This file is indexed.

/usr/share/pyshared/cogent/evolve/coevolution.py is in python-cogent 1.5.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
#!/usr/bin/env python
# Authors: Greg Caporaso (gregcaporaso@gmail.com), Brett Easton, Gavin Huttley
# coevolution.py

""" Description
File created on 03 May 2007.

Functions to perform coevolutionary analyses on 
pre-aligned biological sequences. Coevolutionary analyses detect 
correlated substitutions between alignment positions. Analyses 
can be performed to look for covariation between a pair of 
alignment positions, in which case a single 'coevolve score' is
returned. (The nature of this coevolve score is determined by the 
method used to detect coevolution.) Alternatively, coevolution can
be calculated between one position and all other positions in an
alignment, in which case a vector of coevolve scores is returned.
Finally, coevolution can be calculated over all pairs of positions
in an alignment, in which case a matrix (usually, but not necessarily,
symmetric) is returned.   

The functions providing the core functionality here are:

coevolve_pair: coevolution between a pair of positions (float returned)
coevolve_position: coevolution between a position and all other 
    positions in the alignment (vector returned)
coevolve_alignment: coevolution between all pairs of positions in an
    alignment (matrix returned)

Each of these functions takes a coevolution calculator, an alignment, and 
 any additional keyword arguments that should be passed to the coevolution
 calculator. More information on these functions and how they should be used
 is available as executable documentation in coevolution.rst.

The methods provided for calculating coevolution are: 
Mutual Information (Shannon 19xx) 
Normalized Mutual Information (Martin 2005) 
Statistical Coupling Analysis (Suel 2003)
*Ancestral states (Tuffery 2000 -- might not be the best ref,
 a better might be Shindyalov, Kolchannow, and Sander 1994, but so far I 
 haven't been able to get my hands on that one).
*Gctmpca (Yeang 2007) 
    (Yeang CH, Haussler D.  Detecting the coevolution in and 
     among protein domains.  PLoS Computational Biology 2007.)

* These methods require a phylogenetic tree, in addition to an alignment.
 Trees are calculated on-the-fly, by neighbor-joining, if not provided.

This file can be applied as a script to calculate a coevolution matrix given
an alignment. For information, run python coevolution.py -h from the command
line.

"""
from __future__ import division
from optparse import make_option
from cPickle import Pickler, Unpickler
from os.path import splitext, basename, exists
from sys import exit
from numpy import zeros, ones, float, put, transpose, array, float64, nonzero,\
    abs, sqrt, exp, ravel, take, reshape, mean, tril, nan, isnan, log, e,\
    greater_equal, less_equal
from random import shuffle
from cogent.util.misc import parse_command_line_parameters
from cogent.maths.stats.util import Freqs
from cogent.util.array import norm
from cogent.core.sequence import Sequence
from cogent.core.moltype import IUPAC_gap, IUPAC_missing
from cogent.core.profile import Profile
from cogent.core.alphabet import CharAlphabet, Alphabet
from cogent.maths.stats.distribution import binomial_exact
from cogent.maths.stats.special import ROUND_ERROR
from cogent.parse.record import FileFormatError
from cogent.evolve.substitution_model import SubstitutionModel
from cogent import LoadSeqs, LoadTree, PROTEIN, RNA
from cogent.core.tree import TreeError
from cogent.core.alignment import seqs_from_fasta, DenseAlignment
from cogent.parse.newick import TreeParseError
from cogent.parse.record import RecordError
from cogent.app.gctmpca import Gctmpca
from cogent.util.recode_alignment import recode_dense_alignment, \
    alphabets, recode_freq_vector, recode_counts_and_freqs, \
    square_matrix_to_dict
from cogent.evolve.substitution_model import EmpiricalProteinMatrix

__author__ = "Greg Caporaso"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Greg Caporaso", "Gavin Huttley", "Brett Easton",\
  "Sandra Smit", "Rob Knight"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Greg Caporaso"
__email__ = "gregcaporaso@gmail.com"
__status__ = "Beta"    

gDefaultExcludes = ''.join([IUPAC_gap,IUPAC_missing])
gDefaultNullValue = nan

## Mutual Information Analysis
# Mutual Information Calculators
def mi(h1,h2,joint_h):
    """ Calc Mutual Information given two entropies and their joint entropy
    """
    return h1 + h2 - joint_h

def normalized_mi(h1,h2,joint_h):
    """ MI normalized by joint entropy, as described in Martin 2005 """
    return mi(h1,h2,joint_h) / joint_h
nmi = normalized_mi

# Other functions used in MI calculations
def join_positions(pos1,pos2):
    """ Merge two positions and return as a list of strings

        pos1: iterable object containing the first positions data
        pos2: iterable object containing the second positions data

        Example:
            >>> join_positions('ABCD','1234')
                ['A1', 'B2', 'C3', 'D4']
    """
    return [''.join([r1,r2]) for r1,r2 in zip(pos1,pos2)]

def joint_entropy(pos1,pos2):
    """ Calculate the joint entroy of a pair of positions """
    return Freqs(join_positions(pos1,pos2)).Uncertainty

# Exclude handlers (functions for processing position strings with exclude
# characters)
def ignore_excludes(pos,excludes=gDefaultExcludes):
    """ Return position data as-is (results in excludes treated as other chars)
    """
    return pos

# Functions for scoring coevolution on the basis of Mutual Information
def mi_pair(alignment,pos1,pos2,h1=None,h2=None,mi_calculator=mi,\
    null_value=gDefaultNullValue,excludes=gDefaultExcludes,exclude_handler=None):
    """ Calculate mutual information of a pair of alignment positions

        alignment: the full alignment object
        pos1: index of 1st position in alignment to be compared 
         (zero-based, not one-based)
        pos2: index of 2nd position in alignment to be compared 
         (zero-based, not one-based)
        h1: entropy of pos1, if already calculated (to avoid time to recalc)
        h2: entropy of pos2, if already calculated (to avoid time to recalc)
        mi_calculator: a function which calculated MI from two entropies and 
         their joint entropy -- see mi and normalized_mi for examples
        null_value: the value to be returned if mi cannot be calculated (e.g.,
         if mi_calculator == normalized_mi and joint_h = 0.0)
        excludes: iterable objects containing characters that require special
         handling -- by default, if a position contains an exclude, null_value
         will be returned. For non-default handling, pass an exclude_handler
        exclude_handler: a function which takes position data and returns it 
         with exclude characters processed in someway. Position data should be
         an iterable object containing the characters present at each position.
         f(position_data,excludes=gDefaultExcludes) -> position_data

    """
    positions = alignment.Positions
    col1 = positions[pos1]
    col2 = positions[pos2]
    # Detect and process exclude characters.
    # This bit of code is slow, and not necessary if
    # exclude_hanlder == ignore_excludes, so I explicitly
    # check, and bypass this block if possible.
    if exclude_handler != ignore_excludes:
        for col in (col1,col2):
            states = set(col)
            for exclude in excludes:
                if exclude in states:
                    try:
                        col = exclude_handler(col,excludes)
                        break
                    except TypeError:
                        return null_value

    # Calculate entropy of pos1 & pos2, if they weren't passed in.
    if not h1:
        h1 = Freqs(col1).Uncertainty
    if not h2:
        h2 = Freqs(col2).Uncertainty
    # Calculate the joint entropy of pos1 & pos2
    joint_h = joint_entropy(col1,col2)
    # Calculate MI using the specified method -- return null_value when
    # the specified MI cannot be calculated 
    # (e.g., mi_calculator=nmi and joint_h=0.0)
    try:
        result = mi_calculator(h1,h2,joint_h)
        if result <= ROUND_ERROR: result = 0.0
    except ZeroDivisionError:
        result = null_value
    return result
    
def mi_position(alignment,position,\
    positional_entropies=None,mi_calculator=mi,null_value=gDefaultNullValue,\
    excludes=gDefaultExcludes,exclude_handler=None):
    """ Calc mi b/w position and all other positions in an alignment
        
        alignment: the full alignment object
        position: the position number of interest -- NOTE: this is the 
         position index, not the sequenece position (so zero-indexed, not
        one-indexed)
        positional_entropies: a list containing the entropy of each position in
         the alignment -- these can be passed in to avoid recalculating if
         calling this function over more than one position (e.g., in 
         mi_alignment)
        mi_calculator: a function which calculated MI from two entropies and 
         their joint entropy -- see mi and normalized_mi for examples
        null_value: the value to be returned if mi cannot be calculated (e.g.,
         if mi_calculator == normalized_mi and joint_h = 0.0)
        excludes: iterable objects containing characters that require special
         handling -- by default, if a position contains an exclude, null_value
         will be returned. For non-default handling, pass an exclude_handler
        exclude_handler: a function which takes a position and returns it 
         with exclude characters processed in someway. 

    """
    aln_length = len(alignment)
    # Create result vector    
    result = zeros(aln_length,float) 
    
    # compile positional entropies if not passed in
    if positional_entropies == None:
        positional_entropies = \
         [Freqs(p).Uncertainty for p in alignment.Positions]
    
    # Will want to make a change here so that we don't need to recalculate
    # all values when calling from mi_alignment
    for i in range(aln_length):
        result[i] = mi_pair(alignment,pos1=position,pos2=i,\
         h1=positional_entropies[position],h2=positional_entropies[i],\
         mi_calculator=mi_calculator,null_value=null_value,excludes=excludes,\
         exclude_handler=exclude_handler)
    return result

def mi_alignment(alignment,mi_calculator=mi,null_value=gDefaultNullValue,\
    excludes=gDefaultExcludes,exclude_handler=None):
    """ Calc mi over all position pairs in an alignment

        alignment: the full alignment object
        mi_calculator: a function which calculated MI from two entropies and 
         their joint entropy -- see mi and normalized_mi for examples
        null_value: the value to be returned if mi cannot be calculated (e.g.,
         if mi_calculator == normalized_mi and joint_h = 0.0)
        excludes: iterable objects containing characters that require special
         handling -- by default, if a position contains an exclude, null_value
         will be returned. For non-default handling, pass an exclude_handler
        exclude_handler: a function which takes a position and returns it 
         with exclude characters processed in someway. 

    """
    aln_length = len(alignment)
    # Create result matrix 
    result = zeros((aln_length,aln_length),float) 
    
    # Compile postional entropies for each position in the alignment
    # I believe I started using this rather than alignment.uncertainties 
    # b/c the latter relies on converting a DenseAlignment to an Alignment -- 
    # need to check into this.
    positional_entropies = [Freqs(p).Uncertainty for p in alignment.Positions]

    # Calculate pairwise MI between position_number and all alignment
    # positions, and return the results in a vector.
    for i in range(aln_length):
        for j in range(i+1):
            result[i,j] = mi_pair(alignment,pos1=i,pos2=j,\
             h1=positional_entropies[i],h2=positional_entropies[j],\
             mi_calculator=mi_calculator,null_value=null_value,\
             excludes=excludes,exclude_handler=exclude_handler)
    # copy the lower triangle to the upper triangle to make 
    # the matrix symmetric
    ltm_to_symmetric(result)
    return result
## End Mutual Information Analysis

## Start Normalized Mutual Information Analysis (Martin 2005)
def normalized_mi_pair(alignment,pos1,pos2,h1=None,h2=None,\
     null_value=gDefaultNullValue,excludes=gDefaultExcludes,\
     exclude_handler=None):
    """Calc normalized mutual information of a pair of alignment positions

        alignment: the full alignment object
        pos1: index of 1st position in alignment to be compared 
         (zero-based, not one-based)
        pos2: index of 2nd position in alignment to be compared 
         (zero-based, not one-based)
        h1: entropy of pos1, if already calculated (to avoid time to recalc)
        h2: entropy of pos2, if already calculated (to avoid time to recalc)
        null_value: the value to be returned if mi cannot be calculated (e.g.,
         if mi_calculator == normalized_mi and joint_h = 0.0)
        excludes: iterable objects containing characters that require special
         handling -- by default, if a position contains an exclude, null_value
         will be returned. For non-default handling, pass an exclude_handler
        exclude_handler: a function which takes a position and returns it 
         with exclude characters processed in someway. 

