair':FlagParameter(Prefix='--',Name='genafpair'),\
# All pairwise alignments are computed with FASTA (Pearson and Lipman 1988).
# FASTA is required. Default: off (6mer distance is used)
'--fastapair':FlagParameter(Prefix='--',Name='fastapair'),\
# Weighting factor for the consistency term calculated from pairwise
# alignments. Valid when either of --blobalpair, --localpair, --genafpair,
# --fastapair or --blastpair is selected. Default: 2.7
'--weighti':ValuedParameter(Prefix='--',Name='weighti',Delimiter=' '),\
# Guide tree is built number times in the progressive stage. Valid with 6mer
# distance. Default: 2
'--retree':ValuedParameter(Prefix='--',Name='retree',Delimiter=' '),\
# number cycles of iterative refinement are performed. Default: 0
'--maxiterate':ValuedParameter(Prefix='--',Name='maxiterate',\
Delimiter=' '),\
# Use FFT approximation in group-to-group alignment. Default: on
'--fft':FlagParameter(Prefix='--',Name='fft'),\
# Do not use FFT approximation in group-to-group alignment. Default: off
'--nofft':FlagParameter(Prefix='--',Name='nofft'),\
#Alignment score is not checked in the iterative refinement stage. Default:
# off (score is checked)
'--noscore':FlagParameter(Prefix='--',Name='noscore'),\
# Use the Myers-Miller (1988) algorithm. Default: automatically turned on
# when the alignment length exceeds 10,000 (aa/nt).
'--memsave':FlagParameter(Prefix='--',Name='memsave'),\
# Use a fast tree-building method (PartTree, Katoh and Toh 2007) with the
# 6mer distance. Recommended for a large number (> ~10,000) of sequences are
# input. Default: off
'--parttree':FlagParameter(Prefix='--',Name='parttree'),\
# The PartTree algorithm is used with distances based on DP. Slightly more
# accurate and slower than --parttree. Recommended for a large number
# (> ~10,000) of sequences are input. Default: off
'--dpparttree':FlagParameter(Prefix='--',Name='dpparttree'),\
# The PartTree algorithm is used with distances based on FASTA. Slightly
# more accurate and slower than --parttree. Recommended for a large number
# (> ~10,000) of sequences are input. FASTA is required. Default: off
'--fastaparttree':FlagParameter(Prefix='--',Name='fastaparttree'),\
# The number of partitions in the PartTree algorithm. Default: 50
'--partsize':ValuedParameter(Prefix='--',Name='partsize',Delimiter=' '),\
# Do not make alignment larger than number sequences. Valid only with the
# --*parttree options. Default: the number of input sequences
'--groupsize':ValuedParameter(Prefix='--',Name='groupsize',Delimiter=' '),\
# Parameter
# Gap opening penalty at group-to-group alignment. Default: 1.53
'--op':ValuedParameter(Prefix='--',Name='op',Delimiter=' '),\
# Offset value, which works like gap extension penalty, for group-to-group
# alignment. Deafult: 0.123
'--ep':ValuedParameter(Prefix='--',Name='ep',Delimiter=' '),\
# Gap opening penalty at local pairwise alignment. Valid when the
# --localpair or --genafpair option is selected. Default: -2.00
'--lop':ValuedParameter(Prefix='--',Name='lop',Delimiter=' '),\
# Offset value at local pairwise alignment. Valid when the --localpair or
# --genafpair option is selected. Default: 0.1
'--lep':ValuedParameter(Prefix='--',Name='lep',Delimiter=' '),\
# Gap extension penalty at local pairwise alignment. Valid when the
# --localpair or --genafpair option is selected. Default: -0.1
'--lexp':ValuedParameter(Prefix='--',Name='lexp',Delimiter=' '),\
# Gap opening penalty to skip the alignment. Valid when the --genafpair
# option is selected. Default: -6.00
'--LOP':ValuedParameter(Prefix='--',Name='LOP',Delimiter=' '),\
# Gap extension penalty to skip the alignment. Valid when the --genafpair
# option is selected. Default: 0.00
'--LEXP':ValuedParameter(Prefix='--',Name='LEXP',Delimiter=' '),\
