/usr/share/pyshared/cogent/draw/util.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 | #/usr/bin/env python
"""Provides different kinds of generally useful plots using matplotlib.
Some of these plots are enhancements of the matplotlib versions (e.g.
hist() or copies of plot types that have been withdrawn from matplotlib
(e.g. scatter_classic).
Notable capabilities include automated series coloring and drawing of
regression lines, the ability to plot scatterplots with correlated histograms,
etc.
See individual docstrings for more info.
"""
from __future__ import division
from matplotlib import use, rc, rcParams
__author__ = "Stephanie Wilson"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Rob Knight", "Stephanie Wilson"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
#use('Agg') #suppress graphical rendering
#rc('text', usetex=True)
rc('font', family='serif') #required to match latex text and equations
try:
import Image
import ImageFilter
except ImportError:
Image = ImageFilter = None #only used to smooth contours: skip if no PIL
from numpy import array, shape, fromstring, sqrt, zeros, pi
from cogent.core.usage import UnsafeCodonUsage as CodonUsage
from cogent.maths.stats.test import regress, correlation
from pylab import plot, cm, savefig, gca, gcf, arange, text, subplot, \
asarray, iterable, searchsorted, sort, diff, concatenate, silent_list, \
is_string_like, Circle, mean, std, normpdf, legend, contourf, \
colorbar, ravel, imshow, contour
from matplotlib.font_manager import FontProperties
from os.path import split
#module-level constants
standard_series_colors=['k','r','g','b', 'm','c']
def hist(x, bins=10, normed='height', bottom=0, \
align='edge', orientation='vertical', width=None, axes=None, **kwargs):
"""Just like the matplotlib hist, but normalizes bar heights to 1.
axes uses gca() by default (built-in hist is a method of Axes).
Original docs from matplotlib:
HIST(x, bins=10, normed=0, bottom=0, orientiation='vertical', **kwargs)
Compute the histogram of x. bins is either an integer number of
bins or a sequence giving the bins. x are the data to be binned.
The return values is (n, bins, patches)
If normed is true, the first element of the return tuple will
be the counts normalized to form a probability density, ie,
n/(len(x)*dbin)
orientation = 'horizontal' | 'vertical'. If horizontal, barh
will be used and the "bottom" kwarg will be the left.
width: the width of the bars. If None, automatically compute
the width.
kwargs are used to update the properties of the
hist bars
"""
if axes is None:
axes = gca()
if not axes._hold: axes.cla()
n, bins = norm_hist_bins(x, bins, normed)
if width is None: width = 0.9*(bins[1]-bins[0])
if orientation=='horizontal':
patches = axes.barh(bins, n, height=width, left=bottom, \
align=align)
else:
patches = axes.bar(bins, n, width=width, bottom=bottom, \
align=align)
for p in patches:
p.update(kwargs)
return n, bins, silent_list('Patch', patches)
def norm_hist_bins(y, bins=10, normed='height'):
"""Just like the matplotlib mlab.hist, but can normalize by height.
normed can be 'area' (produces matplotlib behavior, area is 1),
any False value (no normalization), or any True value (normalization).
Original docs from matplotlib:
Return the histogram of y with bins equally sized bins. If bins
is an array, use the bins. Return value is
(n,x) where n is the count for each bin in x
If normed is False, return the counts in the first element of the
return tuple. If normed is True, return the probability density
n/(len(y)*dbin)
If y has rank>1, it will be raveled
Credits: the Numeric 22 documentation
"""
y = asarray(y)
if len(y.shape)>1: y = ravel(y)
if not iterable(bins):
ymin, ymax = min(y), max(y)
if ymin==ymax:
ymin -= 0.5
ymax += 0.5
if bins==1: bins=ymax
dy = (ymax-ymin)/bins
bins = ymin + dy*arange(bins)
n = searchsorted(sort(y), bins)
n = diff(concatenate([n, [len(y)]]))
if normed:
if normed == 'area':
db = bins[1]-bins[0]
else:
db = 1.0
return 1/(len(y)*db)*n, bins
else:
return n, bins
def scatter_classic(x, y, s=None, c='b'):
"""
SCATTER_CLASSIC(x, y, s=None, c='b')
Make a scatter plot of x versus y. s is a size (in data coords) and
can be either a scalar or an array of the same length as x or y. c is
a color and can be a single color format string or an length(x) array
of intensities which will be mapped by the colormap jet.
