This file is indexed.

/usr/share/pyshared/cogent/draw/dendrogram.py is in python-cogent 1.5.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
#!/usr/bin/env python
"""Drawing trees.

Draws horizontal trees where the vertical spacing between taxa is
constant.  Since dy is fixed dendrograms can be either:
 - square:     dx = distance
 - not square: dx = max(0, sqrt(distance**2 - dy**2))

Also draws basic unrooted trees.

For drawing trees use either:
 - SquareDendrogram
 - StraightDendrogram
 - ContemporaneousDendrogram
 - ContemporaneousStraightDendrogram
 - ShelvedDendrogram
 - UnrootedDendrogram
"""

# Future:
#  - font styles
#  - orientation switch
# Layout gets more complicated for rooted tree styles if dy is allowed to vary,
# and constant-y is suitable for placing alongside a sequence alignment anyway.
from cogent.core.tree import TreeNode
import rlg2mpl
import matplotlib.colors
from matplotlib.patches import PathPatch, Polygon
from matplotlib.path import Path
from matplotlib.text import Text
import numpy

__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley", "Rob Knight",
                    "Zongzhi Liu", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Peter Maxwell"
__email__ = "pm67nz@gmail.com"
__status__ = "Production"

to_rgb = matplotlib.colors.colorConverter.to_rgb

def _sign(x):
    """Returns True if x is positive, False otherwise."""
    return x and x/abs(x)

def _first_non_none(values):
    for item in values:
        if item is not None:
            return item
            
def SimpleColormap(color0, color1, name=None):
    """Linear interpolation between any two colours"""
    c0 = to_rgb(color0)
    c1 = to_rgb(color1)
    cn = ['red', 'green', 'blue']
    d = dict((n,[(0,s,s),(1,e,e)]) for (n,s,e) in zip(cn, c0, c1))
    return matplotlib.colors.LinearSegmentedColormap(name, d)

class ScalarColormapShading(object):
    """Returns color interpolated between two colors based on scalar value.
    
    Parameters:
    shade_param: parameter to look at for shading purposes
    min_val: minimum value of the parameter over the whole tree
    max_val: maximum value of the parameter over the whole tree
    color0: color to use when the parameter is at its minimum
    color1: color to use when the parameter is at its maximum
    
    Note: this is just a convenience wrapper for coloring. You can color
    the tree using any arbitrary function of the individual nodes by passing
    edge_color_callback to makeColorCallback (or to other objects
    that delegate to it).
    """
    def __init__(self, shade_param, min_val, max_val, cmap):
        """Returns a new callback for SimpleScalarShading: f(obj) -> color"""
        assert max_val, 'Need to know the maximum before shading can be done'
        self.min_val = min_val
        self.max_val = max_val
        self.shade_param = shade_param
        self.cmap = cmap
    
    def __call__(self, edge):
        """Returns color given node."""
        value = edge.params.get(self.shade_param, None)
        if value is None:
            return "grey"
        else:
            value_to_show = max(min(value, self.max_val), self.min_val)
            normed = (value_to_show-self.min_val)/(self.max_val-self.min_val)
            color = self.cmap(normed)
            return color    

def makeColorCallback(shade_param=None, min_value=0.0, max_value=None,
        edge_color="black", highlight_color="red", edge_color_callback=None,
        callback_returns_name=None, cmap=None):
    """Makes a callback f(node)->color using several strategies.
    
    The possibilities are:
    
    1.  You want all the nodes to have the same color. Pass in edge_color as
        something other than "black".
    
    2.  You want to shade the nodes from one color to another based on the value
        of a parameter. Pass the name of the parameter as a string to shade_param
        (e.g. the parameter might be "GC" for GC content). Pass in the max and
        min values (e.g. calculated from the range actually on the tree), and
        the colors for the "normal" (low) and "special" (high) values. The
        renderer will automatically calculate what the colors are.

    3.  You want some nodes to be one color, and other nodes to be highlighted
        in a different color. Pass in these colors as edge_color (e.g. "blue")
        and highlight_color (e.g. "green"). Set a parameter to 0 (for normal) or
        1 (for highlight), and pass in the name of this parameter as
        shade_param (e.g. the parameter might be "is_mammal", which you would
        set to 0 (False) or 1 (True) to highlight the mammals.
    