# BLOSUM number matrix (Henikoff and Henikoff 1992) is used. number=30, 45,
# 62 or 80. Default: 62
'--bl':ValuedParameter(Prefix='--',Name='bl',Delimiter=' '),\
# JTT PAM number (Jones et al. 1992) matrix is used. number>0.
# Default: BLOSUM62
'--jtt':ValuedParameter(Prefix='--',Name='jtt',Delimiter=' '),\
# Transmembrane PAM number (Jones et al. 1994) matrix is used. number>0.
# Default: BLOSUM62
'--tm':ValuedParameter(Prefix='--',Name='tm',Delimiter=' '),\
# Use a user-defined AA scoring matrix. The format of matrixfile is the same
# to that of BLAST. Ignored when nucleotide sequences are input.
# Default: BLOSUM62
'--aamatrix':ValuedParameter(Prefix='--',Name='aamatrix',Delimiter=' '),\
# Incorporate the AA/nuc composition information into the scoring matrix.
# Deafult: off
'--fmodel':FlagParameter(Prefix='--',Name='fmodel'),\
# Output
# Output format: clustal format. Default: off (fasta format)
'--clustalout':FlagParameter(Prefix='--',Name='clustalout'),\
# Output order: same as input. Default: on
'--inputorder':FlagParameter(Prefix='--',Name='inputorder'),\
# Output order: aligned. Default: off (inputorder)
'--reorder':FlagParameter(Prefix='--',Name='reorder'),\
# Guide tree is output to the input.tree file. Default: off
'--treeout':FlagParameter(Prefix='--',Name='treeout'),\
# Do not report progress. Default: off
'--quiet':FlagParameter(Prefix='--',Name='quiet'),\
# Input
# Assume the sequences are nucleotide. Deafult: auto
'--nuc':FlagParameter(Prefix='--',Name='nuc'),\
# Assume the sequences are amino acid. Deafult: auto
'--amino':FlagParameter(Prefix='--',Name='amino'),\
# Seed alignments given in alignment_n (fasta format) are aligned with
# sequences in input. The alignment within every seed is preserved.
'--seed':ValuedParameter(Prefix='--',Name='seed',Delimiter=' '),\
}
_parameters = {}
_parameters.update(_options)
_command = "mafft"
_suppress_stderr=True
def _input_as_seqs(self,data):
lines = []
for i,s in enumerate(data):
#will number the sequences 1,2,3,etc.
lines.append(''.join(['>',str(i+1)]))
lines.append(s)
return self._input_as_lines(lines)
def _tree_out_filename(self):
if self.Parameters['--treeout'].isOn():
tree_filename = self._absolute(str(self._input_filename))+'.tree'
else:
raise ValueError, "No tree output file specified."
return tree_filename
def _tempfile_as_multiline_string(self, data):
"""Write a multiline string to a temp file and return the filename.
data: a multiline string to be written to a file.
* Note: the result will be the filename as a FilePath object
(which is a string subclass).
"""
filename = FilePath(self.getTmpFilename(self.TmpDir))
data_file = open(filename,'w')
data_file.write(data)
data_file.close()
return filename
def getHelp(self):
"""Method that points to the Mafft documentation."""
help_str = \
"""
See Mafft documentation at:
http://align.bmr.kyushu-u.ac.jp/mafft/software/manual/manual.html
"""
return help_str
def _get_result_paths(self,data):
result = {}
if self.Parameters['--treeout'].isOn():
out_name = self._tree_out_filename()
result['Tree'] = ResultPath(Path=out_name,IsWritten=True)
return result
def align_unaligned_seqs(seqs,moltype,params=None,accurate=False):
"""Aligns unaligned sequences
seqs: either list of sequence objects or list of strings
add_seq_names: boolean. if True, sequence names are inserted in the list
of sequences. if False, it assumes seqs is a list of lines of some
proper format that the program can handle
"""
#create SequenceCollection object from seqs
seq_collection = SequenceCollection(seqs,MolType=moltype)
#Create mapping between abbreviated IDs and full IDs
int_map, int_keys = seq_collection.getIntMap()
#Create SequenceCollection from int_map.
