/usr/share/pyshared/cogent/draw/compatibility.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 | #!/usr/bin/env python
"""Visualisation of phylogenetic compatibility within an alignment.
Jakobsen & Easteal, CABIOS 12(4), 1996
Jakobsen, Wilson & Easteal, Mol. Biol. Evol. 14(5), 1997
"""
from __future__ import division
import sys
import math
import numpy
import numpy.random
import operator
import matplotlib.pyplot as plt
import matplotlib.ticker
import matplotlib.colors
from cogent.draw.linear import Display
__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Peter Maxwell"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Peter Maxwell"
__email__ = "pm67nz@gmail.com"
__status__ = "Production"
def order_to_cluster_similar(S, elts=None, start=None):
"""Order so as to keep the most similar parts adjacent to each other
S is expected to be a square matrix, and the returned list of
ordinals is len(S) long."""
position = {}
unavailable = set()
if elts is not None:
if len(elts) < 2:
return elts
elts = set(elts)
for x in range(len(S)):
if x != start and x not in elts:
unavailable.add(x)
if start is not None:
position[start] = (False, [start])
similarity = [numpy.unravel_index(p, S.shape)
for p in numpy.argsort(S, axis=None)]
for (x, y) in similarity[::-1]:
if x==y or x in unavailable or y in unavailable:
continue
(x_end, x_run) = position.get(x, (None, [x]))
(y_end, y_run) = position.get(y, (None, [y]))
if x_run is y_run:
continue
if x_end is not None:
if not x_end:
x_run.reverse()
unavailable.add(x)
if y_end is not None:
if y_end:
y_run.reverse()
unavailable.add(y)
run = x_run + y_run
position[run[0]] = (False, run)
position[run[-1]] = (True, run)
if start is not None:
if run[-1] == start:
run.reverse()
run = run[1:]
return run
def tied_segments(scores):
"""(start, end) of each run of equal values in scores
>>> tied_segments([1,1,1,2])
[(0, 3), (3, 4)]
"""
pos = numpy.flatnonzero(numpy.diff(scores))
pos = numpy.concatenate(([0],pos+1,[len(scores)]))
return zip(pos[:-1],pos[1:])
def order_tied_to_cluster_similar(S, scores):
"""Use similarity measure S to make similar elements
adjacent, but only to break ties in the primary order
defined by the list of scores"""
assert S.shape == (len(scores), len(scores))
new_order = []
start = None
for (a,b) in tied_segments(scores):
useful = range(a,b)
if start is not None:
useful.append(start)
start = len(useful)-1
useful = numpy.array(useful)
S2 = S[useful,:]
S2 = S2[:,useful]
sub_order = order_to_cluster_similar(S2, range(b-a), start)
new_order.extend([useful[i] for i in sub_order])
start = new_order[-1]
assert set(new_order) == set(range(len(scores)))
return new_order
def bit_encode(x, _bool2num=numpy.array(["0","1"]).take):
"""Convert a boolean array into an integer"""
return int(_bool2num(x).tostring(), 2)
def bit_decode(x, numseqs):
"""Convert an integer into a boolean array"""
result = numpy.empty([numseqs], bool)
bit = 1 << (numseqs-1)
for i in range(numseqs):
result[i] = bit & x
bit >>= 1
return result
def binary_partitions(alignment):
"""Returns (sites, columns, partitions)
sites[informative column number] = alignment position number
columns[informative column number] = distinct partition number
partitions[distinct partition number] = (partition, mask) as ints
"""
sites = []
columns = []
partitions = []
partition_index = {}
for (site, column) in enumerate(alignment.Positions):
column = numpy.array(column)
(A, T, C, G, R, Y, W, S, U) = [
bit_encode(column == N) for N in "ATCGRYWSU"]
T |= U
for split in [([A, G, R], [C, T, Y]), ([A, T, W], [G, C, S])]:
halves = []
for char_group in split:
X = reduce(operator.or_, char_group)
if not (X & (X - 1)):
break # fewer than 2 bits set in X
halves.append(X)
else:
(X, Z) = sorted(halves)
partition = (X,X|Z)
if partition not in partition_index:
partition_index[partition] = len(partitions)
partitions.append(partition)
sites.append(site)
columns.append(partition_index[partition])
break # if R/Y split OK no need to consider W/S split.
return (sites, columns, partitions)
def min_edges(columns):
"""Given two boolean arrays each representing an informative alignment
position, there are 4 possible combinations for each sequence:
TT, TF, FT and FF.