    4.  You have f(node) -> color. Pass in f as edge_color_callback.
    
    Alternatively, set the Color attribute of the dendrogram edges.
    """
    if callback_returns_name is not None:
        pass # give deprecation warning?, no longer needed
    
    edge_color = to_rgb(edge_color)
    highlight_color = to_rgb(highlight_color)
    
    if edge_color_callback is not None:
        return lambda edge:edge_color_callback(edge)
    elif shade_param:
        if cmap is None:
            cmap = SimpleColormap(edge_color, highlight_color)
        return ScalarColormapShading(
                shade_param, min_value, max_value, cmap)
    else:
        return lambda edge:edge_color
        
    
class MatplotlibRenderer(object):
    """Returns a matplitlib render including font size, stroke width, etc.
    
    Note: see documentation for makeColorCallback above to figure
    out how to make it color things the way you want. Dynamically varying the
    stroke width is not yet implemented by should be.
    """
    def __init__(self, font_size=None, stroke_width=3, label_pad=None, **kw):
        self.calculated_edge_color = makeColorCallback(**kw)
        self.text_opts = {}
        if font_size is not None:
            self.text_opts['fontsize'] = font_size
        self.line_opts = {}
        if stroke_width is not None:
            self.line_opts['linewidth'] = stroke_width
        if label_pad is None:
            label_pad = 8
        self.labelPadDistance = label_pad
    
    def edge_color(self, edge):
        if edge.Color is None:
            return self.calculated_edge_color(edge.original)
        else:
            return edge.Color
        
    def line(self, x1, y1, x2, y2, edge=None):
        opts = self.line_opts.copy()
        if edge is not None:
            opts['edgecolor'] = self.edge_color(edge)
        path = Path([(x1, y1), (x2, y2)], [Path.MOVETO, Path.LINETO])
        return PathPatch(path,  **opts)
    
    def polygon(self, vertices, color):
        opts = self.line_opts.copy()
        opts['color'] = color
        return Polygon(vertices, **opts)
        
    def string(self, x, y, string, ha=None, va=None, rotation=None, color=None):
        opts = self.text_opts.copy()
        if ha is not None:
            opts['ha'] = ha
        if va is not None:
            opts['va'] = va
        if rotation is not None:
            opts['rotation'] = rotation
        if color is not None:
            opts['color'] = color
        return Text(x, y, string, **opts)
        
class DendrogramLabelStyle(object):
    """Label options"""
    
    def __init__(self, show_params=None, show_internal_labels=False,
            label_template=None, edge_label_callback=None):
        if edge_label_callback is None:
            if label_template is None:
                if hasattr(show_params, "__contains__"):
                    if len(show_params) == 1:
                        label_template = "%%(%s)s" % show_params[0]
                    else:
                        label_template = "\n".join(
                            ["%s: %%(%s)s" % (p,p) for p in show_params])
                elif show_params:
                    label_template = "%s"
                else:
                    label_template = ""
            
            def edge_label_callback(edge):
                try:
                    if hasattr(label_template, 'substitute'):
                        # A new style (as of Py 2.4?) string template
                        return label_template.substitute(edge.params)
                    else:
                        return label_template % edge.params
                except KeyError:
                    return ""  # param missing - probably just the root edge
                        
        self.edgeLabelCallback = edge_label_callback
        self.showInternalLabels = show_internal_labels
    
    def getEdgeLabel(self, edge):
        return self.edgeLabelCallback(edge)
    
    def getNodeLabel(self, edge):
        if edge.Name is not None:
            return edge.Name
        elif self.showInternalLabels or not edge.Children:
            return edge.original.Name
        else:
            return ""

def ValidColorProperty(real_name, doc='A color name or other spec'):
    """Can only be set to Null or a valid color"""
    def getter(obj):
        return getattr(obj, real_name, None)
    def setter(obj, value):
        if value is not None: to_rgb(value)
        setattr(obj, real_name, value)
    def deleter(obj):
        setattr(obj, real_name, None)
    return property(getter, setter, deleter, doc)

class _Dendrogram(rlg2mpl.Drawable, TreeNode):
    # One of these for each tree edge.  Extra attributes:
    #    depth - distance from root to bottom of edge
    #    height - max distance from a decendant leaf to top of edge
    #    width - number of decendant leaves
    # note these are named tree-wise, not geometricaly, so think
    # of a vertical tree (for this part anyway)
    #
    #   x1, y1, x2, y2 - coordinates
    # these are horizontal / vertical as you would expect
    #
    # The algorithm is split into 4 passes over the tree for easier
    # code reuse - vertical drawing, new tree styles, new graphics
    # libraries etc.
    