    """
    return mi_pair(alignment,pos1,pos2,h1=h1,h2=h2,mi_calculator=nmi,\
        null_value=null_value,excludes=excludes,\
        exclude_handler=exclude_handler)
nmi_pair = normalized_mi_pair

def normalized_mi_position(alignment,position,positional_entropies=None,\
    null_value=gDefaultNullValue,excludes=gDefaultExcludes,\
    exclude_handler=None):
    """ Calc normalized mi b/w position and all other positions in an alignment

        alignment: the full alignment object
        position: the position number of interest -- NOTE: this is the 
         position index, not the sequenece position (so zero-indexed, not
        one-indexed)
        positional_entropies: a list containing the entropy of each position in
         the alignment -- these can be passed in to avoid recalculating if
         calling this function over more than one position (e.g., in 
         mi_alignment)
        null_value: the value to be returned if mi cannot be calculated (e.g.,
         if mi_calculator == normalized_mi and joint_h = 0.0)
        excludes: iterable objects containing characters that require special
         handling -- by default, if a position contains an exclude, null_value
         will be returned. For non-default handling, pass an exclude_handler
        exclude_handler: a function which takes a position and returns it 
         with exclude characters processed in someway. 

    """
    return mi_position(alignment,position,\
        positional_entropies=positional_entropies,\
        mi_calculator=nmi,null_value=null_value,excludes=excludes,\
        exclude_handler=exclude_handler)
nmi_position = normalized_mi_position

def normalized_mi_alignment(alignment,null_value=gDefaultNullValue,\
    excludes=gDefaultExcludes,exclude_handler=None):
    """ Calc normalized mi over all position pairs in an alignment

        alignment: the full alignment object
        null_value: the value to be returned if mi cannot be calculated (e.g.,
         if mi_calculator == normalized_mi and joint_h = 0.0)
        excludes: iterable objects containing characters that require special
         handling -- by default, if a position contains an exclude, null_value
         will be returned. For non-default handling, pass an exclude_handler
        exclude_handler: a function which takes a position and returns it 
         with exclude characters processed in someway. 
    """
    return mi_alignment(alignment=alignment,mi_calculator=normalized_mi,\
        null_value=null_value,excludes=excludes,\
        exclude_handler=exclude_handler)
nmi_alignment = normalized_mi_alignment
## End Normalized Mutual Information Analysis


## Start Statistical coupling analysis (SCA) (Suel 2003)
class SCAError(Exception):
    pass

# PROTEIN's alphabet contains U, so redefining the alphabet for now 
# rather than use PROTEIN.Alphabet. May want to revist this decision...
AAGapless = CharAlphabet('ACDEFGHIKLMNPQRSTVWY')
default_sca_alphabet = AAGapless
#AAGapless = PROTEIN.Alphabet

#Dictionary of mean AA-frequencies in all natural proteins
#Compiled by Rama Ranganathan from 36,498 unique eukaryotic proteins 
#from the Swiss-Prot database
protein_dict = {
    'A': 0.072658,
    'C': 0.024692,
    'D': 0.050007,
    'E': 0.061087,
    'F': 0.041774,
    'G': 0.071589,
    'H': 0.023392,
    'I': 0.052691,
    'K': 0.063923,
    'L': 0.089093,
    'M': 0.02315,
    'N': 0.042931,
    'P': 0.052228,
    'Q': 0.039871,
    'R': 0.052012,
    'S': 0.073087,
    'T': 0.055606,
    'V': 0.063321,
    'W': 0.01272,
    'Y': 0.032955,
}
default_sca_freqs = protein_dict

def freqs_to_array(f,alphabet):
    """Takes data in freqs object and turns it into array.
    
    f = dict or Freqs object
    alphabet = Alphabet object or just a list that specifies the order
        of things to appear in the resulting array
    """
    return array([f.get(i,0) for i in alphabet])

def get_allowed_perturbations(counts, cutoff, alphabet, num_seqs=100):
    """Returns list of allowed perturbations as characters

    count: Profile object of raw character counts at each position
    num_seqs: number of sequences in the alignment
    cutoff: minimum number of sequences in the subalignment (as fraction 
    of the total number of seqs in the alignment.

    A perturbation is allowed if the subalignment of sequences that 
    contain the specified char at the specified position is larger 
    that the cutoff value * the total number of sequences in the alignment.

    """
    result = []
    abs_cutoff = cutoff * num_seqs
    
    for char,count in zip(alphabet,counts):
        if count >= abs_cutoff:
            result.append(char)
    return result

def probs_from_dict(d,alphabet):
    """ Convert dict of alphabet char probabilities to list in alphabet's order
    
        d: probabilities of observing each character in alphabet (dict indexed
         by char)
        alphabet: the characters in the alphabet -- provided for list order. 
         Must iterate over the ordered characters in the alphabet (e.g., a list
         of characters or an Alphabet object)

    """
    return array([d[c] for c in alphabet])

def freqs_from_aln(aln,alphabet,scaled_aln_size=100):
    """Return the frequencies in aln of chars in alphabet's order
        
        aln: the alignment object
        alphabet: the characters in the alphabet -- provided for list order. 
         Must iterate over the ordered characters in the alphabet (e.g., a list
         of characters or an Alphabet object)
        scaled_aln_size: the scaled number of sequences in the alignment. The 
         original SCA implementation treats all alignments as if they contained
         100 sequences when calculating frequencies and probabilities. 100 is
         therefore the default value.

        *Warning: characters in aln that are not in alphabet are silently
            ignored. Is this the desired behavior?

        Need to combine this function with get_position_frequences (and renamed
         that one to be more generic) since they're doing the same thing now.

    """
    alphabet_as_indices = array([aln.Alphabet.toIndices(alphabet)]).transpose()
    aln_data = ravel(aln.ArrayPositions)
    return (alphabet_as_indices == aln_data).sum(1) * \
        (scaled_aln_size/len(aln_data))


def get_positional_frequencies(aln,position_number,alphabet,\
    scaled_aln_size=100):
    """Return the freqs in aln[position_number] of chars in alphabet's order
         
        aln: the alignment object
        position_number: the index of the position of interest in aln 
         (note: zero-based alignment indexing)
        alphabet: the characters in the alphabet -- provided for list order. 
         Must iterate over the ordered characters in the alphabet (e.g., a list
         of characters or an Alphabet object)
        scaled_aln_size: the scaled number of sequences in the alignment. The 
         original SCA implementation treats all alignments as if they contained
         100 sequences when calculating frequencies and probabilities. 100 is
         therefore the default value.

        *Warning: characters in aln that are not in alphabet are silently
            ignored. Is this the desired behavior?

    """
    alphabet_as_indices = array([aln.Alphabet.toIndices(alphabet)]).transpose()
    position_data = aln.ArrayPositions[position_number]
    return (alphabet_as_indices == position_data).sum(1) * \
        (scaled_aln_size/len(position_data))

def get_positional_probabilities(pos_freqs,natural_probs,scaled_aln_size=100):
    """Get probs of observering the freq of each char given it's natural freq 
        In Suel 2003 supplementary material, this step is defined as:
         "... each element is the binomial probability of observing each 
          amino acid residue at position j given its mean frequency in 
          all natural proteins."
        This function performs the calculate for a single position.

        pos_freqs: the frequencies of each char in the alphabet at a
         position-of-interest in the alignment (list of floats, typically
         output of get_positional_frequencies)
        natural_probs: the natural probabilities of observing each char
         in the alphabet (list of floats: typically output of probs_from_dict)
        scaled_aln_size: the scaled number of sequences in the alignment. The 
         original SCA implementation treats all alignments as if they contained
         100 sequences when calculating frequencies and probabilities. 100 is
         therefore the default value.

        Note: It is critical that the values in pos_freqs and natural_probs are
         in the same order, which should be the order of chars in the alphabet.
         
    """
    results = []
    for pos_freq,natural_prob in zip(pos_freqs,natural_probs):
        try:
            results.append(\
             binomial_exact(pos_freq,scaled_aln_size,natural_prob))
        # Because of the scaling of alignments to scaled_aln_size, pos_freq is
        # a float rather than an int. So, if a position is perfectly conserved,
        # pos_freq as a float could be greater than scaled_aln_size. 
        # In this case I cast it to an int. I don't like this alignment 
        # scaling stuff though. 
        except ValueError, e:
            results.append(binomial_exact(int(pos_freq),\
                scaled_aln_size,natural_prob))
    return array(results)

def get_subalignments(aln,position,selections):
    """ returns subalns w/ seq[pos] == selection for each in selections 
        aln: an alignment object
        position: int in alignment to be checked for each perturbation
        selections: characters which must be present at seq[pos] for 
            seq to be in subalignment

        Note: This method returns a list of subalignments corresponding
            to the list of selections. So, if you specify selections as 
            ['A','G'], you would get two subalignments back -- the first 
            containing sequences with 'A' at position, and the second
            containing sequences with 'G' at position. If you want all
            sequences containing either 'A' or 'G', merge the resulting 
            subalignments.  

    """
    result = []
    for s in aln.Alphabet.toIndices(selections):
        seqs_to_keep = nonzero(aln.ArraySeqs[:,position] == s)[0]
        result.append(aln.getSubAlignment(seqs=seqs_to_keep))
    return result

def get_dg(position_probs,aln_probs):
    """ Return delta_g vector
        
        position_probs: the prob of observing each alphabet chars frequency in
         the alignment position-of-interest, given it's background frequency 
         in all proteins (list of floats, typically the output of 
         get_positional_probabilities)
        aln_probs: the prob of observing each alphabet chars frequency in the
         full alignment, given it's background frequency (list of floats)

    """
    results = []
    for position_prob,aln_prob in zip(position_probs,aln_probs):
        results.append(log(position_prob/aln_prob))
    return array(results)

def get_dgg(all_dgs,subaln_dgs,scaled_aln_size=100):
    """Return delta_delta_g value

        all_dgs: the dg vector for a position-of-interest in the alignment
         (list of floats, typically the output of get_dg)
        subaln_dgs: the dg vector for a sub-alignment of the position-of-
         interest in the alignment (list of floats, typically the output
         of get_dg applied to a sub-alignment)
        scaled_aln_size: the scaled number of sequences in the alignment. The 
         original SCA implementation treats all alignments as if they contained
         100 sequences when calculating frequencies and probabilities. 100 is
         therefore the default value.

        * There are two weird issues in this function with respect to the 
        desciption of the algorithm in the Suel 2003 supplementary material. 
        In order to get the values presented in their GPCR paper, we need to
        (1) divide the euclidian norm by the scaled_aln_size, and then (2)
        multiply the result by e. 
        ** IT IS CRITICAL TO UNDERSTAND WHY
        WE NEED TO APPLY THESE STEPS BEFORE PUBLISHING ANYTHING THAT USES
        THIS CODE.**    
    
        * A possible reason for the mysterious e scaling is that we are 
        misinterpreting what they mean when they say ddg is 'the magnitude of
        this difference vector.' We are assuming they are referring to the
        Euclidian norm, but until I see their code, I can't be sure about
        this.
    """
    return norm(all_dgs - subaln_dgs)/scaled_aln_size * e



def sca_pair(alignment,pos1,pos2,cutoff,\
    position_freqs=None,position_probs=None,dgs=None,perturbations=None,\
    scaled_aln_size=100,null_value=gDefaultNullValue,return_all=False,\
    alphabet=default_sca_alphabet,background_freqs=default_sca_freqs):
    """ Calculate statistical coupling b/w a pair of alignment columns 

        alignment: full alignment object
        pos1: the first position used to probe for statistical coupling 
         (subalignments will be generated based on allowed perturbations 
         at this position) -- int, zero-based indexing into alignment
        pos2: the second position used to probe for statistical coupling 
         -- int, zero-based indexing into alignment
        cutoff: the percentage of sequences that must contain a specific 
         char at a specific pos1 to result in an allowed sub-alignment. 
         (According to the Ranganathan papers, this should be the value 
         determined by their 3rd criteria.)
        position_freqs: if precalculated, a matrix containing the output 
         of get_positional_frequencies for each position in the alignment.
         This will typically be used only when sca_pair is called from 
         sca_position, and these values are therefore pre-calculated.
        position_probs: if precalculated, a matrix containing the output 
         of get_positional_probabilities for each position in the alignment.
         This will typically be used only when sca_pair is called from 
         sca_position, and these values are therefore pre-calculated.
        dgs: if precalculated, a matrix containing the output 
         of get_dg for each position in the alignment.
         This will typically be used only when sca_pair is called from 
         sca_position, and these values are therefore pre-calculated.
        perturbations: if precalculated, a matrix containing the output 
         of get_allowed_perturbations for each position in the alignment.
         This will typically be used only when sca_pair is called from 
         sca_position, and these values are therefore pre-calculated.
        scaled_aln_size: the scaled number of sequences in the alignment. The 
         original SCA implementation treats all alignments as if they contained
         100 sequences when calculating frequencies and probabilities. 100 is
         therefore the default value.
        null_value: the value which should be returned if SCA cannot or 
         should not be calculated (e.g., no allowed perturbations or 
         pos1==pos2, respectively).
        return_all: if cutoff <= 0.50, it is possible that there will be more
         than one allowed_perturbation per position. In these cases, either all
         of the values could be returned (return_all=True) or the max of the
         values can be returned (return_all=False, default). If you'd like one
         value, but not the max, wrap this function with return_all=True, and 
         handle the return value as desired.
        alphabet: an ordered iterable object containing the characters in the 
         alphabet. For example, this can be a CharAlphabet object, a list,
         or a string.