If size is None a default size will be used
Copied from older version of matplotlib -- removed in version 0.9.1
for whatever reason.
"""
self = gca()
if not self._hold: self.cla()
if is_string_like(c):
c = [c]*len(x)
elif not iterable(c):
c = [c]*len(x)
else:
norm = normalize()
norm(c)
c = cm.jet(c)
if s is None:
s = [abs(0.015*(amax(y)-amin(y)))]*len(x)
elif not iterable(s):
s = [s]*len(x)
if len(c)!=len(x):
raise ValueError, 'c and x are not equal lengths'
if len(s)!=len(x):
raise ValueError, 's and x are not equal lengths'
patches = []
for thisX, thisY, thisS, thisC in zip(x,y,s,c):
circ = Circle( (thisX, thisY),
radius=thisS,
)
circ.set_facecolor(thisC)
self.add_patch(circ)
patches.append(circ)
self.autoscale_view()
return patches
def as_species(name, leave_path=False):
"""Cleans up a filename into a species name, italicizing it in latex."""
#trim extension if present
dot_location = name.rfind('.')
if dot_location > -1:
name = name[:dot_location]
#get rid of _small if present -- used for debugging
if name.endswith('_small'):
name = name[:-len('_small')]
if name.endswith('_codon_usage'):
name = name[:-len('_codon_usage')]
#get rid of path unless told to leave it
name = split(name)[-1]
#replace underscores with spaces
name = name.replace('_', ' ')
#make sure the first letter of the genus is caps, and not the first letter
#of the species
fields = name.split()
fields[0] = fields[0].title()
#assume second field is species name
if len(fields) > 1:
fields[1] = fields[1].lower()
binomial = ' '.join(fields)
if rcParams.get('text.usetex'):
binomial = r'\emph{' + binomial + '}'
return binomial
def frac_to_psq(frac, graph_size):
"""Converts diameter as fraction of graph to points squared for scatter.
frac: fraction of graph (e.g. .01 is 1% of graph size)
graph_size: graph size in inches
"""
points = frac * graph_size * 72
return pi * (points/2.0)**2
def init_graph_display(title=None, aux_title=None, size=4.0, \
graph_shape='sqr', graph_grid=None, x_label='', y_label='', \
dark=False, with_parens=True, prob_axes=True, axes=None, num_genes=None):
"""Initializes a range of graph settings for standard plots.
These settings include:
- font sizes based on the size of the graph
- graph shape
- grid, including lines for x=y or at x and y = 0.5
- title, auxillary title, and x and y axis labels
Parameters:
title: displayed on left of graph, at the top, latex-format string
aux_title: displayed on top right of graph, latex-format string.
typically used for number of genes.
size: size of graph, in inches
graph_shape: 'sqr' for square graphs, 'rect' for graphs that include
a colorbar, 3to1: width 3 to height 1.
graph_grid: background grid for the graph. Currently recognized grids
are '/' (line at x=y) and 't' (cross at x=.5 and y=.5).
x_label: label for x axis, latex-format string.
y_label: label for y axis, latex-format string.
dark: set to True if dark background, reverses text and tick colors.
with_parens: if True (default), puts parens around auxillary title
returns font, label_font_size (for use in producing additional labels in
calling function).