    aspect_distorts_lengths = True

    def __init__(self, edge, use_lengths=True):
        children = [type(self)(child) for child in edge.Children]
        TreeNode.__init__(self, Params=edge.params.copy(), Children=children, 
            Name=("" if children else edge.Name))
        self.Length = edge.Length
        self.original = edge  # for edge_color_callback
        self.Collapsed = False
        self.use_lengths_default = use_lengths
    
    # Colors are properties so that invalid color names are caught immediately
    Color = ValidColorProperty('_Color', 'Color of line segment')
    NameColor = ValidColorProperty('_NameColor', 'Color of node name')
    CladeColor = ValidColorProperty('_CladeColor', 'Color of collapsed descendants')
    
    def __repr__(self):
        return '%s %s %s %s' % (
                self.depth, self.length, self.height, self.Children)
    
    def updateGeometry(self, use_lengths, depth=None, track_coordinates=None):
        """Calculate tree node attributes such as height and depth.
        Despite the name this first pass is ignorant of issues like
        scale and orientation"""
        
        if self.Length is None or not use_lengths:
            if depth is None:
                self.length = 0
            else:
                self.length = 1
        else:
            self.length = self.Length
        
        self.depth = (depth or 0) + self.length
        
        children = self.Children
        if children:
            for c in children:
                c.updateGeometry(use_lengths, self.depth, track_coordinates)
            self.height = max([c.height for c in children]) + self.length
            self.leafcount  = sum([c.leafcount for c in children])
            self.edgecount  = sum([c.edgecount for c in children]) + 1
            self.longest_label = max([c.longest_label for c in children],
                    key=len)
        else:
            self.height = self.length
            self.leafcount = self.edgecount = 1
            self.longest_label = self.Name or ''
        
        if track_coordinates is not None and self.Name != "root":
            self.track_y = track_coordinates[self.Name]
        else:
            self.track_y = 0

    def coords(self, height, width):
        """Return list of [node_name, node_id, x, y, child_ids]"""
        self.asArtist(height, width)
        result = []
        for node in self.postorder(include_self=True):
            result.append([node.Name, id(node), node.x2, node.y2] + [map(id, node.Children)])
        return result
    
    def makeFigure(self, width=None, height=None, margin=.25, use_lengths=None, **kw):
        (width, height),posn,kw = rlg2mpl.figureLayout(width, height, margin=0,
            default_aspect=0.5, leftovers=True, **kw)
        fig = self._makeFigure(width, height)
        ax = fig.add_axes(posn, frameon=False)
        width = 72 * posn[2] * fig.get_figwidth()
        height = 72 * posn[3] * fig.get_figheight()
        ax.set_xlim(0, width)
        ax.set_ylim(0, height)
        ax.set_xticks([])
        ax.set_yticks([])
        if use_lengths is None:
            use_lengths = self.use_lengths_default
        else:
            pass # deprecate setting use_lengths here?
        if use_lengths and self.aspect_distorts_lengths:
            ax.set_aspect('equal')
        g = self.asArtist(width, height, use_lengths=use_lengths, 
            margin=margin*72, **kw)
        ax.add_artist(g)
        return fig
    
    def asArtist(self, width, height, margin=20, use_lengths=None,
            scale_bar="left", show_params=None, show_internal_labels=False,
            label_template=None, edge_label_callback=None, shade_param=None, 
            max_value=None, font_size=None, **kw):
        
        if use_lengths is None:
            use_lengths = self.use_lengths_default
        self.updateGeometry(use_lengths=use_lengths)
        
        if width <= 2 * margin:
            raise ValueError('%spt not wide enough for %spt margins' %
                    (width, margin))
        if height <= 2 * margin:
            raise ValueError('%spt not high enough for %spt margins' %
                    (height, margin))
        width -= 2 * margin
        height -= 2 * margin

        label_length = len(self.longest_label)
        label_width = label_length * 0.8 * (font_size or 10) # not very accurate
        (left_labels, right_labels) = self.labelMargins(label_width)
        total_label_width = left_labels + right_labels
        if width < total_label_width:
            raise ValueError('%spt not wide enough for ""%s"' %
                    (width, self.longest_label))
    
        scale = self.updateCoordinates(width-total_label_width, height)

