/usr/share/pyshared/cogent/maths/period.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | from numpy import zeros, array, exp, pi, cos, fft, arange, power, sqrt, sum,\
multiply, float64, polyval
__author__ = "Hua Ying, Julien Epps and Gavin Huttley"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Julien Epps", "Hua Ying", "Gavin Huttley", "Peter Maxwell"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Gavin Huttley"
__email__ = "Gavin.Huttley@anu.edu.au"
__status__ = "Production"
def _goertzel_inner(x, N, period):
coeff = 2.0 * cos(2 * pi / period)
s_prev = 0.0
s_prev2 = 0.0
for n in range(N):
s = x[n] + coeff * s_prev - s_prev2
s_prev2 = s_prev
s_prev = s
pwr = sqrt(s_prev2**2 + s_prev**2 - coeff * s_prev2 * s_prev)
return pwr
def _ipdft_inner(x, X, W, ulim, N): # naive python
for p in range(ulim):
w = 1
for n in range(N):
if n != 0:
w *= W[p]
X[p] = X[p] + x[n] * w
return X
def _ipdft_inner2(x, X, W, ulim, N): # fastest python
p = x[::-1] # reversed
X = polyval(p, W)
return X
def _autocorr_inner2(x, xc, N): # fastest python
products = multiply.outer(x, x)
v = [products.trace(offset=m) for m in range(-len(x)+1, len(x))]
xc.put(xrange(xc.shape[0]), v)
def _autocorr_inner(x, xc, N): # naive python
for m in range(-N+1, N):
for n in range(N):
if 0 <= n-m < N:
xc[m+N-1] += (x[n]*x[n-m])
try:
# try using pyrexed versions
from _period import ipdft_inner, autocorr_inner, goertzel_inner
# raise ImportError # for profiling
except ImportError:
# fastest python versions
ipdft_inner = _ipdft_inner2
autocorr_inner = _autocorr_inner2
goertzel_inner = _goertzel_inner
def goertzel(x, period):
"""returns the array(power), array(period) from series x for period
result objects are arrays for consistency with that other period
estimation functions"""
calc = Goertzel(len(x), period=period)
return calc(x)
class _PeriodEstimator(object):
"""parent class for period estimation"""
def __init__(self, length, llim=None, ulim=None, period=None):
super(_PeriodEstimator, self).__init__()
self.length = length
self.llim = llim or 2
self.ulim = ulim or (length-1)
if self.ulim > length:
raise RuntimeError, 'Error: ulim > length'
self.period = period
def getNumStats(self):
"""returns the number of statistics computed by this calculator"""
return 1
class AutoCorrelation(_PeriodEstimator):
def __init__(self, length, llim=None, ulim=None, period=None):
"""class for repetitive calculation of autocorrelation for series of
fixed length
e.g. if x = [1,1,1,1], xc = [1,2,3,4,3,2,1]
The middle element of xc corresponds to a lag (period) of 0
xc is always symmetric for real x
N is the length of x"""
super(AutoCorrelation, self).__init__(length, llim, ulim, period)
periods = range(-length+1, length)
self.min_idx = periods.index(self.llim)
self.max_idx = periods.index(self.ulim)
self.periods = array(periods[self.min_idx: self.max_idx + 1])
self.xc = zeros(2*self.length-1)
def evaluate(self, x):
x = array(x, float64)
self.xc.fill(0.0)
autocorr_inner(x, self.xc, self.length)
xc = self.xc[self.min_idx: self.max_idx + 1]
if self.period is not None:
return xc[self.period-self.llim]
return xc, self.periods
__call__ = evaluate
def auto_corr(x, llim=None, ulim=None):
"""returns the autocorrelation of x
e.g. if x = [1,1,1,1], xc = [1,2,3,4,3,2,1]
The middle element of xc corresponds to a lag (period) of 0
xc is always symmetric for real x
N is the length of x
"""
_autocorr = AutoCorrelation(len(x), llim=llim, ulim=ulim)
return _autocorr(x)
class Ipdft(_PeriodEstimator):
def __init__(self, length, llim=None, ulim=None, period=None, abs_ft_sig=True):
"""factory function for computing the integer period discrete Fourier
transform for repeated application to signals of the same length.