If N of these 4 possibilities are found then there must be at least
N-1 tree edges on which mutations occured
As a special case, the diagonal values are set to 0 rather than,
as theory suggests, 1. This is simply a convenience for later
drawing code"""
N = len(columns)
result = numpy.zeros([N, N], int)
for i in range(0, N-1):
(a, mask_a) = columns[i]
for j in range(i+1, N):
(b, mask_b) = columns[j]
mask = mask_a & mask_b
(na, nb) = (~a, ~b)
combos = [c & mask for c in [a&b, a&nb, na&b, na&nb]]
combos = [c for c in combos if c]
result[i,j] = result[j,i] = len(combos) - 1
return result
def neighbour_similarity_score(matrix):
left = matrix[:-1]
right = matrix[1:]
upper = matrix[:,:-1]
lower = matrix[:,1:]
same = (lower == upper).sum() + (left == right).sum()
neighbours = numpy.product(left.shape)+numpy.product(upper.shape)
return same / neighbours
def shuffled(matrix):
assert matrix.shape == (len(matrix), len(matrix)), matrix.shape
index = numpy.random.permutation(numpy.arange(len(matrix)))
return matrix[index,:][:,index]
def nss_significance(matrix, samples=10000):
score = neighbour_similarity_score(matrix)
scores = numpy.empty([samples])
for i in range(samples):
s = neighbour_similarity_score(shuffled(matrix))
scores[i] = s
scores.sort()
p = (samples-scores.searchsorted(score)+1) / samples
return (score, sum(scores)/samples, p)
def inter_region_average(a):
return a.sum()/numpy.product(a.shape)
def intra_region_average(a):
d = numpy.diag(a) # ignore the diagonal
return (a.sum()-d.sum())/(numpy.product(a.shape)-len(d))
def integer_tick_label(sites):
def _formatfunc(x, pos, _sites=sites, _n=len(sites)):
if 0 < x < _n:
return str(_sites[int(x)])
else:
return ""
return _formatfunc
def boolean_similarity(matrix):
# same as numpy.equal.outer(matrix, matrix).trace(axis1=1, axis2=3)
# but that would use much memory
true = matrix.T.astype(int)
false = (~matrix).T.astype(int)
both_true = numpy.inner(true, true)
both_false = numpy.inner(false, false)
return both_true + both_false
def partimatrix(alignment, display=False, samples=0, s_limit=0, title="",
include_incomplete=False, print_stats=True, max_site_labels=50):
if print_stats:
print "%s sequences in %s bp alignment" % (
alignment.getNumSeqs(), len(alignment))
(sites, columns, partitions) = binary_partitions(alignment)
if print_stats:
print "%s unique binary partitions from %s informative sites" % (
len(partitions), len(sites))
partpart = min_edges(partitions) # [partition,partition]
partimatrix = partpart[columns,:] # [site, partition]
sitematrix = partimatrix[:,columns] # [site, site]
# RETICULATE, JE 1996
compatiblity = sitematrix <= 2
if print_stats:
print "Overall compatibility %.6f" % intra_region_average(compatiblity)
if samples == 0:
print "Neighbour similarity score = %.6f" % \
neighbour_similarity_score(compatiblity)
else:
print "Neighbour similarity = %.6f, avg random = %.6f, p < %s" % \
nss_significance(compatiblity, samples=samples)
# PARTIMATRIX, JWE 1997
# Remove the incomplete partitions with gaps or other ambiguities
mask = 2**alignment.getNumSeqs()-1
complete = [i for (i,(x, xz)) in enumerate(partitions) if xz==mask]
if not include_incomplete:
partimatrix = partimatrix[:,complete]
partitions = [partitions[i] for i in complete]
# For scoring/ordering purposes, also remove the incomplete sequences
complete_columns = [i for (i,c) in enumerate(columns) if c in complete]
scoreable_partimatrix = partimatrix[complete_columns, :]
# Order partitions by increasing conflict score
conflict = (scoreable_partimatrix > 2).sum(axis=0)
conflict_order = numpy.argsort(conflict)
partimatrix = partimatrix[:, conflict_order]
partitions = [partitions[i] for i in conflict_order]
scoreable_partimatrix = partimatrix[complete_columns, :]
support = (scoreable_partimatrix == 0).sum(axis=0)
consist = (scoreable_partimatrix <= 2).sum(axis=0)
conflict = (scoreable_partimatrix > 2).sum(axis=0)
# Similarity measure between partitions
O = boolean_similarity(scoreable_partimatrix <= 2)
s = 1.0*len(complete_columns)
O = O.astype(float) / s
p,q = consist/s, conflict/s
E = numpy.outer(p,p) + numpy.outer(q,q)
S = (O-E)/numpy.sqrt(E*(1-E)/s)
# Order partitions for better visual grouping
if "order_by_conflict":
order = order_tied_to_cluster_similar(S, conflict)
else:
order = order_to_cluster_similar(S)
half = len(order) // 2
if sum(conflict[order[:half]]) > sum(conflict[order[half:]]):
order.reverse()
partimatrix = partimatrix[:, order]
conflict = conflict[order]
support = support[order]
partitions = [partitions[i] for i in order]
if display:
figwidth = 8.0
(c_size, p_size) = partimatrix.shape
s_size = num_seqs = alignment.getNumSeqs()