        **IMPORTANT NOTE: SCA, unlike (all?) other methods implemented here, 
         requires the full alignment, even to calculate coupling between just
         a pair of positions. Because frequencies of characters in the full 
         alignment are compared with frequencies at each position, you cannot
         simply pull out two columns of the alignment, and pass them to this 
         function as a subalignment. Your results would differ from calculating
         coupling of the same positions with the full alignment. For example:
            sca_pair(aln,10,20,0.85) != \
            sca_pair(aln.takePositions([10,20]),0,1,0.85)
    """
    num_positions = len(alignment)
    num_seqs = alignment.getNumSeqs()

    # Calculate frequency distributions
    natural_probs = probs_from_dict(background_freqs,alphabet)
    aln_freqs = freqs_from_aln(alignment,alphabet,scaled_aln_size)
    aln_probs = get_positional_probabilities(\
        aln_freqs,natural_probs,scaled_aln_size)

    # get positional frequencies
    if position_freqs:
        pos1_freqs = position_freqs[pos1]
        pos2_freqs = position_freqs[pos2]
    else:
        pos1_freqs = get_positional_frequencies(alignment,pos1,\
         alphabet,scaled_aln_size)
        pos2_freqs = get_positional_frequencies(alignment,pos2,\
         alphabet,scaled_aln_size)
    # get positional probability vectors ("... each element is the binomial
    # probability of observing each amino acid residue at position j given its
    # mean frequency in all natural proteins." Suel 2003 supplementary
    # material)
    if position_probs:
        pos2_probs = position_probs[pos2]
    else:
        pos2_probs = get_positional_probabilities(pos2_freqs,\
         natural_probs,scaled_aln_size)

    # get statistical energies for pos2 in full alignment
    if dgs:
        pos2_dg = dgs[pos2]
    else:
        pos2_dg = get_dg(pos2_probs,aln_probs)
    
    # determine allowed perturbations
    if perturbations:
        allowed_perturbations = perturbations[pos1]
    else:
        allowed_perturbations = \
         get_allowed_perturbations(pos1_freqs,cutoff,alphabet,scaled_aln_size)
    # should we do something different here on return_all == True?
    if not allowed_perturbations: return null_value

    # generate the subalignments which contain each allowed 
    # perturbation residue at pos1
    subalignments = get_subalignments(alignment,pos1,allowed_perturbations)
    
    # calculate ddg for each allowed perturbation
    ddg_values = []
    for subalignment in subalignments:
        # Calculate dg for the subalignment
        subaln_freqs = freqs_from_aln(subalignment,alphabet,scaled_aln_size)
        subaln_probs = get_positional_probabilities(\
            subaln_freqs,natural_probs,scaled_aln_size)
        subaln_pos2_freqs = get_positional_frequencies(\
            subalignment,pos2,alphabet,scaled_aln_size)
        subaln_pos2_probs = get_positional_probabilities(\
            subaln_pos2_freqs,natural_probs,scaled_aln_size)      
        subaln_dg = get_dg(subaln_pos2_probs,subaln_probs)
        ddg_values.append(get_dgg(pos2_dg,subaln_dg,scaled_aln_size))

    if return_all:
        return zip(allowed_perturbations,ddg_values)
    else:
        return max(ddg_values)

def sca_position(alignment,position,cutoff,\
    position_freqs=None,position_probs=None,dgs=None,\
    perturbations=None,scaled_aln_size=100,\
    null_value=gDefaultNullValue,return_all=False,\
    alphabet=default_sca_alphabet,background_freqs=default_sca_freqs):
    """ Calculate statistical coupling b/w a column and all other columns 

        alignment: full alignment object
        position: the position of interest to probe for statistical coupling 
         (subalignments will be generated based on allowed perturbations 
         at this position) -- int, zero-based indexing into alignment
        cutoff: the percentage of sequences that must contain a specific 
         char at a specific pos1 to result in an allowed sub-alignment. 
         (According to the Ranganathan papers, this should be the value 
         determined by their 3rd criteria.)
        position_freqs: if precalculated, a matrix containing the output 
         of get_positional_frequencies for each position in the alignment.
         This will typically be used only when sca_position is called from 
         sca_alignment, and these values are therefore pre-calculated.
        position_probs: if precalculated, a matrix containing the output 
         of get_positional_probabilities for each position in the alignment.
         This will typically be used only when sca_position is called from 
         sca_alignment, and these values are therefore pre-calculated.
        dgs: if precalculated, a matrix containing the output 
         of get_dg for each position in the alignment.
         This will typically be used only when sca_position is called from 
         sca_alignment, and these values are therefore pre-calculated.
        perturbations: if precalculated, a matrix containing the output 
         of get_allowed_perturbations for each position in the alignment.
         This will typically be used only when sca_position is called from 
         sca_alignment, and these values are therefore pre-calculated.
        scaled_aln_size: the scaled number of sequences in the alignment. The 
         original SCA implementation treats all alignments as if they contained
         100 sequences when calculating frequencies and probabilities. 100 is
         therefore the default value.
        null_value: the value which should be returned if SCA cannot or 
         should not be calculated (e.g., no allowed perturbations or 
        pos1==pos2, respectively).
        return_all: if cutoff <= 0.50, it is possible that there will be more
         than one allowed_perturbation per position. In these cases, either all
         of the values could be returned (return_all=True) or the max of the
         values can be returned (return_all=False, default). If you'd like one
         value, but not the max, wrap this function with return_all=True, and 
         handle the return value as desired.
        alphabet: an ordered iterable object containing the characters in the 
         alphabet. For example, this can be a CharAlphabet object, a list,
         or a string.

    """
    num_seqs = alignment.getNumSeqs()
    natural_probs = probs_from_dict(background_freqs,alphabet)
    aln_freqs = freqs_from_aln(alignment,alphabet,scaled_aln_size)
    aln_probs = get_positional_probabilities(\
        aln_freqs,natural_probs,scaled_aln_size)
    if not position_freqs:
        position_freqs = []
        for i in range(len(alignment)):
            position_freqs.append(\
                get_positional_frequencies(\
                alignment,i,alphabet,scaled_aln_size))
    
    if not position_probs:
        position_probs = []
        for i in range(len(alignment)):
            position_probs.append(get_positional_probabilities(\
                position_freqs[i],natural_probs,scaled_aln_size))
    if not dgs:
        dgs = []
        for i in range(len(alignment)):
            dgs.append(get_dg(position_probs[i],aln_probs))

    if not perturbations:
        perturbations = []
        for i in range(len(alignment)):
            perturbations.append(get_allowed_perturbations(\
                position_freqs[i],cutoff,alphabet,scaled_aln_size))
 
    result = []
    for i in range(len(alignment)):
        result.append(sca_pair(alignment,position,i,cutoff,\
         position_freqs=position_freqs,position_probs=position_probs,\
         dgs=dgs,perturbations=perturbations,\
         scaled_aln_size=scaled_aln_size,null_value=null_value,\
         return_all=return_all,alphabet=alphabet,\
         background_freqs=background_freqs))
    return array(result)

def sca_alignment(alignment,cutoff,null_value=gDefaultNullValue,\
    scaled_aln_size=100,return_all=False,alphabet=default_sca_alphabet,\
    background_freqs=default_sca_freqs):
    """ Calculate statistical coupling b/w all columns in alignment

        alignment: full alignment object
        cutoff: the percentage of sequences that must contain a specific 
         char at a specific pos1 to result in an allowed sub-alignment. 
         (According to the Ranganathan papers, this should be the value 
         determined by their 3rd criteria.)
        scaled_aln_size: the scaled number of sequences in the alignment. The 
         original SCA implementation treats all alignments as if they contained
         100 sequences when calculating frequencies and probabilities. 100 is
         therefore the default value.
        null_value: the value which should be returned if SCA cannot or 
         should not be calculated (e.g., no allowed perturbations or 
        pos1==pos2, respectively).
        return_all: if cutoff <= 0.50, it is possible that there will be more
         than one allowed_perturbation per position. In these cases, either all
         of the values could be returned (return_all=True) or the max of the
         values can be returned (return_all=False, default). If you'd like one
         value, but not the max, wrap this function with return_all=True, and 
         handle the return value as desired.
        alphabet: an ordered iterable object containing the characters in the 
         alphabet. For example, this can be a CharAlphabet object, a list,
         or a string.

    """
    num_seqs = alignment.getNumSeqs()
    natural_probs = probs_from_dict(background_freqs,alphabet)
    aln_freqs = freqs_from_aln(alignment,alphabet,scaled_aln_size)
    aln_probs = get_positional_probabilities(\
        aln_freqs,natural_probs,scaled_aln_size)
    # get all positional frequencies
    position_freqs = []
    for i in range(len(alignment)):
        position_freqs.append(\
            get_positional_frequencies(alignment,i,alphabet,scaled_aln_size))

    # get all positional probabilities 
    position_probs = []
    for i in range(len(alignment)):
        position_probs.append(get_positional_probabilities(\
            position_freqs[i],natural_probs,scaled_aln_size))
    
    # get all delta_g vectors 
    dgs = []
    for i in range(len(alignment)):
        dgs.append(get_dg(position_probs[i],aln_probs))

    # get all allowed perturbations
    perturbations = []
    for i in range(len(alignment)):
        perturbations.append(get_allowed_perturbations(\
            position_freqs[i],cutoff,alphabet,scaled_aln_size))

    result = []
    for i in range(len(alignment)):
        result.append(sca_position(alignment,i,cutoff,\
            position_freqs=position_freqs,position_probs=position_probs,\
            dgs=dgs,perturbations=perturbations,\
            scaled_aln_size=scaled_aln_size,null_value=null_value,\
            return_all=return_all,alphabet=alphabet,\
            background_freqs=background_freqs))
    return array(result)     
## End statistical coupling analysis

## Start Resampled Mutual Information Analysis 
# (developed by Hutley and Easton, and first published in 
# Caporaso et al., 2008)
def make_weights(freqs, n):
    """Return the weights for replacement states for each possible character.
    We compute the weight as the normalized frequency of the replacement state
    divided by 2*n."""
    freqs.normalize()
    char_prob = freqs.items()
    weights = []
    for C,P in char_prob:
        alts = Freqs([(c, p) for c, p in char_prob if c!=C])
        alts.normalize()
        alts = Freqs([(c,w/(2*n)) for c,w in alts.items()])
        weights += [(C, alts)]
    return weights

def calc_pair_scale(seqs, obs1, obs2, weights1, weights2):
    """Return entropies and weights for comparable alignment.
    A comparable alignment is one in which, for each paired state ij, all
    alternate observable paired symbols are created. For instance, let the
    symbols {A,C} be observed at position i and {A,C} at position j. If we
    observe the paired types {AC, AA}. A comparable alignment would involve
    replacing an AC pair with a CC pair."""
    # scale is calculated as the product of mi from col1 with alternate
    # characters. This means the number of states is changed by swapping
    # between the original and selected alternate, calculating the new mi
    
    pair_freqs = Freqs(seqs)
    weights1 = dict(weights1)
    weights2 = dict(weights2)
    scales = []
    for a, b in pair_freqs.keys():
        weights = weights1[a]
        
        pr = a+b
        pair_freqs -= [pr]
        obs1 -= a
        
        # make comparable alignments by mods to col 1
        for c, w in weights.items():
            new_pr = c+b
            pair_freqs += [new_pr]
            obs1 += c
            
            entropy = mi(obs1.Uncertainty, obs2.Uncertainty,\
             pair_freqs.Uncertainty)
            scales += [(pr, entropy, w)]
            
            pair_freqs -= [new_pr]
            obs1 -= c
        
        
        obs1 += a
        # make comparable alignments by mods to col 2
        weights = weights2[b]
        obs2 -= b
        for c, w in weights.items():
            new_pr = a+c
            pair_freqs += [new_pr]
            obs2 += c
            
            entropy = mi(obs1.Uncertainty, obs2.Uncertainty,\
             pair_freqs.Uncertainty)
            scales += [(pr, entropy, w)]
            
            obs2 -= c
            pair_freqs -= [new_pr]
        
        obs2 += b
        
        pair_freqs += [pr]
    return scales

def resampled_mi_pair(alignment, pos1, pos2, weights=None,
                      excludes=gDefaultExcludes, exclude_handler=None,
                      null_value=gDefaultNullValue):
    """returns scaled mutual information for a pair.
    