"""
if dark:
color='w'
else:
color='k'
rect_scale_factor = 1.28 #need to allow for legend while keeping graph
#square; empirically determined at 1.28
font_size = int(size*3-1) #want 11pt font w/ default graph size 4" sqr
label_scale_factor = 0.8
label_font_size = font_size * label_scale_factor
label_offset = label_font_size * 0.5
axis_label_font={'fontsize':font_size}
font={'fontsize':font_size, 'color':color}
if graph_shape == 'sqr':
gcf().set_size_inches(size,size)
elif graph_shape == 'rect':
#scaling for sqr graphs with colorbar
gcf().set_size_inches(size*rect_scale_factor,size)
elif graph_shape == '3to1':
gcf().set_size_inches(3*size, size)
elif graph_shape == '2to1':
gcf().set_size_inches(2*size, size)
else:
raise ValueError, "Got unknown graph shape %s" % graph_shape
#set or create axes
if axes is None:
axes = gca()
min_x, max_x =axes.get_xlim()
min_y, max_y = axes.get_ylim()
x_range = abs(max_x - min_x)
y_range = abs(max_y - min_y)
min_offset = (x_range * 0.05) + min_x #minimum offset, e.g. for text
max_offset = max_y - (y_range * 0.05)
#draw grid manually: these are in data coordinates.
if graph_grid == 't':
#grid lines at 0.5 on each axis, horiz & vertic
axes.axvline(x=.5, ymin=0, ymax=1, color=color, linestyle=':')
axes.axhline(y=.5, xmin=0, xmax=1, color=color, linestyle=':')
elif graph_grid == '/':
#diagonal gridlines from 0,0 to 1,1.
axes.plot([0,1], color=color, linestyle=':')
else:
pass #ignore other choices
#remove default grid
axes.grid(False)
#set x and y labels
axes.set_ylabel(y_label, axis_label_font)
axes.set_xlabel(x_label, axis_label_font)
#add title/aux_title to graph directly. Note that we want
#the tops of these to be fixed, and we want the label to be
#left-justified and the number of genes to be right justified,
#so that it still works when we resize the graph.
if title is not None:
axes.text(min_offset, max_offset, str(title), font, \
verticalalignment='top', horizontalalignment='left')
#use num_genes as aux_title by default
aux_title = num_genes or aux_title
if aux_title is not None:
if with_parens:
aux_title='('+str(aux_title)+')'
axes.text(max_offset, max_offset, str(aux_title), font,
verticalalignment='top', horizontalalignment='right')
if prob_axes:
init_ticks(axes, label_font_size, dark)
#set x and y label offsets -- currently though rcParams, but should be
#able to do at instance level?
#rc('xtick.major', pad=label_offset)
#rc('ytick.major', pad=label_offset)
return font, label_font_size
def init_ticks(axes=None, label_font_size=None, dark=False):
"""Initializes ticks for fingerprint plots or other plots ranging from 0-1.
takes axis argument a from a = gca(), or a specified axis
sets the ticks to span from 0 to 1 with .1 intervals
changes the size of the ticks and the corresponding number labels
"""
if axes is None:
axes = gca()
axes.set_xticks(arange(0,1.01,.1),)
axes.set_yticks(arange(0,1.01,.1))
#reset sizes for x and y labels
x = axes.get_xticklabels()
y = axes.get_yticklabels()
if label_font_size is not None:
for l in axes.get_xticklabels() + axes.get_yticklabels():
l.set_fontsize(label_font_size)
#if dark, need to reset color of internal ticks to white
if dark:
for l in axes.get_xticklines() + axes.get_yticklines():
l.set_markeredgecolor('white')
def set_axis_to_probs(axes=None):
"""sets the axes to span from 0 to 1.
Useful for forcing axes to range over probabilities. Axes are
sometimes reset by other calls.
"""
#set axis for probabilities (range 0 to 1)
if axes is None:
axes = gca()
axes.set_xlim([0,1])
axes.set_ylim([0,1])
def plot_regression_line(x,y,line_color='r', axes=None, prob_axes=False, \
axis_range=None):
"""Plots the regression line, and returns the equation.
x and y are the x and y data for a single series
line_color is a matplotlib color, will be used for the line
axes is the name of the axes the regression will be plotted against
prob_axes, if true, forces the axes to be between 0 and 1
range, if not None, forces the axes to be between (xmin, xmax, ymin, ymax).