# Layout (including figure height) chosen to get aspect ratio of
# 1.0 for the compatibility matrix, and if possible the other
# matrices.
if s_size > s_limit:
# too many species to show
s_size = 0
else:
# distort squares to give enough space for species names
extra = max(1.0, (12/80)/(figwidth/(c_size + p_size)))
p_size *= numpy.sqrt(extra)
s_size *= extra
genemap = Display(alignment, recursive=s_size>0,
colour_sequences=False, draw_bases=False)
annot_width = max(genemap.height / 80, 0.1)
bar_height = 0.5
link_width = 0.3
x_margin = 0.60
y_margin = 0.35
xpad = 0.05
ypad = 0.2
(x, y) = (c_size + p_size, c_size + s_size)
x_scale = y_scale = (figwidth-2*x_margin-xpad-link_width-annot_width)/x
figheight = y_scale * y + 2*y_margin + 2*ypad + bar_height
x_scale /= figwidth
y_scale /= figheight
x_margin /= figwidth
y_margin /= figheight
xpad /= figwidth
ypad /= figheight
bar_height /= figheight
link_width /= figwidth
annot_width /= figwidth
(c_width, c_height) = (c_size*x_scale, c_size*y_scale)
(p_width, s_height) = (p_size*x_scale, s_size*y_scale)
vert = (x_margin + xpad + c_width)
top = (y_margin + c_height + ypad)
fig = plt.figure(figsize=(figwidth,figheight))
kw = dict(axisbg=fig.get_facecolor())
axC = fig.add_axes([x_margin, y_margin, c_width, c_height], **kw)
axP = fig.add_axes([vert, y_margin, p_width, c_height],
sharey=axC, **kw)
axS = fig.add_axes([vert, top, p_width, s_height or .001],
sharex=axP, **kw)
axB = fig.add_axes([vert, top+ypad+s_height, p_width, bar_height],
sharex=axP, **kw)
axZ = fig.add_axes([vert+p_width, y_margin, link_width, c_height],
frameon=False)
axA = genemap.asAxes(
fig, [vert+p_width+link_width, y_margin, annot_width, c_height],
vertical=True, labeled=True)
axP.yaxis.set_visible(False)
#for ax in [axC, axP, axS]:
#ax.set_aspect(adjustable='box', aspect='equal')
fig.text(x_margin+c_width/2, .995, title, ha='center', va='top')
if not s_size:
axS.set_visible(False)
# No ticks for these non-float dimensions
for axes in [axB, axC, axS, axP]:
for axis in [axes.xaxis, axes.yaxis]:
for tick in axis.get_major_ticks():
tick.gridOn = False
tick.tick1On = False
tick.tick2On = False
tick.label1.set_size(8)
tick.label2.set_size(8)
if axis is axes.xaxis:
tick.label1.set_rotation('vertical')
# Partition dimension
for axis in [axS.xaxis, axP.xaxis, axB.xaxis, axB.yaxis]:
axis.set_major_formatter(matplotlib.ticker.NullFormatter())
axis.set_minor_formatter(matplotlib.ticker.NullFormatter())
# Site dimension
if c_size > max_site_labels:
for axis in [axC.yaxis, axC.xaxis]:
axis.set_visible(False)
else:
isl = integer_tick_label(sites)
for axis in [axC.yaxis, axC.xaxis]:
axis.set_minor_locator(matplotlib.ticker.IndexLocator(1,0))
axis.set_minor_formatter(matplotlib.ticker.NullFormatter())
axis.set_major_locator(matplotlib.ticker.IndexLocator(1,0.5))
axis.set_major_formatter(matplotlib.ticker.FuncFormatter(isl))
# Species dimension
if s_size:
seq_names = [name.split(' ')[0]
for name in alignment.getSeqNames()]
axS.yaxis.set_minor_locator(
matplotlib.ticker.IndexLocator(1,0.5))
axS.yaxis.set_minor_formatter(matplotlib.ticker.FixedFormatter(
seq_names))
axS.yaxis.set_major_locator(
matplotlib.ticker.IndexLocator(1,0.5))
axS.yaxis.set_major_formatter(matplotlib.ticker.NullFormatter())
axS.yaxis.grid(False) #, 'minor')
# Display the main matrices: compatibility and partimatrix
axC.pcolorfast(compatiblity, cmap=plt.cm.gray)
partishow = partimatrix <= 2
axP.pcolorfast(partishow, cmap=plt.cm.gray)
axP.set_autoscale_on(False)