    Arguments:
        - alignment: Alignment instance
        - pos1, pos2: alignment positions to be assessed
        - weights: Freq objects of weights for pos1, pos2
        - excludes: states to be excluded.
    """
    positions = list(alignment.Positions)
    col1 = positions[pos1]
    col2 = positions[pos2]
    seqs = [''.join(p) for p in zip(col1, col2)]
    for col in (col1,col2):
        states = {}.fromkeys(col)
        for exclude in excludes:
            if exclude in states:
                try:
                    col = exclude_handler(col,excludes)
                    break
                except TypeError:
                    return null_value
    
    excludes = excludes or []
    num = len(seqs)
    col1 = Freqs(col1)
    col2 = Freqs(col2)
    seq_freqs = Freqs(seqs)
    if weights:
        weights1, weights2 = weights
    else:
        weights1 = make_weights(col1.copy(), num)
        weights2 = make_weights(col2.copy(), num)
    
    entropy = mi(col1.Uncertainty, col2.Uncertainty,
                                        seq_freqs.Uncertainty)
    scales = calc_pair_scale(seqs, col1, col2, weights1, weights2)
    scaled_mi = 1-sum([w * seq_freqs[pr] for pr, e, w in scales \
                                                        if entropy <= e])
    
    return scaled_mi

def resampled_mi_position(alignment, position, positional_entropies=None,
                          excludes=gDefaultExcludes, exclude_handler=None,
                          null_value=gDefaultNullValue):
    aln_length = len(alignment)
    result = zeros(aln_length,float)
    positional_entropies = positional_entropies or alignment.uncertainties()
    
    for i in range(aln_length):
        result[i] = resampled_mi_pair(alignment, pos1=position, pos2=i,
                                      excludes=excludes,
                                      exclude_handler=exclude_handler,
                                      null_value=null_value)
    return result

def resampled_mi_alignment(alignment, excludes=gDefaultExcludes,
            exclude_handler=None, null_value=gDefaultNullValue):
    """returns scaled mutual information for all possible pairs."""
    aln_length = len(alignment)
    result = zeros((aln_length,aln_length),float)
    positional_entropies = alignment.uncertainties()
    
    for i in range(aln_length):
        result[i] = resampled_mi_position(alignment=alignment, position=i,
                    positional_entropies=positional_entropies,
                    excludes=excludes, exclude_handler=exclude_handler,
                    null_value=null_value)
    return result
## End Resampled Mutual Information Analysis

## Begin ancestral_states analysis        
def get_ancestral_seqs(aln, tree, sm = None, pseudocount=1e-6, optimise=True):
    """ Calculates ancestral sequences by maximum likelihood
    
    Arguments:
        - sm: a SubstitutionModel instance. If not provided, one is
          constructed from the alignment Alphabet
        - pseudocount: unobserved sequence states must not be zero, this value
          is assigned to sequence states not observed in the alignment.
        - optimise: whether to optimise the likelihood function.
    
        Note: for the sake of reduced alphabets, we calculate the 
         substitution model from the alignment. This also appears
         to be what what described in Tuffery 2000, although they're 
         not perfectly clear about it.
    """
    sm = sm or SubstitutionModel(aln.Alphabet, recode_gaps=True)
    lf = sm.makeLikelihoodFunction(tree,sm.motif_probs)
    lf.setAlignment(aln, motif_pseudocount=pseudocount)
    if optimise:
        lf.optimise(local=True)
    return DenseAlignment(lf.likelyAncestralSeqs(),MolType=aln.MolType)
    

def ancestral_state_alignment(aln,tree,ancestral_seqs=None,\
 null_value=gDefaultNullValue):
    ancestral_seqs = ancestral_seqs or get_ancestral_seqs(aln,tree)
    result = []
    for i in range(len(aln)):
        row = [null_value] * len(aln)
        for j in range(i+1):
            row[j] = ancestral_state_pair(\
             aln,tree,i,j,ancestral_seqs,null_value)
        result.append(row)
    return ltm_to_symmetric(array(result))

def ancestral_state_position(aln,tree,position,\
 ancestral_seqs=None,null_value=gDefaultNullValue):
    
    ancestral_seqs = ancestral_seqs or get_ancestral_seqs(aln,tree)
    result = []
    for i in range(len(aln)):
        result.append(ancestral_state_pair(\
            aln,tree,position,i,ancestral_seqs,null_value))
    return array(result)

def ancestral_state_pair(aln,tree,pos1,pos2,\
 ancestral_seqs=None,null_value=gDefaultNullValue):
    """
    
    """
    ancestral_seqs = ancestral_seqs or get_ancestral_seqs(aln,tree)
    ancestral_names_to_seqs = \
        dict(zip(ancestral_seqs.Names,ancestral_seqs.ArraySeqs))
    distances = tree.getDistances()
    tips = tree.getNodeNames(tipsonly=True)
    # map names to nodes (there has to be a built-in way to do this 
    # -- what is it?)
    nodes = dict([(n,tree.getNodeMatchingName(n)) for n in tips])
    # add tip branch lengths as distance b/w identical tips -- this is 
    # necessary for my weighting step, where we want correlated changes 
    # occuring on a single branch to be given the most weight
    distances.update(dict([((n,n),nodes[n].Length) for n in nodes]))
    result = 0
    names_to_seqs = dict(zip(aln.Names,aln.ArraySeqs))
    for i in range(len(tips)):
        org1 = tips[i]
        seq1 = names_to_seqs[org1]
        for j in range(i,len(tips)):
            org2 = tips[j]
            seq2 = names_to_seqs[org2]
            ancestor = nodes[org1].lastCommonAncestor(nodes[org2]).Name
            if ancestor == org1 == org2:
                # we're looking for correlated change along a 
                # single branch
                ancestral_seq = ancestral_names_to_seqs[\
                 nodes[org1].ancestors()[0].Name] 
            else:
                # we're looking for correlated change along different
                # branches (most cases)
                ancestral_seq = ancestral_names_to_seqs[ancestor]
            
            # get state of pos1 in org1, org2, and ancestor
            org1_p1 = seq1[pos1]
            org2_p1 = seq2[pos1]
            ancestor_p1 = ancestral_seq[pos1]
                        
            # if pos1 has changed in both organisms since their lca, 
            # this is a position of interest
            if org1_p1 != ancestor_p1 and org2_p1 != ancestor_p1:
                # get state of pos2 in org1, org2, and ancestor
                org1_p2 = seq1[pos2]
                org2_p2 = seq2[pos2]
                ancestor_p2 = ancestral_seq[pos2]
                # if pos2 has also changed in both organisms since their lca,
                # then we add a count for a correlated change 
                if org1_p2 != ancestor_p2 and org2_p2 != ancestor_p2:
                    # There are a variety of ways to score. The simplest is
                    # to increment by one, which seems to be what was done 
                    # in other papers.) This works well, but in a quick test
                    # (alpha helices/myoglobin with several generally
                    # high scoring alphabets) weighting works better. A more
                    # detailed analysis is in order. 
                    #result += 1
                    # Now I weight based on distance so 
                    # changes in shorter time are scored higher than
                    # in longer time. (More ancient changes 
                    # are more likely to be random than more recent changes, 
                    # b/c more time has passed for the changes to occur in.) 
                    # This gives results
                    # that appear to be better under some circumstances, 
                    # and at worst, about the same as simply incrementing
                    # by 1.  
                    result += (1/distances[(org1,org2)])
                    # Another one to try might involve discounting the score 
                    # for a pair when one changes and the other doesn't.
    return result      
## End ancestral_states analysis        


## Begin Gctmpca method (Yeang et al., 2007)

def build_rate_matrix(count_matrix,freqs,aa_order='ACDEFGHIKLMNPQRSTVWY'):

    epm = EmpiricalProteinMatrix(count_matrix,freqs)
    word_probs = array([freqs[aa] for aa in aa_order])
    num = word_probs.shape[0]
    mprobs_matrix = ones((num,num), float)*word_probs
    
    return epm.calcQ(word_probs, mprobs_matrix)

def create_gctmpca_input(aln,tree):
    """ Generate the four input files as lists of lines. """
    new_tree = tree.copy()
    seqs1 = []
    seq_names = []
    seq_to_species1 = []
    seqs1.append(' '.join(map(str,[aln.getNumSeqs(),len(aln)])))
    constant_name_length = max(map(len,aln.Names))
    for n in aln.Names:
        name = ''.join([n] + ['.']*(constant_name_length - len(n)))
        new_tree.getNodeMatchingName(n).Name = name
        seqs1.append('  '.join([name,str(aln.getGappedSeq(n))]))
        seq_names.append(name)
        seq_to_species1.append('\t'.join([name,name]))
    seqs1.append('\n')   
    seq_names.append('\n')   
    seq_to_species1.append('\n')   
 
    return seqs1, [str(new_tree),'\n'], seq_names, seq_to_species1
 
def parse_gctmpca_result_line(line):
    fields = line.strip().split()
    return int(fields[0]) - 1, int(fields[1]) - 1, float(fields[2])

def parse_gctmpca_result(f,num_positions):
    m = array([[gDefaultNullValue]*num_positions]*num_positions)
    for line in list(f)[1:]:
        pos1, pos2, score = parse_gctmpca_result_line(line)
        try:
            m[pos1,pos2] = m[pos2,pos1] = score
        except IndexError:
            raise ValueError, \
             "%d, %d out of range -- invalid num_positions?" % (pos1, pos2)
    return m

def gctmpca_pair(aln,tree,pos1,pos2,epsilon=None,priors=None,sub_matrix=None,\
    null_value=gDefaultNullValue,debug=False):
    seqs1, tree1, seq_names, seq_to_species1 = create_gctmpca_input(aln,tree) 

    if aln.MolType == PROTEIN: mol_type = 'protein'
    elif aln.MolType == RNA: mol_type = 'rna'
    else: raise ValueError, 'Unsupported mol type, must be PROTEIN or RNA.'

    gctmpca = Gctmpca(HALT_EXEC=debug)
    data = {'mol_type':mol_type,'seqs1':seqs1,'tree1':tree1,\
     'seq_names':seq_names, 'seq_to_species1':seq_to_species1,\
     'species_tree':tree1, 'char_priors':priors, \
     'sub_matrix':sub_matrix,'single_pair_only':1,'epsilon':epsilon,\
     'pos1':str(pos1),'pos2':str(pos2)}
    r = gctmpca(data)
    try:
        # parse the first line and return the score as a float
        result = float(parse_gctmpca_result_line(list(r['output'])[1])[2])
    except IndexError:
        # There is no first line, so insignificant score
        result = null_value