        if shade_param is not None and max_value is None:
            for edge in self.postorder(include_self=True):
                sp = edge.params.get(shade_param, None)
                if max_value is None or sp > max_value:
                    max_value = sp
        renderer = MatplotlibRenderer(shade_param=shade_param, 
                max_value=max_value, font_size=font_size, **kw)

        labelopts = {}
        for labelopt in ['show_params', 'show_internal_labels', 
                'label_template', 'edge_label_callback']:
            labelopts[labelopt] = locals()[labelopt]
        label_style = DendrogramLabelStyle(**labelopts)

        ss = self._draw(renderer, label_style)
        if use_lengths:
            # Placing the scale properly might take some work,
            # for now just always put it in a bottom corner.
            unit = 10**min(0.0, numpy.floor(numpy.log10(width/scale/2.0)))
            if scale_bar == "right":
                x1, x2 = (width-scale*unit, width)
            elif scale_bar == "left":
                x1, x2 = (-left_labels, scale*unit-left_labels)
            else:
                assert not scale_bar, scale_bar
            if scale_bar:
                ss.append(renderer.line(x1, 0.0, x2, 0.0))
                ss.append(renderer.string((x1+x2)/2, 5, str(unit), va='bottom', ha='center'))
        
        g = rlg2mpl.Group(*ss)
        g.translate(margin+left_labels, margin)
        return g
    
    def _draw(self, renderer, label_style):
        g = []
        g += self._draw_edge(renderer, label_style)
        if self.Collapsed:
            g += self._draw_collapsed_clade(renderer, label_style)
        else:
            g += self._draw_node(renderer, label_style)
            for child in self.Children:
                g += child._draw(renderer, label_style)
            g += self._draw_node_label(renderer, label_style)
        return g
    
    def _draw_node(self, renderer, label_style):
        g = []
        # Joining line for square form
        if self.Children:
            cys = [c.y1 for c in self.Children] + [self.y2]
            if max(cys) > min(cys):
                g.append(renderer.line(self.x2, min(cys), self.x2, max(cys), self))
        return g
    
    def _draw_edge(self, renderer, label_style):
        g = []
        if ((self.x1, self.y1) == (self.x2, self.y2)):
            # avoid labeling zero length line, eg: root
            return g

        # Main line
        g.append(renderer.line(self.x1, self.y1, self.x2, self.y2, self))
        
        # Edge Label
        text = label_style.getEdgeLabel(self)
        if text:
            midx, midy = (self.x1+self.x2)/2, (self.y1+self.y2)/2
            if self.x1 == self.x2:
                rot = 0
            else:
                rot = numpy.arctan((self.y2-self.y1)/(self.x2-self.x1))
            midx += numpy.cos(rot+numpy.pi/2)*3
            midy += numpy.sin(rot+numpy.pi/2)*3
            g.append(renderer.string(midx, midy, text, ha='center', va='bottom', 
                    rotation=180/numpy.pi*rot))
        return g
    
    def _draw_node_label(self, renderer, label_style):
        text = label_style.getNodeLabel(self)
        color = self.NameColor
        (x, ha, y, va) = self.getLabelCoordinates(text, renderer)
        return [renderer.string(x, y, text, ha=ha, va=va, color=color)]
        
    def _draw_collapsed_clade(self, renderer, label_style):
        text = label_style.getNodeLabel(self)
        color = _first_non_none([self.CladeColor, self.Color, 'black'])
        icolor = 'white' if sum(to_rgb(color))/3 < 0.5 else 'black'
        g = []
        if not self.Children:
            return g
        (l,r,t,b), vertices = self.wedgeVertices()
        g.append(renderer.polygon(vertices, color))
        if not b <= self.y2 <= t:
            # ShelvedDendrogram needs this extra line segment
            g.append(renderer.line(self.x2, self.y2, self.x2, b, self))
        (x, ha, y, va) = self.getLabelCoordinates(text, renderer)
        g.append(renderer.string(
                (self.x2+r)/2, (t+b)/2, str(self.leafcount), ha=ha, va=va,
                color=icolor))
        g.append(renderer.string(
                x-self.x2+r, y, text, ha=ha, va=va, color=self.NameColor))
        return g
    
    def setCollapsed(self, collapsed=True, label=None, color=None):
        if color is not None:
            self.CladeColor = color
        if label is not None:
            self.Name = label
        self.Collapsed = collapsed


class Dimensions(object):
    def __init__(self, xscale, yscale, total_tree_height):
        self.x = xscale
        self.y = yscale
        self.height = total_tree_height
    

class _RootedDendrogram(_Dendrogram):
    """_RootedDendrogram subclasses provide yCoords and xCoords, which examine
    attributes of a node (its length, coodinates of its children) and return
    a tuple for start/end of the line representing the edge."""
    def labelMargins(self, label_width):
        return (0, label_width)
            
    def widthRequired(self):
        return self.leafcount
    
    def xCoords(self, scale, x1):
        raise NotImplementedError
    
    def yCoords(self, scale, y1):
        raise NotImplementedError
        
    def updateCoordinates(self, width, height):
        xscale = width / self.height
        yscale = height / self.widthRequired()
        scale = Dimensions(xscale, yscale, self.height)
        