"""
if axes is None:
axes = gca()
m, b = regress(x, y)
r, significance = correlation(x,y)
#set the a, b, and r values. a is the slope, b is the intercept.
r_str = '%0.3g'% (r**2)
m_str ='%0.3g' % m
b_str = '%0.3g' % b
#want to clip the line so it's contained entirely within the graph
#coordinates. Basically, we need to find the values of y where x
#is at x_min and x_max, and the values of x where y is at y_min and
#y_max.
#if we didn't set prob_axis or axis_range, just find empirical x and y
if (not prob_axes) and (axis_range is None):
x1, x2 = min(x), max(x)
y1, y2 = m*x1 + b, m*x2 + b
x_min, x_max = x1, x2
else:
if prob_axes:
x_min, x_max = 0, 1
y_min, y_max = 0, 1
else: #axis range must have been set
x_min, x_max, y_min, y_max = axis_range
#figure out bounds for x_min and y_min
y_at_x_min = m*x_min + b
if y_at_x_min < y_min: #too low: find x at y_min
y1 = y_min
x1 = (y_min-b)/m
elif y_at_x_min > y_max: #too high: find x at y_max
y1 = y_max
x1 = (y_max-b)/m
else: #just right
x1, y1 = x_min, y_at_x_min
y_at_x_max = m*x_max + b
if y_at_x_max < y_min: #too low: find x at y_min
y2 = y_min
x2 = (y_min-b)/m
elif y_at_x_max > y_max: #too high: find x at y_max
y2 = y_max
x2 = (y_max-b)/m
else: #just right
x2, y2 = x_max, y_at_x_max
#need to check that the series wasn't entirely in range
if (x_min <= x1 <= x_max) and (x_min <= x2 <= x_max):
axes.plot([x1,x2],[y1,y2], color=line_color, linewidth=0.5)
if b >= 0:
sign_str = ' + '
else:
sign_str = ' '
equation=''.join(['y= ',m_str,'x',sign_str,b_str,'\nr$^2$=',r_str])
return equation, line_color
def add_regression_equations(equations, axes=None, prob_axes=False, \
horizontalalignment='right', verticalalignment='bottom'):
"""Writes list of regression equations to graph.
equations: list of regression equations
size: size of the graph in inches
"""
if axes is None:
axes = gca()
if prob_axes:
min_x, max_x = 0, 1
min_y, max_y = 0, 1
else:
min_x, max_x = axes.get_xlim()
min_y, max_y = axes.get_ylim()
x_range = abs(max_x - min_x)
y_range = abs(max_y - min_y)
for i, (eq_text, eq_color) in enumerate(equations):
axes.text((x_range * 0.98) + min_x, \
(y_range * 0.02 + min_y +(y_range * .1 * i)), \
str(eq_text), \
horizontalalignment=horizontalalignment, \
verticalalignment=verticalalignment, \
color=eq_color)
def broadcast(i, n):
"""Broadcasts i to a vector of length n."""
try:
i = list(i)
except:
i = [i]
reps, leftovers = divmod(n, len(i))
return (i * reps) + i[:leftovers]
#scatterplot functions and helpers
def plot_scatter(data, series_names=None, \
series_color=standard_series_colors, line_color=standard_series_colors,\
alpha=0.25, marker_size=.015, scale_markers=True,
show_legend=True,legend_loc='center right',
show_regression=True, show_equation=True,
prob_axes=False, size=8.0, axes=None,
**kwargs):
"""helper plots one or more series of scatter data of specified color,
calls the initializing functions, doesn't print graph
takes: plotted_pairs, series_names, show_legend, legend_loc, and
**kwargs passed on to init_graph_display (these include title,
aux_title, size, graph_shape, graph_grid, x_label, y_label,
dark, with_parens).
plotted_pairs = (first_pos, second_pos, dot_color, line_color,
alpha, show_regression, show_equation)
returns the regression str equation (list) if regression is set true
suppresses legend if series not named, even if show_legend is True.