int_map = SequenceCollection(int_map,MolType=moltype)
#Create Mafft app.
app = Mafft(InputHandler='_input_as_multiline_string',params=params)
#Turn on correct moltype
moltype_string = moltype.label.upper()
app.Parameters[MOLTYPE_MAP[moltype_string]].on()
#Do not report progress
app.Parameters['--quiet'].on()
#More accurate alignment, sacrificing performance.
if accurate:
app.Parameters['--globalpair'].on()
app.Parameters['--maxiterate'].Value=1000
#Get results using int_map as input to app
res = app(int_map.toFasta())
#Get alignment as dict out of results
alignment = dict(MinimalFastaParser(res['StdOut'].readlines()))
#Make new dict mapping original IDs
new_alignment = {}
for k,v in alignment.items():
new_alignment[int_keys[k]]=v
#Create an Alignment object from alignment dict
new_alignment = Alignment(new_alignment,MolType=moltype)
#Clean up
res.cleanUp()
del(seq_collection,int_map,int_keys,app,res,alignment)
return new_alignment
def align_and_build_tree(seqs, moltype, best_tree=False, params={}):
"""Returns an alignment and a tree from Sequences object seqs.
seqs: SequenceCollection object, or data that can be used to build one.
best_tree: if True (default:False), uses a slower but more accurate
algorithm to build the tree.
params: dict of parameters to pass in to the Mafft app controller.
The result will be a tuple containing an Alignment object and a
cogent.core.tree.PhyloNode object (or None for the alignment and/or tree
if either fails).
"""
#Current version of Mafft does not support tree building.
raise NotImplementedError, """Current version of Mafft does not support tree building."""
def build_tree_from_alignment(aln, moltype, best_tree=False, params={},\
working_dir='/tmp'):
"""Returns a tree from Alignment object aln.
aln: a cogent.core.alignment.Alignment object, or data that can be used
to build one.
best_tree: if True (default:False), uses a slower but more accurate
algorithm to build the tree.
NOTE: Mafft does not necessarily support best_tree option.
Will only return guide tree used to align sequences. Passing
best_tree = True will construct the guide tree 100 times instead
of default 2 times.
***Mafft does allow you to get the guide tree back, but the IDs in the
output guide tree do not match the original IDs in the fasta file
and are impossible to map. Sent bug report to Mafft authors; possibly
expect this option in future version.***
params: dict of parameters to pass in to the Mafft app controller.
The result will be an cogent.core.tree.PhyloNode object, or None if tree
fails.
"""
#Current version of Mafft does not support tree building.
raise NotImplementedError, """Current version of Mafft does not support tree building."""
def add_seqs_to_alignment(seqs, aln, moltype, params=None, accurate=False):
"""Returns an Alignment object from seqs and existing Alignment.
seqs: a cogent.core.sequence.Sequence object, or data that can be used
to build one.
aln: an cogent.core.alignment.Alignment object, or data that can be used
to build one
params: dict of parameters to pass in to the Mafft app controller.