    # clean up the temp files
    r.cleanUp()
    return result

def gctmpca_alignment(aln,tree,epsilon=None,priors=None,\
    sub_matrix=None,null_value=gDefaultNullValue,debug=False):
    seqs1, tree1, seq_names, seq_to_species1 = create_gctmpca_input(aln,tree) 

    if aln.MolType == PROTEIN: mol_type = 'protein'
    elif aln.MolType == RNA: mol_type = 'rna'
    else: raise ValueError, 'Unsupported mol type, must be PROTEIN or RNA.'
    
    gctmpca = Gctmpca(HALT_EXEC=debug)
    data = {'mol_type':mol_type,'seqs1':seqs1,'tree1':tree1,\
     'seq_names':seq_names, 'seq_to_species1':seq_to_species1,\
     'species_tree':tree1, 'char_priors':priors, \
     'sub_matrix':sub_matrix,'single_pair_only':0,'epsilon':epsilon}
    r = gctmpca(data)
    result = parse_gctmpca_result(r['output'],len(aln))
    r.cleanUp()
    return result

## End Yeang method

### Methods for running coevolutionary analyses on sequence data.
method_abbrevs_to_names = {'mi':'Mutual Information',\
           'nmi':'Normalized Mutual Information',\
           'sca':'Statistical Coupling Analysis',\
           'an':'Ancestral States',\
           'rmi':'Resampled Mutual Information',
           'gctmpca':'Haussler/Yeang Method'}

## Method-specific error checking functions
# Some of the coevolution algorithms require method-specific input validation, 
# but that code isn't included in the alrogithm-specific functions (e.g. 
# sca_alignment, 
# sca_pair) because those are sometimes run many times. For example, 
# sca_alignment makes many calls to sca_pair, so we can't have sca_pair 
# perform validation every time it's called. My solution is to have the 
# coevolve_* functions perform the input validation, and recommend that
# users always perform analyses via these functions. So, in the above example,
# the user would access sca_alignment via coevolve_alignment('sca', ...). Since
# sca_alignment makes calls to sca_pair, not coevolve_pair, the input 
# validation
# is only performed once by coevolve_alignment.

def sca_input_validation(alignment,**kwargs):
    """SCA specific validations steps """

    # check that all required parameters are present in kwargs
    required_parameters = ['cutoff']
    # users must provide background frequencies for MolTypes other 
    # than PROTEIN -- by default, protein background frequencies are used.
    if alignment.MolType != PROTEIN: 
        required_parameters.append('background_freqs')
    for rp in required_parameters:
        if rp not in kwargs:
            raise ValueError, 'Required parameter was not provided: ' + rp

    # check that the value provided for cutoff is valid (ie. between 0 and 1)
    if not 0.0 <= kwargs['cutoff'] <= 1.0:
        raise ValueError, 'Cutoff must be between zero and one.'

    # check that the set of chars in alphabet and background_freqs are 
    # identical
    try:
        alphabet = kwargs['alphabet'] 
    except KeyError:
        # We want to use the PROTEIN alphabet minus the U character for 
        # proteins since we don't have a background frequency for U
        if alignment.MolType == PROTEIN: alphabet = AAGapless
        else: alphabet = alignment.MolType.Alphabet
    try:
        background_freqs = kwargs['background_freqs']
    except KeyError:
        background_freqs = default_sca_freqs
    validate_alphabet(alphabet,background_freqs)
    
def validate_alphabet(alphabet,freqs):
    """SCA validation: ValueError if set(alphabet) != set(freqs.keys()) 
    """
    alphabet_chars = set(alphabet)
    freq_chars = set(freqs.keys())
    if alphabet_chars != freq_chars:
        raise ValueError, \
         "Alphabet and background freqs must contain identical sets of chars."

def ancestral_states_input_validation(alignment,**kwargs):
    """Ancestral States (AS) specific validations steps """
    # check that all required parameters are present in kwargs
    required_parameters = ['tree']
    for rp in required_parameters:
        if rp not in kwargs:
            raise ValueError, 'Required parameter was not provided: ' + rp

    # validate the tree
    validate_tree(alignment,kwargs['tree'])

    # if ancestral seqs are provided, validate them. (If calculated on the fly,
    # we trust them.)
    if 'ancestral_seqs' in kwargs:
        validate_ancestral_seqs(alignment,kwargs['tree'],\
         kwargs['ancestral_seqs'])
            
def validate_ancestral_seqs(alignment,tree,ancestral_seqs):
    """AS validation: ValueError if incompatible aln, tree, & ancestral seqs

        Incompatibility between the alignment and the ancestral_seqs is
            different sequence lengths. Incompatbility between the tree and
            the ancestral seqs is imperfect overlap between the names of the
            ancestors in the tree and the ancestral sequence names. 
    """
    if len(alignment) != len(ancestral_seqs):
        raise ValueError,\
         "Alignment and ancestral seqs are different lengths."
    # is there a better way to get all the ancestor names? why doesn't
    # tree.ancestors() do this?
    edges = set(tree.getNodeNames()) - set(tree.getTipNames())
    seqs = set(ancestral_seqs.getSeqNames())
    if edges != seqs:
        raise ValueError, \
         "Must be ancestral seqs for all edges and root in tree, and no more."

def validate_tree(alignment,tree):
    """AS validation: ValueError if tip and seq names aren't same 
    """
    if set(tree.getTipNames()) != set(alignment.getSeqNames()):
        raise ValueError, \
         "Tree tips and seqs must have perfectly overlapping names."

## End method-specific error checking functions

## General (opposed to algorithm-specific) validation functions
def validate_position(alignment,position):
    """ValueError if position is outside the range of the alignment """
    if not 0 <= position < len(alignment):
        raise ValueError, \
         "Position is outside the range of the alignment: " + str(position)
         
def validate_alignment(alignment):
    """ValueError on ambiguous alignment characters"""
    bad_seqs = []
    for name, ambiguous_pos in \
     alignment.getPerSequenceAmbiguousPositions().items():
        if ambiguous_pos: bad_seqs.append(name)
    if bad_seqs:
        raise ValueError, 'Ambiguous characters in sequences: %s' \
         % '; '.join(map(str,bad_seqs))

def coevolve_alignments_validation(method,alignment1,alignment2,\
 min_num_seqs,max_num_seqs,**kwargs):
    """ Validation steps required for intermolecular coevolution analyses
    """
    valid_methods_for_different_moltypes = {}.fromkeys(\
     [mi_alignment,nmi_alignment,resampled_mi_alignment])
    if (alignment1.MolType != alignment2.MolType) and \
     method not in valid_methods_for_different_moltypes:
      raise AssertionError, "Different MolTypes only supported for %s" %\
       ' '.join(map(str,valid_methods_for_different_moltypes.keys()))  
    
    alignment1_names = \
        set([n.split('+')[0].strip() for n in alignment1.Names])
    alignment2_names = \
        set([n.split('+')[0].strip() for n in alignment2.Names])
    
    if 'tree' in kwargs:
        tip_names = \
            set([n.split('+')[0].strip() \
            for n in kwargs['tree'].getTipNames()])
        assert alignment1_names == alignment2_names == tip_names,\
         "Alignment and tree sequence names must perfectly overlap"
    else:
        # no tree passed in
        assert alignment1_names == alignment2_names,\
            "Alignment sequence names must perfectly overlap"
            
    # Determine if the alignments have enough sequences to proceed.
    if alignment1.getNumSeqs() < min_num_seqs: 
        raise ValueError, "Too few sequences in merged alignment: %d < %d" \
         % (alignment1.getNumSeqs(), min_num_seqs)
    
    # Confirm that min_num_seqs <= max_num_seqs
    if max_num_seqs and min_num_seqs > max_num_seqs:
        raise ValueError, \
         "min_num_seqs (%d) cannot be greater than max_num_seqs (%d)." \
         % (min_num_seqs, max_num_seqs)
  
## End general validation functions

## Start alignment-wide intramolecular coevolution analysis

# coevolve alignment functions: f(alignment,**kwargs) -> 2D array
coevolve_alignment_functions = \
   {'mi': mi_alignment,'nmi': normalized_mi_alignment,\
    'rmi': resampled_mi_alignment,'sca': sca_alignment,\
    'an':ancestral_state_alignment,'gctmpca':gctmpca_alignment}

def coevolve_alignment(method,alignment,**kwargs):
    """ Apply coevolution method to alignment (for intramolecular coevolution)

        method: f(alignment,**kwargs) -> 2D array of coevolution scores
        alignment: alignment object for which coevolve scores should be
            calculated
        **kwargs: parameters to be passed to method()
    """
    # Perform method specific validation steps
    if method == sca_alignment: sca_input_validation(alignment,**kwargs)
    if method == ancestral_state_alignment: 
        ancestral_states_input_validation(alignment,**kwargs)
    validate_alignment(alignment)
    return method(alignment,**kwargs)

## End alignment-wide intramolecular coevolution analysis

## Start intermolecular coevolution analysis

# Mapping between coevolve_alignment functions and coevolve_pair functions.
# These are used in coevolve_alignments, b/c under some circumstance the
# alignment function is used, and under other circumstance the pair
# function is used, but the user shouldn't have to know anything about 
# that.
coevolve_alignment_to_coevolve_pair = \
   {mi_alignment: mi_pair,normalized_mi_alignment: normalized_mi_pair,\
    resampled_mi_alignment: resampled_mi_pair, sca_alignment: sca_pair,\
    ancestral_state_alignment:ancestral_state_pair}
    
    
def merge_alignments(alignment1,alignment2):
    """ Append alignment 2 to the end of alignment 1
    
        This function is used by coevolve_alignments to merge two alignments
         so they can be evaluated by coevolve_alignment.
    """
    result = {}
    # Created maps from the final seq ids (i.e., seq id before plus) to the
    # seq ids in the original alignments
    aln1_name_map = \
     dict([(n.split('+')[0].strip(),n) for n in alignment1.Names])
    aln2_name_map = \
     dict([(n.split('+')[0].strip(),n) for n in alignment2.Names])
    
    try:
        for merged_name,orig_name in aln1_name_map.items():
            result[merged_name] = alignment1.getGappedSeq(orig_name) +\
             alignment2.getGappedSeq(aln2_name_map[merged_name])
    except ValueError: # Differing MolTypes
        for merged_name,orig_name in aln1_name_map.items():
            result[merged_name] =\
             Sequence(alignment1.getGappedSeq(orig_name)) +\
             Sequence(alignment2.getGappedSeq(aln2_name_map[merged_name]))
    except KeyError,e:
        raise KeyError, 'A sequence identifier is in alignment2 ' +\
         'but not alignment1 -- did you filter out sequences identifiers' +\
         ' not common to both alignments?'
    return LoadSeqs(data=result,aligned=DenseAlignment)
    
def n_random_seqs(alignment,n):
    """Given alignment, return n random seqs in a new alignment object.
    
        This function is used by coevolve_alignments.
    
    """
    seq_names = alignment.Names
    shuffle(seq_names)
    return alignment.takeSeqs(seq_names[:n]) 

def coevolve_alignments(method,alignment1,alignment2,\
    return_full=False,merged_aln_filepath=None,min_num_seqs=2,\
    max_num_seqs=None,sequence_filter=n_random_seqs,**kwargs):
    """ Apply method to a pair of alignments (for intermolecular coevolution)
    
        method: the *_alignment function to be applied
        alignment1: alignment of first molecule (DenseAlignment)
        alignment2: alignment of second molecule (DenseAlignment)
        return_full: if True, returns intra- and inter-molecular 
         coevolution data in a square matrix (default: False)
        merged_aln_filepath: if provided, will write the merged 
         alignment to file (useful for running post-processing filters)
        min_num_seqs: the minimum number of sequences that should be
         present in the merged alignment to perform the analysis 
         (default: 2)
        max_num_seqs: the maximum number of sequences to include
         in an analysis - if the number of sequences exceeds 
         max_num_seqs, a random selection of max_num_seqs will be
         used. This is a time-saving step as too many sequences can
         slow things down a lot. (default: None, any number of
         sequences is allowed)
        sequence_filter: function which takes an alignment and an int
         and returns the int number of sequences from the alignment in
         a new alignment object (defualt: util.n_random_seqs(alignment,n))
         if None, a ValueError will be raised if there are more than
         max_num_seqs

        This function allows for calculation of coevolve scores between
         pairs of alignments. The results are returned in a rectangular 
         len(alignment1) x len(alignment2) matrix.
         