        # y coords done postorder, x preorder, y first.
        # so it has to be done in 2 passes.
        self.update_y_coordinates(scale)
        self.update_x_coordinates(scale)
        return xscale
    
    def update_y_coordinates(self, scale, y1=None):
        """The second pass through the tree.  Y coordinates only
        depend on the shape of the tree and yscale"""
        if y1 is None:
            y1 = self.widthRequired() * scale.y
        child_y = y1
        for child in self.Children:
            child.update_y_coordinates(scale, child_y)
            child_y -= child.widthRequired() * scale.y
        (self.y1, self.y2) = self.yCoords(scale, y1)
    
    def update_x_coordinates(self, scale, x1=0):
        """For non 'square' styles the x coordinates will depend
        (a bit) on the y coodinates, so they should be done first"""
        (self.x1, self.x2) = self.xCoords(scale, x1)
        for child in self.Children:
            child.update_x_coordinates(scale, self.x2)
    
    def getLabelCoordinates(self, text, renderer):
        return (self.x2+renderer.labelPadDistance, 'left', self.y2, 'center')

class SquareDendrogram(_RootedDendrogram):
    aspect_distorts_lengths = False
    
    def yCoords(self, scale, y1):
        cys = [c.y1 for c in self.Children]
        if cys:
            y2 = (cys[0]+cys[-1]) / 2.0
        else:
            y2 = y1 - 0.5 * scale.y
        return (y2, y2)
    
    def xCoords(self, scale, x1):
        dx = scale.x * self.length
        x2 = x1 + dx
        return (x1, x2)

    def wedgeVertices(self):
        tip_ys = [(c.y2 + self.y2)/2 for c in self.iterTips()]
        t,b = max(tip_ys), min(tip_ys)
        cxs = [c.x2 for c in self.iterTips()]
        l,r = min(cxs), max(cxs)
        return (l,r,t,b), [(self.x2, b), (self.x2, t), (l, t), (r, b)]


class StraightDendrogram(_RootedDendrogram):
    def yCoords(self, scale, y1):
        # has a side effect of adjusting the child y1's to meet nodes' y2's
        cys = [c.y1 for c in self.Children]
        if cys:
            y2 = (cys[0]+cys[-1]) / 2.0
            distances = [child.length for child in self.Children]
            closest_child = self.Children[distances.index(min(distances))]
            dy = closest_child.y1 - y2
            max_dy = 0.8*max(5, closest_child.length*scale.x)
            if abs(dy) > max_dy:
                # 'moved', node.Name, y2, 'to within', max_dy,
                # 'of', closest_child.Name, closest_child.y1
                y2 = closest_child.y1 - _sign(dy) * max_dy
        else:
            y2 = y1 - scale.y / 2.0
        y1 = y2
        for child in self.Children:
            child.y1 = y2
        return (y1, y2)
    
    def xCoords(self, scale, x1):
        dx = self.length * scale.x
        dy = self.y2 - self.y1
        dx = numpy.sqrt(max(dx**2 - dy**2, 1))
        return (x1, x1 + dx)

    def wedgeVertices(self):
        tip_ys = [(c.y2 + self.y2)/2 for c in self.iterTips()]
        t,b = max(tip_ys), min(tip_ys)
        cxs = [c.x2 for c in self.iterTips()]
        l,r = min(cxs), max(cxs)
        vertices = [(self.x2, self.y2), (l, t), (r, b)]
        return (l,r,t,b), vertices

class _ContemporaneousMixin(object):
    """A dendrogram with all of the tips lined up.  
    Tidy but not suitable for displaying evolutionary distances accurately"""