"""
if not axes:
axes = gca()
#initialize fonts, shape and labels
font,label_font_size=init_graph_display(prob_axes=prob_axes, \
size=size, axes=axes, **kwargs)
equations = []
#figure out how many series there are, and scale vals accordingly
num_series = int(len(data)/2)
series_color = broadcast(series_color, num_series)
line_color = broadcast(line_color, num_series)
alpha = broadcast(alpha, num_series)
marker_size = broadcast(marker_size, num_series)
if scale_markers:
marker_size = [frac_to_psq(m, size) for m in marker_size]
series = []
for i in range(num_series):
x, y = data[2*i], data[2*i+1]
series.append(axes.scatter(x,y,s=marker_size[i],c=series_color[i],\
alpha=alpha[i]))
#find the equation and plots the regression line if True
if show_regression:
equation = plot_regression_line(x,y,line_color[i], axes=axes, \
prob_axes=prob_axes)
if show_equation:
equations.append(equation) #will be (str, color) tuple
#update graph size for new data
axes.autoscale_view(tight=True)
#print all the regression equations at once -- need to know how many
if show_regression:
add_regression_equations(equations, axes=axes, prob_axes=prob_axes)
#clean up axes if necessary
if show_legend and series_names: #suppress legend if series not named
axes.legend(series, series_names, legend_loc)
if prob_axes:
set_axis_to_probs(axes)
return equations, font
#Contour plots and related functions
def plot_filled_contour(plot_data, xy_data=None, show_regression=False, \
show_equation=False, fill_cmap=cm.hot, graph_shape='rect', \
num_contour_lines=10, prob_axes=False, **kwargs):
"""helper plots one or more series of contour data
calls the initializing functions, doesn't output figure
takes: plot_data, xy_data, show_regression, show_equation, fill_cmap,
and **kwargs passed on to init_graph_display.
plot_data = (x_bin, y_bin, data_matrix dot_colors)
"""
if show_regression:
equation = plot_regression_line(xy_data[:,0],xy_data[:,1], \
prob_axes=prob_axes)
if show_equation:
add_regression_equations([equation])
#init graph display, rectangular due to needed colorbar space
init_graph_display(graph_shape=graph_shape, **kwargs)
#plots the contour data
for x_bin,y_bin,data_matrix in plot_data:
contourf(x_bin,y_bin,data_matrix, num_contour_lines, cmap=fill_cmap)
#add the colorbar legend to the side
colorbar()
def plot_contour_lines(plot_data, xy_data=None, show_regression=False, \
show_equation=False, smooth_steps=0, num_contour_lines=10, \
label_contours=False, line_cmap=cm.hot, fill_cmap=cm.gray,dark=True,
graph_shape='rect', prob_axes=False, **kwargs):
"""helper plots one or more series of contour line data
calls the initializing functions, doesn't output figure
takes: plot_data, xy_data, show_regression, show_equation, smooth,
num_contour_lines, label_contours, line_cmap, fill_cmap, graph_shape,
and **kwargs passed on to init_graph_display.