        There are some complications involved in preparing alignments for
         this function, because it needs to be obvious how to associate the
         putative interacting sequences. For example, if looking for 
         interactions between mammalian proteins A and B, sequences are 
         required from the same sets of species, and it must be apparant how 
         to match the sequences that are most likely to be involved in 
         biologically meaningful interactions. This typically means matching 
         the sequences of proteins A&B that come from the same species. In 
         other words, interaction of T. aculeatus proteinA and
         H. sapien proteinB likely don't form a biologically relevant 
         interaction, because the species are so diverged. 
         
         Matching of sequences is performed via the identifiers, but it is 
         the responsibility of the user to correctly construct the sequence 
         identifiers before passing the alignments (and tree, if applicable) 
         to this function. To faciliate matching sequence identifiers, but not
         having to discard the important information already present in a 
         sequence identifier obtained from a database such as KEGG or RefSeq,
         sequence identifiers may contain a plus symbol (+). The characters 
         before the + are used to match sequences between the alignments and 
         tree. The characters after the + are ignored by this function. So, a 
         good strategy is to make the text before the '+' a taxonomic 
         identifier and leave the text after the '+' as the original sequence 
         identifier. For example, your sequence/tip names could look like:
         
         alignment1: 'H. sapien+gi|123', 'T. aculeatus+gi|456'
         alignment2: 'T. aculeatus+gi|999', 'H. sapien+gi|424'
         tree: 'T. aculeatus+gi|456', 'H. sapien'
         
         If there is no plus, the full sequence identifier will be used for the
         matching (see H. sapien in tree).  The order of sequences in the 
         alignments is not important. Also note that we can't split on a colon, 
         as would be convenient for pulling sequences from KEGG, because colons 
         are special characters in newick. 
         
         A WORD OF WARNING ON SEQUENCE IDENTIFIER CONSTRUCTION:
         A further complication is that in some cases, an organism will have 
         multiple copies of proteins involved in a complex, but proteinA from
         locus 1 will not form a functional comples with proteinB from locus 2.
         An example of this is the three T6SSs in P. aeuroginosa. Make sure 
         this is handled correctly when building your sequence identifiers!
         Sequence identifiers are used to match the sequences which are 
         suspected to form a functional complex, which may not simply mean
         sequences from the same species.
         
    """
    # Perform general validation step
    coevolve_alignments_validation(method,\
        alignment1,alignment2,min_num_seqs,max_num_seqs,**kwargs)
    # Append alignment 2 to the end of alignment 1 in a new alignment object
    merged_alignment = merge_alignments(alignment1,alignment2)
    validate_alignment(merged_alignment)
    
    if max_num_seqs and merged_alignment.getNumSeqs() > max_num_seqs:
        try:
            merged_alignment = sequence_filter(merged_alignment,max_num_seqs)
        except TypeError:
            raise ValueError, "Too many sequences for covariation analysis."
    
    # If the user provided a filepath for the merged alignment, write it to
    # disk. This is sometimes useful for post-processing steps.
    if merged_aln_filepath:
        merged_aln_file = open(merged_aln_filepath,'w')
        merged_aln_file.write(merged_alignment.toFasta())
        merged_aln_file.close()
        
    if return_full:
        # If the user requests the full result matrix (inter and intra
        # molecular coevolution data), call coevolve_alignment on the
        # merged alignment. Calling coevolve_alignment ensures that
        # the correct validations are performed, rather than directly
        # calling method.
        result = coevolve_alignment(method,merged_alignment,**kwargs)
        return result

    ## Note: we only get here if the above if statement comes back False, 
    ## i.e., if we only want the intermolecular coevolution and don't care 
    ## about the intramolecular coevolution.
    
    # Get the appropriate method (need the pair method, 
    # not the alignment method)
    try:
        method = coevolve_alignment_to_coevolve_pair[method]
    except KeyError:
        # may have passed in the coevolve_pair function, so just
        # continue -- will fail (loudly) soon enough if not.
        pass

    # Cache the alignment lengths b/c we use them quite a bit, and build
    # the result object to be filled in.
    len_alignment1 = len(alignment1)
    len_alignment2 = len(alignment2)
    result = array([[gDefaultNullValue]*len_alignment1]*len_alignment2)
         
    # Some of the methods run much faster if relevant data is computed once,
    # and passed in -- that is done here, but there is a lot of repeated code.
    # I'm interested in suggestions for how to make this block of code more
    # compact (e.g., can I be making better use of kwargs?).
    if method == mi_pair or method == nmi_pair or method == normalized_mi_pair:
        positional_entropies = \
         [Freqs(p).Uncertainty for p in merged_alignment.Positions]
        for i in range(len_alignment1):
            for j in range(len_alignment2):
                result[j,i] = \
                 method(merged_alignment,j+len_alignment1,i,\
                  h1=positional_entropies[j+len_alignment1],\
                  h2=positional_entropies[i],**kwargs)
    elif method == ancestral_state_pair:    
        # Perform method-specific validations so we can safely work
        # directly with method rather than the coevolve_pair wrapper,
        # and thereby avoid validation steps on each call to method.
        ancestral_states_input_validation(merged_alignment,**kwargs)
        ancestral_seqs = get_ancestral_seqs(merged_alignment,kwargs['tree'])
        for i in range(len_alignment1):
            for j in range(len_alignment2):
                result[j,i] = \
                 method(aln=merged_alignment,\
                  pos1=j+len_alignment1,pos2=i,\
                  ancestral_seqs=ancestral_seqs,**kwargs)
    else:
        # Perform method-specific validations so we can safely work
        # directly with method rather than the coevolve_pair wrapper,
        # and thereby avoid validation steps on each call to method.
        if method == sca_pair: sca_input_validation(merged_alignment,**kwargs)
        for i in range(len_alignment1):
            for j in range(len_alignment2):
                result[j,i] = \
                 method(merged_alignment,j+len_alignment1,i,**kwargs)
    return result
 
    
## End intermolecular coevolution analysis
    
## Start positional coevolution analysis
# coevolve position functions: f(alignment,position,**kwargs) -> 1D array
coevolve_position_functions = \
   {'mi': mi_position,'nmi': normalized_mi_position,\
    'rmi': resampled_mi_position,'sca': sca_position,\
    'an':ancestral_state_position}

def coevolve_position(method,alignment,position,**kwargs):
    """ Apply provided coevolution method to a column in alignment 

        method: f(alignment,position,**kwargs) -> array of coevolution scores
        alignment: alignment object for which coevolve scores should be
            calculated (DenseAlignment)
        position: position of interest for coevolution analysis (int)
        **kwargs: parameters to be passed to method()
    """
    # Perform method-specific validation steps
    if method == sca_position: sca_input_validation(alignment,**kwargs)
    if method == ancestral_state_position: 
        ancestral_states_input_validation(alignment,**kwargs)
    # Perform general validation steps
    validate_position(alignment,position)
    validate_alignment(alignment)
    # Perform the analysis and return the result vector
    return method(alignment,position=position,**kwargs)

## End positional coevolution analysis

## Start pairwise coevolution analysis
# coevolve pair functions: f(alignment,pos1,pos2,**kwargs) -> float
coevolve_pair_functions = \
   {'mi': mi_pair,'nmi': normalized_mi_pair,\
    'rmi': resampled_mi_pair,'sca': sca_pair,\
    'an':ancestral_state_pair,'gctmpca':gctmpca_pair}

def coevolve_pair(method,alignment,pos1,pos2,**kwargs):
    """ Apply provided coevolution method to columns pos1 & pos2 of alignment 

        method: f(alignment,pos1,pos2,**kwargs) -> coevolution score
        alignment: alignment object for which coevolve score should be
            calculated (DenseAlignment) 
        pos1, pos2: positions to evaluate coevolution between (int) 
        **kwargs: parameters to be passed to method()

    """
    # Perform method-specific validation steps
    if method == sca_pair: sca_input_validation(alignment,**kwargs)
    if method == ancestral_state_pair: 
        ancestral_states_input_validation(alignment,**kwargs)
    # Perform general validation steps
    validate_position(alignment,pos1)
    validate_position(alignment,pos2)
    validate_alignment(alignment)
    # Perform the analysis and return the result score
    return method(alignment,pos1=pos1,pos2=pos2,**kwargs)

## End pairwise coevolution analysis    
### End methods for running coevolutionary analyses on sequence data


## Coevolution matrix filters: the following functions are used as 
## post-processing filters for coevolution result matrices.

def filter_threshold_based_multiple_interdependency(aln,coevolution_matrix,
    threshold=0.95,max_cmp_threshold=1,cmp_function=greater_equal,\
    intermolecular_data_only=False):
    """Filters positions with more than max_cmp_threshold scores >= threshold
    
        This post-processing filter is based on the idea described in:
         "Using multiple interdependency to separate functional from
          phylogenetic correlations in protein alignments"
          Tillier and Lui, 2003
          
        The idea is that when a position achieved a high covariation score
         with many other positions, the covariation is more likely to arise
         from the phylogeny than from coevolution. They illustrate that this
         works in their paper, and I plan to test it with my alpha-helix-based
         analysis. Note that you can change cmp_function to change whether
         you're looking for high values to indicate covarying positions
         (cmp_function=greater_equal, used for most coevolution algorithms) or 
         low values to indicate covarying positions (cmp_function=less_equal, 
         used, e.g., for p-value matrices).
         
        aln: alignment used to generate the coevolution matrix -- this
         isn't actually used, but is required to maintain the same interface
         as other post-processing filters. Pass None if that's more convenient.
        coevolution_matrix: the 2D numpy array to be filtered. This should
         be a rectangular matrix for intermoelcular coevolution data (in which
         case intermolecular_data_only must be set to True) or a symmetric 
         square matrix (when intermolecular_data_only=False)
        threshold: the threshold coevolution score that other scores should be 
         compared to
        max_cmp_threshold: the max number of scores that are allowed to be 
         True with respect to cmp_function and threshold (e.g., the max number
         of positions that may be greater than the threhsold) before setting
         all values associated that position to gDefaultNullValue (default: 1)
        cmp_function: the function that compares each score in 
         coevolution_matrix to threshold (default: ge (greater than)) - 
         function should return True if the score is one that your looking 
         (e.g. score >= threshold) or False otherwise
        intermolecular_data_only: True if coevolution_matrix is a rectangular
         matrix representing an intermolecular coevolution study, and False 
         if the matrix is a symmetric square matrix
         
        NOTE: IF intermolecular_data_only == True, coevolution_matrix MUST BE 
         SYMMETRIC, NOT LOWER TRIANGULAR OR OTHERWISE NON-SYMMETRIC!!
    """
    # Determine which rows need to be filtered (but don't filter them 
    # right away or subsequent counts could be off)
    filtered_rows = []
    for row_n in range(coevolution_matrix.shape[0]):
        count_cmp_threshold = 0
        for v in coevolution_matrix[row_n,:]:
           if v != gDefaultNullValue and cmp_function(v,threshold):
               count_cmp_threshold += 1
               if count_cmp_threshold > max_cmp_threshold:
                   filtered_rows.append(row_n)
                   break
                 
    # if the matrix is not symmetric, determine which cols need to be filtered
    if intermolecular_data_only:
        filtered_cols = []
        for col_n in range(coevolution_matrix.shape[1]):
            count_cmp_threshold = 0
            for v in coevolution_matrix[:,col_n]:
               if v != gDefaultNullValue and cmp_function(v,threshold):
                   count_cmp_threshold += 1
                   if count_cmp_threshold > max_cmp_threshold:
                       filtered_cols.append(col_n)
                       break
        # filter the rows and cols in a non-symmetric matrix
        for row_n in filtered_rows:
            coevolution_matrix[row_n,:] = gDefaultNullValue
        for col_n in filtered_cols:
            coevolution_matrix[:,col_n] = gDefaultNullValue
    else:
        # filter the rows and cols in a symmetric matrix
        for row_n in filtered_rows:
            coevolution_matrix[row_n,:] =\
             coevolution_matrix[:,row_n] = gDefaultNullValue
    