"""
#create SequenceCollection object from seqs
seq_collection = SequenceCollection(seqs,MolType=moltype)
#Create mapping between abbreviated IDs and full IDs
seq_int_map, seq_int_keys = seq_collection.getIntMap()
#Create SequenceCollection from int_map.
seq_int_map = SequenceCollection(seq_int_map,MolType=moltype)
#create Alignment object from aln
aln = Alignment(aln,MolType=moltype)
#Create mapping between abbreviated IDs and full IDs
aln_int_map, aln_int_keys = aln.getIntMap(prefix='seqn_')
#Create SequenceCollection from int_map.
aln_int_map = Alignment(aln_int_map,MolType=moltype)
#Update seq_int_keys with aln_int_keys
seq_int_keys.update(aln_int_keys)
#Create Mafft app.
app = Mafft(InputHandler='_input_as_multiline_string',\
params=params,
SuppressStderr=True)
#Turn on correct moltype
moltype_string = moltype.label.upper()
app.Parameters[MOLTYPE_MAP[moltype_string]].on()
#Do not report progress
app.Parameters['--quiet'].on()
#Add aln_int_map as seed alignment
app.Parameters['--seed'].on(\
app._tempfile_as_multiline_string(aln_int_map.toFasta()))
#More accurate alignment, sacrificing performance.
if accurate:
app.Parameters['--globalpair'].on()
app.Parameters['--maxiterate'].Value=1000
#Get results using int_map as input to app
res = app(seq_int_map.toFasta())
#Get alignment as dict out of results
alignment = dict(MinimalFastaParser(res['StdOut'].readlines()))
#Make new dict mapping original IDs
new_alignment = {}
for k,v in alignment.items():
key = k.replace('_seed_','')
new_alignment[seq_int_keys[key]]=v
#Create an Alignment object from alignment dict
new_alignment = Alignment(new_alignment,MolType=moltype)
#Clean up
res.cleanUp()
remove(app.Parameters['--seed'].Value)
del(seq_collection,seq_int_map,seq_int_keys,\
aln,aln_int_map,aln_int_keys,app,res,alignment)
return new_alignment
def align_two_alignments(aln1, aln2, moltype, params=None):
"""Returns an Alignment object from two existing Alignments.
aln1, aln2: cogent.core.alignment.Alignment objects, or data that can be
used to build them.
- Mafft profile alignment only works with aligned sequences. Alignment
object used to handle unaligned sequences.
params: dict of parameters to pass in to the Mafft app controller.
"""
#create SequenceCollection object from seqs
aln1 = Alignment(aln1,MolType=moltype)
#Create mapping between abbreviated IDs and full IDs
aln1_int_map, aln1_int_keys = aln1.getIntMap()
#Create SequenceCollection from int_map.
aln1_int_map = Alignment(aln1_int_map,MolType=moltype)
#create Alignment object from aln
aln2 = Alignment(aln2,MolType=moltype)
#Create mapping between abbreviated IDs and full IDs
aln2_int_map, aln2_int_keys = aln2.getIntMap(prefix='seqn_')
#Create SequenceCollection from int_map.
aln2_int_map = Alignment(aln2_int_map,MolType=moltype)
#Update aln1_int_keys with aln2_int_keys
aln1_int_keys.update(aln2_int_keys)
#Create Mafft app.
app = Mafft(InputHandler='_input_as_paths',\
params=params,
SuppressStderr=False)
app._command = 'mafft-profile'
aln1_path = app._tempfile_as_multiline_string(aln1_int_map.toFasta())
aln2_path = app._tempfile_as_multiline_string(aln2_int_map.toFasta())
filepaths = [aln1_path,aln2_path]
#Get results using int_map as input to app
res = app(filepaths)
#Get alignment as dict out of results
alignment = dict(MinimalFastaParser(res['StdOut'].readlines()))
#Make new dict mapping original IDs
new_alignment = {}
for k,v in alignment.items():
key = k.replace('_seed_','')
new_alignment[aln1_int_keys[key]]=v
#Create an Alignment object from alignment dict
new_alignment = Alignment(new_alignment,MolType=moltype)
#Clean up
res.cleanUp()
remove(aln1_path)
remove(aln2_path)
remove('pre')
remove('trace')
del(aln1,aln1_int_map,aln1_int_keys,\
aln2,aln2_int_map,aln2_int_keys,app,res,alignment)
return new_alignment
|