plot_data = (x_bin, y_bin, data_matrix dot_colors)
"""
if prob_axes:
extent = (0,1,0,1)
else:
a = gca()
extent = a.get_xlim()+a.get_ylim()
#init graph display, rectangular due to needed colorbar space
init_graph_display(graph_shape=graph_shape,
dark=dark, **kwargs)
#plots the contour data
for x_bin,y_bin,data in plot_data:
orig_max = max(ravel(data))
scaled_data = (data/orig_max*255).astype('b')
if smooth_steps and (Image is not None):
orig_shape = data.shape
im = Image.fromstring('L', data.shape, scaled_data)
for i in range(smooth_steps):
im = im.filter(ImageFilter.BLUR)
new_data = fromstring(im.tostring(), 'b')
data = reshape(new_data.astype('i')/255.0 * orig_max, orig_shape)
if fill_cmap is not None:
im = imshow(data, interpolation='bicubic', extent=extent, \
origin='lower', cmap=fill_cmap)
result=contour(x_bin,y_bin,data, num_contour_lines,
origin='lower',linewidth=2,
extent=extent, cmap=line_cmap)
if label_contours:
clabel(result, fmt='%1.1g')
#add the colorbar legend to the side
cb = colorbar()
cb.ax.axisbg = 'black'
if show_regression:
equation=plot_regression_line(xy_data[0],xy_data[1],prob_axes=prob_axes)
if show_equation:
add_regression_equations([equation])
def plot_histograms(data, graph_name='histogram.png', bins=20,\
normal_fit=True, normed=True, colors=None, linecolors=None, \
alpha=0.75, prob_axes=True, series_names=None, show_legend=False,\
y_label=None, **kwargs):
"""Outputs a histogram with multiple series (must provide a list of series).
takes: data: list of arrays of values to plot (needs to be list of arrays
so you can pass in arrays with different numbers of elements)
graph_name: filename to write graph to
bins: number of bins to use
normal_fit: whether to show the normal curve best fitting the data
normed: whether to normalize the histogram (e.g. so bars sum to 1)
colors: list of colors to use for bars
linecolors: list of colors to use for fit lines
**kwargs are pssed on to init_graph_display.
"""
rc('patch', linewidth=.2)
if y_label is None:
if normed:
y_label='Frequency'
else:
y_label='Count'
num_series = len(data)
if colors is None:
if num_series == 1:
colors = ['white']
else:
colors = standard_series_colors
if linecolors is None:
if num_series == 1:
linecolors = ['red']
else:
linecolors = standard_series_colors
init_graph_display(prob_axes=prob_axes, y_label=y_label, **kwargs)
all_patches = []
for i, d in enumerate(data):
fc = colors[i % len(colors)]
lc = linecolors[i % len(linecolors)]
counts, x_bins, patches = hist(d, bins=bins, normed=normed, \
alpha=alpha, facecolor=fc)
all_patches.append(patches[0])
if normal_fit and len(d) > 1:
maxv, minv = max(d), min(d)
mu = mean(d)
sigma = std(d)
bin_width = x_bins[-1] - x_bins[-2]
#want normpdf to extend over the range
normpdf_bins = arange(minv,maxv,(maxv - minv)*.01)
y = normpdf(normpdf_bins, mu, sigma)
orig_area = sum(counts) * bin_width
y = y * orig_area #normpdf area is 1 by default
plot(normpdf_bins, y, linestyle='--', color=lc, linewidth=1)
if show_legend and series_names:
fp = FontProperties()
fp.set_size('x-small')
legend(all_patches, series_names, prop = fp)
#output figure if graph name set -- otherwise, leave for further changes
if graph_name is not None:
savefig(graph_name)
def plot_monte_histograms(data, graph_name='gene_histogram.png', bins=20,\
normal_fit=True, normed=True, colors=None, linecolors=None, \
alpha=0.75, prob_axes=True, series_names=None, show_legend=False,\
y_label=None, x_label=None, **kwargs):
"""Outputs a histogram with multiple series (must provide a list of series).
Differs from regular histogram in that p-value works w/exactly two
datasets, where the first dataset is the reference set. Calculates the
mean of the reference set, and compares this to the second set (which is
assumed to contain the means of many runs producing data comparable to the
data in the reference set).