    # return the result
    return coevolution_matrix

    
def is_parsimony_informative(column_freqs,minimum_count=2,\
    minimum_differences=2,ignored=gDefaultExcludes,strict=False):
    """Return True is aln_position is parsimony informative
    
        column_freqs: dict of characters at alignmnet position mapped
         to their counts -- this is the output of call alignment.columnFreqs()
        minimum_count: the minimum number of times a character must show up
         for it to be acceptable (default: 2)
        minimum_differences: the minimum number of different characters
         that must show up at the alignment position (default: 2)
        ignored: characters that should not be counted toward 
         minimum_differences (default are exclude characters) 
        strict: if True, requires that all amino acids showing up at least
         once at the alignment position show up at least minimum_counts 
         times, rather than only requiring that minimum_differences 
         amino acids show up minimum_counts times. (default: False)
    
        The term parsimony informative comes from Codoner, O'Dea, 
         and Fares 2008, Reducing the false positive rate in the non-
         parametric analysis of molecular coevolution. In the paper
         they find that if positions which don't contain at least two
         different amino acids, and where each different amino acid doesnt
         show up at least twice each are ignored (i.e., treated as though 
         there is not enough information) the positive predictive value 
         (PPV) and sensitivity (SN) increase on simulated alignments. They 
         term this quality parsimony informative.
         I implemented this as a filter, but include some generalization. 
         To determine if a column in an alignment is parsimony informative
         in the exact manner described in Codoner et al., the following 
         parameter settings are required: 
          minimum_count = 2 (default)
          minimum_differences = 2 (default)
          strict = True (default is False)
         To generalize this function, minimum_count and minimum_differences
         can be passed in so at least minimum_differences different amino 
         acids must show up, and each amino acid must show up at least 
         minimum_count times.
         In additional variation, strict=False can be passed requiring 
         that only minimum_differences number of amino acids show up at least 
         minimum_counts times (opposed to requiring that ALL amino acids show
         up minimum_counts times). This is the default behavior.
         By default, the default exclude characters (- and ?) don't count. 
          
    """
    if ignored:
        for e in ignored:
            try:
                del column_freqs[e]
            except KeyError:
                pass
                
    if len(column_freqs) < minimum_differences: return False
    count_gte_minimum = 0
    for count in column_freqs.values():
        # if not strict, only minimum_differences of the counts
        # must be greater than or equal to minimum_count, so
        # count those occurrences (this is different than the 
        # exact technique presented in Codoner et al.)
        if count >= minimum_count: 
            count_gte_minimum += 1
        # if strict, all counts must be greater than minimum_count
        # so return False here if we find one that isn't. This is how
        # the algorithm is described in Codoner et al.     
        elif strict: 
            return False
    return count_gte_minimum >= minimum_differences

def filter_non_parsimony_informative(aln,coevolution_matrix,\
    null_value=gDefaultNullValue,minimum_count=2,minimum_differences=2,\
    ignored=gDefaultExcludes,intermolecular_data_only=False,strict=False):
    """ Replaces scores in coevolution_matrix with null_value for positions
         which are not parsimony informative. 
         
         See is_parsimony_informative doc string for definition of 
          parsimony informative. 
          
         aln: the input alignment used to generate the coevolution matrix;
          if the alignment was recoded, this should be the recoded alignment.
         coevolution_matrix: the result matrix
         null_value: the value to place in positions which are not
          parsimony informative
    """
    if intermolecular_data_only:
        len_aln1 = coevolution_matrix.shape[1]
    column_frequencies = aln.columnFreqs()
    for i in range(len(column_frequencies)):
        if not is_parsimony_informative(column_frequencies[i],minimum_count,\
         minimum_differences,ignored,strict):
         if not intermolecular_data_only:
             coevolution_matrix[i,:] = coevolution_matrix[:,i] = null_value
         else:
            try:
                coevolution_matrix[:,i] = null_value
            except IndexError:
                coevolution_matrix[i-len_aln1,:] = null_value
         
def make_positional_exclude_percentage_function(excludes,max_exclude_percent):
    """ return function to identify aln positions with > max_exclude_percent 
    """
    excludes = {}.fromkeys(excludes)
    def f(col):
         exclude_count = 0
         for c in col: 
             if c in excludes:
                 exclude_count += 1
         return exclude_count / len(col) > max_exclude_percent
    return f
         
def filter_exclude_positions(aln,coevolution_matrix,\
    max_exclude_percent=0.1,null_value=gDefaultNullValue,\
    excludes=gDefaultExcludes,intermolecular_data_only=False):
    """ Assign null_value to positions with > max_exclude_percent excludes

        aln: the DenseAlignment object
        coevolution_matrix: the 2D numpy array -- this will be modified
        max_exclude_percent: the maximimu percent of characters that
         may be exclude characters in any alignment position (column). 
         if the percent of exclude characters is greater than this value,
         values in this position will be replaced with null_value 
         (default = 0.10)
        null_value: the value to be used as null (default: gDefaultNullValue)
        excludes: the exclude characters (default: gDefaultExcludes)
        intermolecular_data_only: True if the coevolution result
         matrix contains only intermolecular data (default: False)

    """
    # construct the function to be passed to aln.getPositionIndices
    f = make_positional_exclude_percentage_function(\
     excludes,max_exclude_percent)
    # identify the positions containing too many exclude characters
    exclude_positions = aln.getPositionIndices(f)
    
    # replace values from exclude_positions with null_value
    if not intermolecular_data_only:
        # if working with intramolecular data (or inter + intra molecular data)
        # this is easy
        for p in exclude_positions:
            coevolution_matrix[p,:] = coevolution_matrix[:,p] = null_value
    else:
        # if working with intermolecular data only, this is more complicated --
        # must convert from alignment positions to matrix positions
        len_aln1 = coevolution_matrix.shape[1]
        for p in exclude_positions:
            try:
                coevolution_matrix[:,p] = null_value
            except IndexError:
                coevolution_matrix[p-len_aln1,:] = null_value
                
## Functions for archiving/retrieiving coevolve results
#### These functions are extremely general -- should they go 
#### somewhere else, or should I be using pre-existing code?
def pickle_coevolution_result(coevolve_result,out_filepath='output.pkl'):
    """ Pickle coevolve_result and store it at output_filepath 
        
        coevolve_result: result from a coevolve_* function (above); this can
         be a float, an array, or a 2D array (most likely it will be one of the
         latter two, as it will usually be fast enough to compute a single
         coevolve value on-the-fly.
        out_filepath: path where the pickled result should be stored
    """
    try:
        p = Pickler(open(out_filepath,'w'))
    except IOError:
        err = "Can't access filepath. Do you have write access? " + \
            out_filepath
        raise IOError,err
    p.dump(coevolve_result)

def unpickle_coevolution_result(in_filepath):
    """ Read in coevolve_result from a pickled file 
        
        in_filepath: filepath to unpickle
    """
    try: 
        u = Unpickler(open(in_filepath))
    except IOError:
        err = \
         "Can't access filepath. Does it exist? Do you have read access? "+\
         in_filepath
        raise IOError,err
    return u.load()
    
def coevolution_matrix_to_csv(coevolve_matrix,out_filepath='output.csv'):
    """ Write coevolve_matrix as csv file at output_filepath 
        
        coevolve_result: result from a coevolve_alignment function (above);
         this should be a 2D numpy array
        out_filepath: path where the csv result should be stored
    """
    try:
        f = open(out_filepath,'w')
    except IOError:
        err = "Can't access filepath. Do you have write access? " + \
            out_filepath
        raise IOError,err
    f.write('\n'.join([','.join([str(v) for v in row]) \
     for row in coevolve_matrix]))
    f.close()
      
      
def csv_to_coevolution_matrix(in_filepath):
    """ Read a coevolution matrix from a csv file 
        
        in_filepath: input filepath
    """
    try: 
        f = open(in_filepath)
    except IOError:
        err = \
         "Can't access filepath. Does it exist? Do you have read access? "+\
         in_filepath
        raise IOError,err
    result = []
    for line in f:
        values = line.strip().split(',')
        result.append(map(float,values))
    return array(result)


    
## End functions for archiving/retrieiving coevolve results

## Start functions for analyzing the results of a coevolution run.
        
def identify_aln_positions_above_threshold(coevolution_matrix,threshold,\
    aln_position,null_value=gDefaultNullValue):
    """ Returns the list of alignment positions which achieve a 
        score >= threshold with aln_position. 
        Coevolution matrix should be symmetrical or you
        may get weird results -- scores are pulled from the row describing
        aln_position.
    """
    coevolution_scores = coevolution_matrix[aln_position]
    results = []
    for i in range(len(coevolution_scores)):
        s = coevolution_scores[i]
        if  s != null_value and s >= threshold: 
            results.append(i)
    return results
    
def aln_position_pairs_cmp_threshold(coevolution_matrix,\
    threshold,cmp_function,null_value=gDefaultNullValue,\
    intermolecular_data_only=False):
    """ Returns list of position pairs with score >= threshold 
    
        coevolution_matrix: 2D numpy array
        threshold: value to compare matrix positions against
        cmp_function: function which takes a value and theshold
         and returns a boolean (e.g., ge(), le())
        null_value: value representing null scores -- these are 
         ignored
        intermolecular_data_only: True if the coevolution result
         matrix contains only intermolecular data (default: False)
    """
    if not intermolecular_data_only:
        assert coevolution_matrix.shape[0] == coevolution_matrix.shape[1],\
         "Non-square matrices only supported for intermolecular-only data."
    results = []
    # compile the matrix positions with cmp(value,threshold) == True
    for i,row in enumerate(coevolution_matrix):
        for j,value in enumerate(row):
            if value != null_value and cmp_function(value,threshold):
                results.append((i,j))
    
    # if working with intermolecular data only, need to convert 
    # matrix positions to alignment positions
    if intermolecular_data_only: 
        # convert matrix positions to alignment positions
        adjustment = coevolution_matrix.shape[1]
        results = [(j,i+adjustment) for i,j in results]
    return results
    
def aln_position_pairs_ge_threshold(coevolution_matrix,\
    threshold,null_value=gDefaultNullValue,\
    intermolecular_data_only=False):
    """wrapper function for aln_position_pairs_cmp_threshold """
    return aln_position_pairs_cmp_threshold(\
     coevolution_matrix,threshold,greater_equal,null_value,intermolecular_data_only)
    
def aln_position_pairs_le_threshold(coevolution_matrix,\
    threshold,null_value=gDefaultNullValue,\
    intermolecular_data_only=False):
    """wrapper function for aln_position_pairs_cmp_threshold """
    return aln_position_pairs_cmp_threshold(\
     coevolution_matrix,threshold,less_equal,\
     null_value,intermolecular_data_only)
         
def count_cmp_threshold(m,threshold,cmp_function,null_value=gDefaultNullValue,\
    symmetric=False,ignore_diagonal=False):
    """ Returns a count of the values in m >= threshold, ignoring nulls.

        m: coevolution matrix (numpy array) 
        thresold: value to compare against scores in matrix (float)
        cmp_function: function used to compare value to threshold 
         (e.g., greater_equal, less_equal)
    """

    total_non_null = 0
    total_hits = 0
    if not symmetric:
        if ignore_diagonal:
            values = [m[i,j] \
                     for i in range(m.shape[0]) \
                     for j in range(m.shape[1]) \
                     if i != j]
        else:
            values = m.flat
    else:
        if ignore_diagonal:
            # has to be a better way to do this... tril doesn't work b/c it
            # sets the upper triangle to zero -- if i could get it to set
            # that to null_value, and then apply flat, that'd be fine.
            #values = tril(m,-1)
            values = [m[i,j] for i in range(len(m)) for j in range(i)]
        else:
            #values = tril(m)
            values = [m[i,j] for i in range(len(m)) for j in range(i+1)]
        
    if isnan(null_value):
        def is_not_null_value(v):
            return not isnan(v)
    else:
        def is_not_null_value(v):
            return isnan(v) or v != null_value
    
    for value in values:
        if is_not_null_value(value):
            total_non_null += 1 
            if cmp_function(value, threshold):
                total_hits += 1
    return total_hits, total_non_null

def count_ge_threshold(m,threshold,null_value=gDefaultNullValue,\
    symmetric=False,ignore_diagonal=False):
    """wrapper function for count_cmp_threshold """
    return count_cmp_threshold(m,threshold,greater_equal,null_value,\
    symmetric,ignore_diagonal)

def count_le_threshold(m,threshold,null_value=gDefaultNullValue,\
    symmetric=False,ignore_diagonal=False):
    """wrapper function for count_cmp_threshold """
    return count_cmp_threshold(m,threshold,less_equal,null_value,\
    symmetric,ignore_diagonal)
    
def ltm_to_symmetric(m):
    """ Copies values from lower triangle to upper triangle"""
    assert m.shape[0] == m.shape[1], \
            "Making matrices symmetric only supported for square matrices"
    
    for i in range(len(m)):
        for j in range(i):
            m[j,i] = m[i,j]
    return m
    
