This file is indexed.

/usr/share/pyshared/cogent/maths/geometry.py is in python-cogent 1.5.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
#!/usr/bin/env python
"""Code for geometric operations, e.g. distances and center of mass."""
from __future__ import division
from numpy import array, take, sum, newaxis, sqrt, sqrt, sin, cos, pi, c_, \
                  vstack, dot, ones

__author__ = "Sandra Smit"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Sandra Smit", "Gavin Huttley", "Rob Knight", "Daniel McDonald",
               "Marcin Cieslik"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Sandra Smit"
__email__ = "sandra.smit@colorado.edu"
__status__ = "Production"

def center_of_mass(coordinates, weights= -1):
    """Calculates the center of mass for a dataset.

    coordinates, weights can be two things:
    either: coordinates = array of coordinates, where one column contains
        weights, weights = index of column that contains the weights
    or: coordinates = array of coordinates, weights = array of weights

    weights = -1 by default, because the simplest case is one dataset, where
        the last column contains the weights.
    If weights is given as a vector, it can be passed in as row or column.
    """
    if isinstance(weights, int):
        return center_of_mass_one_array(coordinates, weights)
    else:
        return center_of_mass_two_array(coordinates, weights)

def center_of_mass_one_array(data, weight_idx= -1):
    """Calculates the center of mass for a dataset

    data should be an array of x1,...,xn,r coordinates, where r is the 
        weight of the point
    """
    data = array(data)
    coord_idx = range(data.shape[1])
    del coord_idx[weight_idx]
    coordinates = take(data, (coord_idx), 1)
    weights = take(data, (weight_idx,), 1)
    return sum(coordinates * weights, 0) / sum(weights, 0)

def center_of_mass_two_array(coordinates, weights):
    """Calculates the center of mass for a set of weighted coordinates

    coordinates should be an array of coordinates
    weights should be an array of weights. Should have same number of items
        as the coordinates. Can be either row or column.
    """
    coordinates = array(coordinates)
    weights = array(weights)
    try:
        return sum(coordinates * weights, 0) / sum(weights, 0)
    except ValueError:
        weights = weights[:, newaxis]
        return sum(coordinates * weights, 0) / sum(weights, 0)

def distance(first, second):
    """Calculates Euclideas distance between two vectors (or arrays).

    WARNING: Vectors have to be the same dimension.
    """
    return sqrt(sum(((first - second) ** 2).ravel()))

def sphere_points(n):
    """Calculates uniformly distributed points on a unit sphere using the 
    Golden Section Spiral algorithm.
    
    Arguments:
    
        -n: number of points
    """
    points = []
    inc = pi * (3 - sqrt(5))
    offset = 2 / float(n)
    for k in xrange(int(n)):
        y = k * offset - 1 + (offset / 2)
        r = sqrt(1 - y * y)
        phi = k * inc
        points.append([cos(phi) * r, y, sin(phi) * r])
    return array(points)

def coords_to_symmetry(coords, fmx, omx, mxs, mode):
    """Applies symmetry transformation matrices on coordinates. This is used to
    create a crystallographic unit cell or a biological molecule, requires 
    orthogonal coordinates, a fractionalization matrix (fmx), 
    an orthogonalization matrix (omx) and rotation matrices (mxs).
    
    Returns all coordinates with included identity, which should be the first
    matrix in mxs.
    
    Arguments:
    
        - coords: an array of orthogonal coordinates
        - fmx: fractionalization matrix
        - omx: orthogonalization matrix
        - mxs: a sequence of 4x4 rotation matrices 
        - mode: if mode 'table' assumes rotation matrices operate on 
          fractional coordinates (like in crystallographic tables).
    """
    all_coords = [coords] # the first matrix is identity
    if mode == 'fractional': # working with fractional matrices
        coords = dot(coords, fmx.transpose())
    # add column of 1.    
    coords4 = c_[coords, array([ones(len(coords))]).transpose()]
    for i in xrange(1, len(mxs)): # skip identity
        rot_mx = mxs[i].transpose()
        new_coords = dot(coords4, rot_mx)[:, :3] # rotate and translate, remove
        if mode == 'fractional':                 # ones column
            new_coords = dot(new_coords, omx.transpose()) # return to orthogonal
        all_coords.append(new_coords)
    # a vstack(arrays) with a following reshape is faster then 
    # the equivalent creation of a new array via array(arrays).
    return vstack(all_coords).reshape((len(all_coords), coords.shape[0], 3))

def coords_to_crystal(coords, fmx, omx, n=1):
    """Applies primitive lattice translations to produce a crystal from the 
    contents of a unit cell.
    
    Returns all coordinates with included zero translation (0, 0, 0).
    
    Arguments:
        - coords: an array of orthogonal coordinates
        - fmx: fractionalization matrix
        - omx: orthogonalization matrix
        - n: number of layers of unit-cells == (2*n+1)^2 unit-cells
    """
    rng = range(-n, n + 1) # a range like -2, -1, 0, 1, 2
    fcoords = dot(coords, fmx.transpose()) # fractionalize 
    vectors = [(x, y, z) for x in rng for y in rng for z in rng]
    # looking for the center Thickened cube numbers: 
    # a(n)=n*(n^2+(n-1)^2)+(n-1)*2*n*(n-1) ;)
    all_coords = []
    for primitive_vector in vectors:
        all_coords.append(fcoords + primitive_vector)
    # a vstack(arrays) with a following reshape is faster then 
    # the equivalent creation of a new array via array(arrays) 
    all_coords = vstack(all_coords).reshape((len(all_coords), \
                                        coords.shape[0], coords.shape[1], 3))
    all_coords = dot(all_coords, omx.transpose()) # orthogonalize
    return all_coords