takes: data: list of arrays of values to plot (needs to be list of arrays
so you can pass in arrays with different numbers of elements)
graph_name: filename to write graph to
bins: number of bins to use
normal_fit: whether to show the normal curve best fitting the data
normed: whether to normalize the histogram (e.g. so bars sum to 1)
colors: list of colors to use for bars
linecolors: list of colors to use for fit lines
**kwargs are passed on to init_graph_display.
"""
rc('patch', linewidth=.2)
rc('font', size='x-small')
rc('axes', linewidth=.2)
rc('axes', labelsize=7)
rc('xtick', labelsize=7)
rc('ytick', labelsize=7)
if y_label is None:
if normed:
y_label='Frequency'
else:
y_label='Count'
num_series = len(data)
if colors is None:
if num_series == 1:
colors = ['white']
else:
colors = standard_series_colors
if linecolors is None:
if num_series == 1:
linecolors = ['red']
else:
linecolors = standard_series_colors
init_graph_display(prob_axes=prob_axes, y_label=y_label, **kwargs)
all_patches = []
for i, d in enumerate(data):
fc = colors[i % len(colors)]
lc = linecolors[i % len(linecolors)]
counts, x_bins, patches = hist(d, bins=bins, normed=normed, \
alpha=alpha, facecolor=fc)
all_patches.append(patches[0])
if normal_fit and len(d) > 1:
mu = mean(d)
sigma = std(d)
minv = min(d)
maxv = max(d)
bin_width = x_bins[-1] - x_bins[-2]
#set range for normpdf
normpdf_bins = arange(minv,maxv,0.01*(maxv-minv))
y = normpdf(normpdf_bins, mu, sigma)
orig_area = sum(counts) * bin_width
y = y * orig_area #normpdf area is 1 by default
plot(normpdf_bins, y, linestyle='--', color=lc, linewidth=1)
font = { 'color': lc,
'fontsize': 11}
text(mu, 0.0 , "*", font, verticalalignment='center',
horizontalalignment='center')
xlabel(x_label)
if show_legend and series_names:
fp = FontProperties()
fp.set_size('x-small')
legend(all_patches, series_names, prop = fp)
#output figure if graph name set -- otherwise, leave for further changes
if graph_name is not None:
savefig(graph_name)
def plot_scatter_with_histograms(data, graph_name='histo_scatter.png', \
graph_grid='/', prob_axes=False, bins=20, frac=0.9, scatter_alpha=0.5, \
hist_alpha=0.8, colors=standard_series_colors, normed='height', **kwargs):
"""Plots a scatter plot with histograms showing distribution of x and y.
Data should be list of [x1, y1, x2, y2, ...].
"""
#set up subplot coords
tl=subplot(2,2,1)
br=subplot(2,2,4)
bl=subplot(2,2,3, sharex=tl, sharey=br)
#get_position returns a Bbox relative to figure
tl_coords = tl.get_position()
bl_coords = bl.get_position()
br_coords = br.get_position()
left = tl_coords.xmin
bottom = bl_coords.ymin
width = br_coords.xmax - left
height = tl_coords.ymax - bottom
bl.set_position([left, bottom, frac*width, frac*height])
tl.set_position([left, bottom+(frac*height), frac*width, (1-frac)*height])
br.set_position([left+(frac*width), bottom, (1-frac)*width, frac*height])
#suppress frame and axis for histograms
for i in [tl,br]:
i.set_frame_on(False)
i.xaxis.set_visible(False)
i.yaxis.set_visible(False)
plot_scatter(data=data, alpha=scatter_alpha, axes=bl, **kwargs)
for i in range(0, len(data), 2):
x, y = data[i], data[i+1]
color = colors[int((i/2))%len(colors)]
hist(x, facecolor=color, bins=bins, alpha=hist_alpha, normed=normed, axes=tl)
hist(y, facecolor=color, bins=bins, alpha=hist_alpha, normed=normed, \
axes=br, orientation='horizontal')
if prob_axes:
bl.set_xlim(0,1)
bl.set_ylim(0,1)
br.set_ylim(0,1)
tl.set_xlim(0,1)
#output figure if graph name set -- otherwise, leave for further changes
if graph_name is not None:
savefig(graph_name)
def format_contour_array(data, points_per_cell=20, bulk=0.8):
"""Formats [x,y] series of data into x_bins, y_bins and data for contour().
data: 2 x n array of float representing x,y coordinates
points_per_cell: average points per unit cell in the bulk of the data,
default 3
bulk: fraction containing the 'bulk' of the data in x and y, default
0.8 (i.e. 80% of the data will be used in the calculation).
returns: x-bin, y-bin, and a square matrix of frequencies to be plotted
WARNING: Assumes x and y are in the range 0-1.