    
## End functions for analyzing the results of a coevolution run



## Script functionality
def build_coevolution_matrix_filepath(input_filepath,\
    output_dir='./',method=None,alphabet=None,parameter=None):
    """ Build filepath from input filename, output dir, and list of suffixes
    
        input_filepath: filepath to be used for generating the output
            filepath. The path and the final suffix will be stripped to
            get the 'base' filename.
        output_dir: the path to append to the beginning of the base filename
        method: string indicating method that should be appended to filename
        alphabet: string indicating an alphabet recoding which should be 
            appended to filename, or None
        parameter: parameter that should be appended to the filename, 
            or None (ignored if method doesn't require parameter)

        Examples:
         >>> build_coevolution_matrix_filepath(\
          './p53.fasta','/output/path','mi','charge')
         /output/path/p53.charge.mi
         >>> build_coevolution_matrix_filepath(\
          './p53.new.fasta','/output/path','mi','charge')
         /output/path/p53.new.charge.mi
         >>> build_coevolution_matrix_filepath(\
          './p53.fasta','/output/path','sca','charge',0.75)
         /output/path/p53.charge.sca_75

    """
    if method == 'sca':
        try:
            cutoff_str = str(parameter)
            point_index = cutoff_str.rindex('.')
            method = '_'.join([method,cutoff_str[point_index+1:point_index+4]])
        except ValueError:
            raise ValueError, 'Cutoff must be provided when method == \'sca\''
    elif method == 'gctmpca':
        try:
            epsilon_str = str(parameter)
            point_index = epsilon_str.rindex('.')
            method = '_'.join([method,epsilon_str[point_index+1:point_index+4]])
        except ValueError:
            raise ValueError, 'Epsilon must be provided when method == \'gctmpca\''
            

    suffixes = filter(None,[alphabet,method])
    
    # strip path
    try:
        result = input_filepath[input_filepath.rindex('/')+1:]
    except ValueError:
        result = input_filepath
    # strip final suffix
    try:
        result = result[:result.rindex('.')]
    except ValueError:
        pass
    # append output path
    if output_dir.endswith('/'):
        result = ''.join([output_dir,result])
    else:
        result = ''.join([output_dir,'/',result])
    # append output suffixes
    result = '.'.join(filter(None,[result]+suffixes))

    return result

def parse_coevolution_matrix_filepath(filepath):
    """ Parses a coevolution matrix filepath into constituent parts.
    
        Format is very specific. Will only work on filenames such as:
         path/alignment_identifier.alphabet_id.method.pkl 
         path/alignment_identifier.alphabet_id.method.csv
         
        This format is the recommended naming convention for coevolution 
         matrices. To ensure filepaths compatible with this function, use
         cogent.evolve.coevolution.build_coevolution_matrix_filepath to build 
         the filepaths for your coevolution matrices.
         
         
         Examples:
         parse_coevolution_matrix_filepath('pkls/myosin_995.a1_4.nmi.pkl') 
            => ('myosin_995', 'a1_4', 'nmi')
         parse_coevolution_matrix_filepath('p53.orig.mi.csv')
            => ('p53','orig','mi')
    """
    filename = basename(filepath)
    fields = filename.split('.')
    try:
        alignment_id = fields[0]
        alphabet_id = fields[1]
        method_id = fields[2]
        extension = fields[3]
    except IndexError:
        raise ValueError,\
         'output filepath not in parsable format: %s. See doc string for format definition.' % filepath
    
    return (alignment_id,alphabet_id,method_id)


script_info = {}
script_info['brief_description'] = ""
script_info['script_description'] = ""
script_info['script_usage'] = [("","","")]
script_info['output_description']= ""
script_info['required_options'] = [\
 # Example required option
 make_option('-i','--alignment_fp',help='the input alignment'),
]
script_info['optional_options'] = [\
 make_option('-t','--tree_fp',
             help='the input tree [default: %default]',
             default=None),
 make_option('-f','--force',action='store_true',\
     dest='force',help='Force overwrite of any existing files '+\
     '[default: %default]',
     default=False),
 make_option('--ignore_excludes',action='store_true',
     dest='ignore_excludes',help='exclude_handler=ignore_excludes '+\
     '[default: %default]',default=False),
 make_option('-d','--delimited_output',action='store_true',
     dest='delimited_output',help='store result matrix as csv file '+\
     'instead of pkl file [default: %default]',default=False),
 make_option('-m','--method_id',action='store',
        type='choice',dest='method_id',help='coevolve method to apply '+\
        '[default: %default]',default='nmi',
        choices=coevolve_alignment_functions.keys()),
 make_option('-c','--sca_cutoff',action='store',
        type='float',dest='sca_cutoff',help='cutoff to apply when method'+\
        ' is SCA (-m sca) [default: %default]',default=0.8),
 make_option('-e','--epsilon',action='store',
        type='float',dest='epsilon',help='epsilon, only used when method'+\
        ' is Haussler/Yeang (-m gctmpca) [default: %default]',default=0.7),
 make_option('-o','--output_dir',action='store',
        type='string',dest='output_dir',help='directory to store pickled '+\
        'result matrix (when -p is specified) [default: %default]',
        default='./'),
 make_option('-a','--alphabet_id',action='store',
         dest='alphabet_id',type='choice',
         help='name of alphabet to reduce to [default: %default (i.e., full)]',
         default='orig',choices=alphabets.keys())
]
script_info['version'] = __version__



def main():
    option_parser, opts, args =\
       parse_command_line_parameters(**script_info)

    verbose = opts.verbose
    force = opts.force
    method_id = opts.method_id
    output_dir = opts.output_dir
    sca_cutoff = opts.sca_cutoff
    epsilon = opts.epsilon
    alphabet_id = opts.alphabet_id
    delimited_output = opts.delimited_output
    alignment_filepath = opts.alignment_fp
    tree_filepath = opts.tree_fp

    # error checking related to the alignment
    try:
       aln = LoadSeqs(alignment_filepath,MolType=PROTEIN,alignment=DenseAlignment)
    except IndexError:
       option_parser.error('Must provide an alignment filepath.')
    except (RecordError,FileFormatError):
       option_parser.error(
        "Error parsing alignment: %s" % alignment_filepath)
    except IOError: 
       option_parser.error(\
        "Can't access alignment file: %s" % alignment_filepath)

    # error checking related to the newick tree
    if tree_filepath == None:
        if (opts.method_id == 'gctmpca' or opts.method_id == 'an'):
          option_parser.error(\
          'Tree-based method, but no tree. Provide a newick formatted tree.')
    else:
        try:
           tree = LoadTree(tree_filepath)
        except TreeParseError:
           option_parser.error(\
            "Error parsing tree: %s" % tree_filepath)
        except IOError: 
           option_parser.error(\
            "Can't access tree file: %s" % tree_filepath)

    # Error checking related to exclude handling
    if opts.ignore_excludes and opts.method_id not in ('mi','nmi'):
       option_parser.error(\
        'Ignoring exclude (i.e., gap) characters currently only supported for MI and NMI.')

    if delimited_output: 
        output_file_extension = 'csv'
    else:
        output_file_extension = 'pkl'    

    # Load the data and parameters specified by the user.
    coevolve_alignment_function = coevolve_alignment_functions[method_id]
    alphabet_def = alphabets[alphabet_id]
    aln = LoadSeqs(alignment_filepath,moltype=PROTEIN,aligned=DenseAlignment)
    
    if tree_filepath != None:
        tree = LoadTree(tree_filepath)
        
    if opts.ignore_excludes:
        exclude_handler = ignore_excludes
    else:
        exclude_handler = None 

    # Recode the alignment in the specified reduced-state alphabet.
    recoded_aln = recode_dense_alignment(aln,alphabet_def=alphabet_def)

    # Perform some preliminary steps before starting the analysis. This is 
    # done here, rather than in the block below, to allow for some work
    # with the pickle filepath before starting the analysis. The trade-off
    # is that the coevolution method is checked twice (here and below), but 
    # since this main block is run relatively infrequently, this is not
    # noticeably less efficient.  
    if method_id == 'sca':
        # requires prior amino acid frequencies -- recode them 
        # to reflect the reduced-state alphabet
        background_freqs = \
            recode_freq_vector(alphabet_def,default_sca_freqs)
        output_filepath = ''.join([\
             build_coevolution_matrix_filepath(alignment_filepath,\
             output_dir,method_id,alphabet_id,sca_cutoff),\
             '.',output_file_extension])
    elif method_id == 'gctmpca':
        # uses DSO78 data -- recode it to reflect the
        # reduced-state alphabet
        recoded_counts, recoded_freqs = \
            recode_counts_and_freqs(alphabet_def)
        recoded_q = square_matrix_to_dict(\
            build_rate_matrix(recoded_counts,recoded_freqs))
        output_filepath = ''.join([\
            build_coevolution_matrix_filepath(alignment_filepath,\
            output_dir,method_id,alphabet_id,epsilon),\
             '.',output_file_extension])
    else:
        output_filepath = ''.join([\
             build_coevolution_matrix_filepath(alignment_filepath,\
             output_dir,method_id,alphabet_id),\
             '.',output_file_extension])

    # Check for existence of output file -- we want to find this out
    # before generating the result matrix so we don't overwrite it
    # (since that can take a while). If the user specified -f to 
    # force file overwriting, skip this step.
    if not force and exists(output_filepath):
        print 'Output file already exists:', output_filepath
        print 'Remove, rename, or specify -f to force overwrite.'
        exit(-1)

    # If the user specified -v, print some information to stdout. Otherwise
    # only error messages are displayed (via stderr).
    if verbose:
        print 'Input alignment: %s' % alignment_filepath
        try:
            print 'Input tree: %s' % tree_filepath
        except IndexError:
            pass
        print 'Output matrix filepath: %s' % output_filepath
        if alphabet_id != 'orig': 
            print 'Alphabet reduction: %s' % alphabet_id
        else: 
            print "No alphabet reduction (alphabet_id = 'orig')."
        if method_id == 'sca': 
            print 'Coevolution method: sca, cutoff=%f' % sca_cutoff
        elif method_id == 'gctmpca': 
            print 'Coevolution method: gctmpca, epsilon=%f' % epsilon
        else: 
            print 'Coevolution method: %s' % method_id
        if exclude_handler == ignore_excludes:
            print \
             'Exclude (i.e., gap) character handling: gaps treated as other characters.'
        else:
            print \
             'Exclude (i.e., gap) character handling: columns with gaps = null value'

    # Perform the coevolutionary analysis. This can take a while.
    if coevolve_alignment_function == sca_alignment:
        alphabet = ''.join([c[0] for c in alphabet_def])
        matrix = coevolve_alignment(coevolve_alignment_function,recoded_aln,\
         cutoff=sca_cutoff,background_freqs=background_freqs,\
         alphabet=alphabet)
    elif coevolve_alignment_function == gctmpca_alignment:
        matrix = coevolve_alignment(coevolve_alignment_function,\
         recoded_aln,tree=tree,sub_matrix=recoded_q,priors=recoded_freqs,\
         epsilon=epsilon)
    elif coevolve_alignment_function == ancestral_state_alignment:
        matrix = coevolve_alignment(\
         coevolve_alignment_function,recoded_aln,tree=tree)
    else:
        matrix = coevolve_alignment(coevolve_alignment_function,recoded_aln,\
         exclude_handler=exclude_handler)

    # Write the coevolution matrix to disk in the requested format
    if delimited_output:
        coevolution_matrix_to_csv(matrix,output_filepath)
    else:
        pickle_coevolution_result(matrix,output_filepath)

if __name__ == "__main__":
    main()