This file is indexed.

/usr/share/pyshared/cogent/maths/simannealingoptimiser.py is in python-cogent 1.5.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#!/usr/bin/env python
"""
Simulated annealing optimiser. Derives from basic optimiser class.

The simulated annealing optimiser is a translation into Python of the fortran
program simman.f authored by Bill Goffe (bgoffe@whale.st.usm.edu). The original
citation is "Global Optimization of Statistical Functions with Simulated
Annealing," Goffe, Ferrier and Rogers, Journal of Econometrics, vol. 60, no. 1/2,
Jan./Feb. 1994, pp. 65-100.
"""
from __future__ import division
import numpy
import random
from collections import deque
from cogent.util import checkpointing


__author__ = "Andrew Butterfield and Peter Maxwell"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Gavin Huttley", "Andrew Butterfield", "Peter Maxwell"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"

class AnnealingSchedule(object):
    """Responsible for the shape of the simulated annealing temperature profile"""
    
    def __init__(self, temp_reduction, initial_temp, temp_iterations, step_cycles):
        if initial_temp < 0.0 :
            raise ValueError, "Initial temperature not +ve"
        self.T = self.initial_temp = initial_temp
        self.temp_reduction = temp_reduction
        self.temp_iterations = temp_iterations
        self.step_cycles = step_cycles
        self.dwell = temp_iterations * step_cycles
    
    def checkSameConditions(self, other):
        for attr in ['temp_reduction', 'initial_temp', 'temp_iterations', 'step_cycles']:
            if getattr(self, attr) != getattr(other, attr):
                raise ValueError('Checkpoint file ignored - %s different' % attr)
    
    def roundsToReach(self, T):
        from math import log
        return int(-log(self.initial_temp/T) / log(self.temp_reduction)) + 1
        
    def cool(self):
        self.T = self.temp_reduction * self.T
    
    def willAccept(self, newF, oldF, random_series):
        deltaF = newF - oldF
        return deltaF >= 0 or random_series.uniform(0.0, 1.0) < numpy.exp(deltaF / self.T)
    

class AnnealingHistory(object):
    """Keeps the last few results, for convergence testing"""
    
    def __init__(self, sample=4):
        self.sample_size = sample
        #self.values = deque([None]*sample, sample) Py2.6
        self.values = deque([None]*sample)
    
    def note(self, F):
        self.values.append(F)
        # Next 2 lines not required once above Py2.6 line is uncommented
        if len(self.values) > self.sample_size:
            self.values.popleft()
            
    def minRemainingRounds(self, tolerance):
        last = self.values[-1]
        return max([0]+[i+1 for (i,v) in enumerate(self.values)
                if v is None or abs(v-last)>tolerance])
    

class AnnealingState(object):
    def __init__(self, X, function, random_series):
        self.random_series = random_series
        self.NFCNEV = 1
        self.VM = numpy.ones(len(X), float)
        self.setX(X, function(X))
        (self.XOPT, self.FOPT) = (X, self.F)
        self.NACP = [0] * len(X)
        self.NTRY = 0
    
    def setX(self, X, F):
        self.X = numpy.array(X, float)
        self.F = F
    
    def step(self, function, accept_test):
        # One attempted move in each dimension
        X = self.X
        self.NTRY += 1
        for H in range(len(X)):
            self.NFCNEV += 1
            
            current_value = X[H]
            X[H] += self.VM[H] * self.random_series.uniform(-1.0, 1.0)
            F = function(X)
            
            if accept_test(F, self.F, self.random_series):
                self.NACP[H] += 1
                self.F = F
                if F > self.FOPT:
                    (self.FOPT, self.XOPT) = (F, X.copy())
            else:
                X[H] = current_value
    
    def adjustStepSizes(self):
        # Adjust velocity in each dimension to keep acceptance ratios near 50%
        if self.NTRY == 0:
            return
        for I in range(len(self.X)):
            RATIO = (self.NACP[I]*1.0) / self.NTRY
            if RATIO > 0.6:
                self.VM[I] *= (1.0 + (2.0 * ((RATIO-0.6)/0.4)))
            elif RATIO < 0.4:
                self.VM[I] /= (1.0 + (2.0 * ((0.4 - RATIO)/0.4)))
            self.NACP[I] = 0
        self.NTRY = 0
    