"""
#bind x and y data
data_x = sort(data[0]) #note: numpy sort returns a sorted copy
data_y = sort(data[1])
num_points = len(data_x)
#calculate the x and y bounds holding the bulk of the data
low_prob = (1-bulk)/2.0
low_tail = int(num_points*low_prob)
high_tail = int(num_points*(1-low_prob))
x_low = data_x[low_tail]
x_high = data_x[high_tail]
y_low = data_y[low_tail]
y_high = data_y[high_tail]
#calculate the side length in the bulk that holds the right number of
#points
delta_x = x_high - x_low
delta_y = y_high - y_low
points_in_bulk = num_points * bulk #approximate: assumes no correlation
area_of_bulk = delta_x * delta_y
points_per_area = points_in_bulk/area_of_bulk
side_length = sqrt(points_per_cell / points_per_area)
#correct the side length so we get an integer number of bins.
num_bins = int(1/side_length)
corrected_side_length = 1.0/num_bins
#figure out how many items are in each grid square in x and y
#
#this is the tricky part, because contour() takes as its data matrix
#the points at the vertices of each cell, rather than the points at
#the centers of each cell. this means that if we were going to make
#a 3 x 3 grid, we actually have to estimate a 4 x 4 matrix that's offset
#by half a unit cell in both x and y.
#
#if the data are between 0 and 1, the first and last bin in our range are
#superfluous because searchsorted will put items before the first
#bin into bin 0, and items after the last bin into bin n+1, where
#n is the maximum index in the original array. for example, if we
#have 3 bins, the values .33 and .66 would suffice to find the centers,
#because anything below .33 gets index 0 and anything above .66 gets index
#2 (anything between them gets index 1). incidentally, this prevents
#issues with floating-point error and values slightly below 0 or above 1
#that might otherwise arise.
#
#however, for our 3 x 3 case, we actually want to start estimating at the
#cell centered at 0, i.e. starting at -.33/2, so that we get the four
#estimates centered at (rather than starting at) 0, .33, .66, and 1.
#because the data are constrained to be between 0 and 1, we will need to
#double the counts at the edges (and quadruple them at the corners) to get
#a fair estimate of the density.
csl = corrected_side_length #save typing below
eps = csl/10 #don't ever want max value to be in the list precisely
half_csl = .5*csl
bins = arange(half_csl, 1+half_csl-eps, csl)
x_coords = searchsorted(bins, data[0])
y_coords = searchsorted(bins, data[1])
#matrix has dimension 1 more than num bins, b/c can be above largest
matrix = zeros((num_bins+1, num_bins+1))
#for some reason, need to swap x and y to match up with normal
#scatter plots
for coord in zip(y_coords, x_coords):
matrix[coord] += 1
#we now have estimates of the densities at the edge of each of the
#n x n cells in the grid. for example, if we have a 3 x 3 grid, we have
#16 densities, one at the center of each grid cell (0, .33, .66, 1 in each
#dimension). need to double the counts at edges to reflect places where
#we can't observe data because of range restrictions.
matrix[0]*=2
matrix[:,0]*=2
matrix[-1]*=2
matrix[:,-1]*=2
#return adjusted_bins as centers, rather than boundaries, of the range
x_bins = csl*arange(num_bins+1)
return x_bins, x_bins, matrix
if __name__ == '__main__':
from numpy.random import normal
x = normal(0.3, 0.05, 1000)
y = normal(0.5, 0.1, 1000)
plot_scatter_with_histograms([x,x+y, y, (x+y)/2], prob_axes=True)
|