    # Overrides init to change default for use_lengths
    def __init__(self, edge, use_lengths=False):
        super(_ContemporaneousMixin, self).__init__(edge, use_lengths)
        
    def xCoords(self, scale, x1):
        return (x1, (scale.height-(self.height-self.length))*scale.x)

class ContemporaneousDendrogram(_ContemporaneousMixin, SquareDendrogram):
    pass
    
class ContemporaneousStraightDendrogram(_ContemporaneousMixin, StraightDendrogram):
    pass


class ShelvedDendrogram(ContemporaneousDendrogram):
    """A dendrogram in which internal nodes also get a row to themselves"""
    def widthRequired(self):
        return self.edgecount  # as opposed to tipcount
    
    def yCoords(self, scale, y1):
        cys = [c.y1 for c in self.Children]
        if cys:
            y2 = cys[-1] - 1.0 * scale.y
        else:
            y2 = y1 - 0.5 * scale.y
        return (y2, y2)

class AlignedShelvedDendrogram(ShelvedDendrogram):
    
    def update_y_coordinates(self, scale, y1=None):
        """The second pass through the tree.  Y coordinates only
        depend on the shape of the tree and yscale"""
        for child in self.Children:
            child.update_y_coordinates(scale, None)
        (self.y1, self.y2) = self.yCoords(scale, None)
    
    def yCoords(self, scale, y1):
        if hasattr(self, 'track_y'):
            return (self.track_y, self.track_y)
        else:
            raise RuntimeError, self.Name
    

class UnrootedDendrogram(_Dendrogram):
    aspect_distorts_lengths = True

    def labelMargins(self, label_width):
        return (label_width, label_width)
    
    def wedgeVertices(self):
        tip_dists = [(c.depth-self.depth)*self.scale for c in self.iterTips()]
        (near, far) = (min(tip_dists), max(tip_dists))
        a = self.angle - 0.25 * self.wedge
        (x1, y1) = (self.x2+near*numpy.sin(a), self.y2+near*numpy.cos(a))
        a = self.angle + 0.25 * self.wedge
        (x2, y2) = (self.x2+far*numpy.sin(a), self.y2+far*numpy.cos(a))
        vertices = [(self.x2, self.y2), (x1, y1), (x2, y2)]
        return (self.x2, (x1+x2)/2, self.y2, (y1+y2)/2), vertices

    def updateCoordinates(self, width, height):
        angle = 2*numpy.pi / self.leafcount
        # this loop is a horrible brute force hack
        # there are better (but complex) ways to find
        # the best rotation of the tree to fit the display.
        best_scale = 0
        for i in range(60):
            direction = i/60.0*numpy.pi
            points = self._update_coordinates(1.0, 0, 0, direction, angle)
            xs = [x for (x,y) in points]
            ys = [y for (x,y) in points]
            scale = min(float(width)/(max(xs)-min(xs)), float(height)/(max(ys)-min(ys)))
            scale *= 0.95 # extra margin for labels
            if scale > best_scale:
                best_scale = scale
                mid_x = width/2-((max(xs)+min(xs))/2)*scale
                mid_y = height/2-((max(ys)+min(ys))/2)*scale
                best_args = (scale, mid_x, mid_y, direction, angle)
        self._update_coordinates(*best_args)
        return best_scale
    
    def _update_coordinates(self, s, x1, y1, a, da):
        # Constant angle algorithm.  Should add maximim daylight step.
        (x2, y2) = (x1+self.length*s*numpy.sin(a), y1+self.length*s*numpy.cos(a))
        (self.x1, self.y1, self.x2, self.y2, self.angle) = (x1, y1, x2, y2, a)
        if self.Collapsed:
            self.wedge = self.leafcount * da
            self.scale = s
            (l,r,t,b), vertices = self.wedgeVertices()
            return vertices
            
        a -= self.leafcount * da / 2
        if not self.Children:
            points = [(x2, y2)]
        else:
            points = []
            for (i,child) in enumerate(self.Children):
                ca = child.leafcount * da
                points += child._update_coordinates(s, x2, y2, a+ca/2, da)
                a += ca
        return points
    
    def getLabelCoordinates(self, text, renderer):
        (dx, dy) = (numpy.sin(self.angle), numpy.cos(self.angle))
        pad = renderer.labelPadDistance
        (x, y) = (self.x2+pad*dx, self.y2+pad*dy)
        if dx > abs(dy):
            return (x, 'left', y, 'center')
        elif -dx > abs(dy):
            return (x, 'right', y, 'center')
        elif dy > 0:
            return (x, 'center', y, 'bottom')
        else:
            return (x, 'center', y, 'top')