axC.plot([0,c_size], [0, c_size], color='lightgreen')
(sx, sy) = numpy.nonzero(partimatrix.T==0)
axP.scatter(sx+0.5, sy+0.5, color='lightgreen', marker='^',
s=15)
# Make [partition, sequence] matrix
# Not a good idea with too many sequences
if s_size:
partseq1 = numpy.empty([len(partitions), num_seqs], bool)
partseq2 = numpy.empty([len(partitions), num_seqs], bool)
for (i, (x, xz)) in enumerate(partitions):
partseq1[i] = bit_decode(x, num_seqs)
partseq2[i] = bit_decode(xz^x, num_seqs)
# Order sequqnces so as to place similar sequences adjacent
O = boolean_similarity(partseq1)
order = order_to_cluster_similar(O)
partseq1 = partseq1[:,order]
partseq2 = partseq2[:,order]
seq_names = [seq_names[i] for i in order]
axS.set_ylim(0, len(seq_names))
axS.set_autoscale_on(False)
for (halfpart,color) in [(partseq1, 'red'),(partseq2, 'blue')]:
(sx, sy) = numpy.nonzero(halfpart)
axS.scatter(sx+0.5, sy+0.5, color=color, marker='o')
axS.grid(False)
#axS.yaxis.tick_right()
#axS.yaxis.set_label_position('right')
# Bar chart of partition support and conflict scores
#axB.set_autoscalex_on(False)
if conflict.sum():
axB.bar(numpy.arange(len(partitions)), -conflict/conflict.sum(),
1.0, color='black', align='edge')
if support.sum():
axB.bar(numpy.arange(len(partitions)), +support/support.sum(),
1.0, color='lightgreen', align='edge')
axB.set_xlim(0.0, len(partitions))
# Alignment features
axA.set_ylim(0, len(alignment))
axA.set_autoscale_on(False)
axA.yaxis.set_major_formatter(
matplotlib.ticker.FuncFormatter(lambda y,pos:str(int(y))))
axA.yaxis.tick_right()
axA.yaxis.set_label_position('right')
axA.xaxis.tick_top()
axA.xaxis.set_label_position('top')
#axA.xaxis.set_visible(False)
# "Zoom lines" linking informative-site coords to alignment coords
from matplotlib.patches import PathPatch
from matplotlib.path import Path
axZ.set_xlim(0.0,1.0)
axZ.set_xticks([])
axZ.set_ylim(0, len(alignment))
axZ.set_yticks([])
zoom = len(alignment) / len(sites)
vertices = []
for (i,p) in enumerate(sites):
vertices.extend([(.1, (i+0.5)*zoom), (.9,p+0.5)])
axA.axhspan(p, p+1, facecolor='green', edgecolor='green', alpha=0.3)
ops = [Path.MOVETO, Path.LINETO] * (len(vertices)//2)
path = Path(vertices, ops)
axZ.add_patch(PathPatch(path, fill=False, linewidth=0.25))
# interactive navigation messes up axZ. Could use callbacks but
# probably not worth the extra complexity.
for ax in [axC, axP, axS, axB, axZ, axA]:
ax.set_navigate(False)
return fig
if __name__ == '__main__':
from cogent import LoadSeqs, DNA
import sys, optparse, os.path
parser = optparse.OptionParser("usage: %prog [options] alignment")
parser.add_option("-p", "--print", action="store_true",
default=True, dest="print_stats",
help="print neighbour similarity score etc.")
parser.add_option("-d", "--display", action="store_true",
default=False, dest="display",
help="show matrices via matplotlib")
parser.add_option("-i", "--incomplete", action="store_true",
default=False, dest="include_incomplete",
help="include partitions containing ambiguities")
parser.add_option("-t", "--taxalimit",
dest="s_limit", default=20, type="int",
help="maximum number of species that can be displayed")
parser.add_option("-s", "--samples",
dest="samples", default=10000, type="int",
help="samples for significance test")
(options, args) = parser.parse_args()
if len(args) != 1:
parser.print_help()
sys.exit(1)
alignment = LoadSeqs(args[0], moltype=DNA)
kw = vars(options)
kw['title'] = os.path.splitext(os.path.basename(args[0]))[0]
fig = partimatrix(alignment, **kw)
if fig:
plt.show()
|