Argument:
- length: the signal length
- llim: lower limit
- ulim: upper limit
- period: a specific period to return the IPDFT power for
- abs_ft_sig: if True, returns absolute value of signal
"""
if period is not None:
llim = period
ulim = period
super(Ipdft, self).__init__(length, llim, ulim, period)
self.periods = array(range(self.llim, self.ulim+1))
self.W = exp(-1j * 2 * pi / arange(1, self.ulim+1))
self.X = array([0+0j] * self.length)
self.abs_ft_sig = abs_ft_sig
def evaluate(self, x):
x = array(x, float64)
self.X.fill(0+0j)
self.X = ipdft_inner(x, self.X, self.W, self.ulim, self.length)
pwr = self.X[self.llim-1:self.ulim]
if self.abs_ft_sig:
pwr = abs(pwr)
if self.period is not None:
return pwr[self.period-self.llim]
return array(pwr), self.periods
__call__ = evaluate
class Goertzel(_PeriodEstimator):
"""Computes the power of a signal for a specific period"""
def __init__(self, length=None, llim=None, ulim=None, period=None, abs_ft_sig=True):
assert period is not None, "Goertzel requires a period"
super(Goertzel, self).__init__(length=length, period=period)
def evaluate(self, x):
x = array(x, float64)
return _goertzel_inner(x, self.length, self.period)
__call__ = evaluate
class Hybrid(_PeriodEstimator):
"""hybrid statistic and corresponding periods for signal x
See Epps. EURASIP Journal on Bioinformatics and Systems Biology, 2009"""
def __init__(self, length, llim=None, ulim=None, period=None, abs_ft_sig=True, return_all=False):
"""Arguments:
- length: the length of signals to be encountered
- period: specified period at which to return the signal
- llim, ulim: the smallest, largest periods to evaluate
- return_all: whether to return the hybrid, ipdft, autocorr
statistics as a numpy array, or just the hybrid statistic
"""
super(Hybrid, self).__init__(length, llim, ulim, period)
self.ipdft = Ipdft(length, llim, ulim, period, abs_ft_sig)
self.auto = AutoCorrelation(length, llim, ulim, period)
self._return_all = return_all
def getNumStats(self):
"""the number of stats computed by this calculator"""
num = [1, 3][self._return_all]
return num
def evaluate(self, x):
if self.period is None:
auto_sig, auto_periods = self.auto(x)
ft_sig, ft_periods = self.ipdft(x)
hybrid = auto_sig * ft_sig
if self._return_all:
result = array([hybrid, ft_sig, auto_sig]), ft_periods
else:
result = hybrid, ft_periods
else:
auto_sig = self.auto(x)
# ft_sig = goertzel(x, period) # performance slower than ipdft!
ft_sig = self.ipdft(x)
hybrid = auto_sig * ft_sig
if self._return_all:
result = array([abs(hybrid), ft_sig, auto_sig])
else:
result = abs(hybrid)
return result
__call__ = evaluate
def ipdft(x, llim=None, ulim=None, period=None):
"""returns the integer period discrete Fourier transform of the signal x
Arguments:
- x: series of symbols
- llim: lower limit
- ulim: upper limit
"""
x = array(x, float64)
ipdft_calc = Ipdft(len(x), llim, ulim, period)
return ipdft_calc(x)
def hybrid(x, llim=None, ulim=None, period=None, return_all=False):
"""
Return hybrid statistic and corresponding periods for signal x
Arguments:
- return_all: whether to return the hybrid, ipdft, autocorr
statistics as a numpy array, or just the hybrid statistic
See Epps. EURASIP Journal on Bioinformatics and Systems Biology, 2009, 9
"""
hybrid_calc = Hybrid(len(x), llim, ulim, period, return_all=return_all)
x = array(x, float)
return hybrid_calc(x)
def dft(x, **kwargs):
"""
Return discrete fft and corresponding periods for signal x
"""
n = len(x) / 2 * 2
x = array(x[:n])
pwr = fft.rfft(x, n)[1:]
freq = (arange(n/2+1)/(float(n)))[1:]
pwr = list(pwr)
periods = [1/f for f in freq]
pwr.reverse()
periods.reverse()
return array(pwr), array(periods)
if __name__ == "__main__":
from numpy import sin
x = sin(2*pi/5*arange(1,9))
print x
print goertzel(x, 4)
print goertzel(x, 8)
|