class AnnealingRun(object):
    def __init__(self, function, X, schedule, random_series):
        self.history = AnnealingHistory()
        self.schedule = schedule
        self.state = AnnealingState(X, function, random_series)
        self.test_count = 0
    
    def checkFunction(self, function, xopt, checkpointing_filename):
        if len(xopt) != len(self.state.XOPT):
            raise ValueError(
                "Number of parameters in checkpoint file '%s' (%s) " \
                "don't match current function (%s)" % (
                    checkpointing_filename, len(self.state.XOPT), len(xopt)))
        # if f(x) != g(x) then f isn't g.
        then = self.state.FOPT
        now = function(self.state.XOPT)
        if not numpy.allclose(now, then, 1e-8):
            raise ValueError(
                "Function to optimise doesn't match checkpoint file " \
                "'%s': F=%s now, %s in file." % (
                    checkpointing_filename, now, then))
        
    def run(self, function, tolerance, checkpointer, show_remaining):
        state = self.state
        history = self.history
        schedule = self.schedule
        
        est_anneal_remaining = schedule.roundsToReach(tolerance/10) + 3
        while True:
            min_history_remaining = history.minRemainingRounds(tolerance)
            if min_history_remaining == 0:
                break
            self.save(checkpointer)
            remaining = max(min_history_remaining, est_anneal_remaining)
            est_anneal_remaining += -1
            
            for i in range(self.schedule.dwell):
                show_remaining(remaining + 1 - i/self.schedule.dwell, 
                        state.FOPT, schedule.T, state.NFCNEV)
                state.step(function, self.schedule.willAccept)
                self.test_count += 1
                if self.test_count % schedule.step_cycles == 0:
                    state.adjustStepSizes()
            
            history.note(state.F)
            state.setX(state.XOPT, state.FOPT)
            schedule.cool()
        
        self.save(checkpointer, final=True)
        
        return state
    
    def save(self, checkpointer, final=False):
        msg = "Number of function evaluations = %d; current F = %s" % \
                (self.state.NFCNEV, self.state.FOPT)
        checkpointer.record(self, msg, final)


class SimulatedAnnealing(object):
    """Simulated annealing optimiser for bounded functions
    """
    
    def __init__(self, filename=None, interval=None, restore=True):
        """
        Set the checkpointing filename and time interval.
        Arguments:
        - filename: name of the file to which data will be written. If None, no
          checkpointing will be done.
        - interval: time expressed in seconds
        - restore: flag to restore from this filename or not. will be set to 0 after
          restoration
        """
        self.checkpointer = checkpointing.Checkpointer(filename, interval)
        self.restore = restore
    
    def maximise(self, function, xopt, show_remaining, 
            random_series = None, seed = None, 
            tolerance = None, temp_reduction = 0.5, init_temp=5.0,
            temp_iterations = 5, step_cycles = 20):
                
        """Optimise function(xopt).
        
        Arguments:
            - show_progress: whether the function values are printed as
              the optimisation proceeds. Default is True.
            - tolerance: the error condition for termination, default is 1E-6
            - temp_reduction: the factor by which the annealing
              "temperature" is reduced, default is 0.5
            - temp_iterations: the number of iterations before a
              temperature reduction, default is 5
            - step_cycles: the number of cycles after which the step size
              is modified, default is 20
        
        Returns optimised parameter vector xopt
        """
        if tolerance is None:
            tolerance = 1E-6
        
        if len(xopt) == 0:
            return xopt

        random_series = random_series or random.Random()
        if seed is not None:
            random_series.seed(seed)

        schedule = AnnealingSchedule(
            temp_reduction, init_temp, temp_iterations, step_cycles)
        
        if self.restore and self.checkpointer.available():
            run = self.checkpointer.load()
            run.checkFunction(function, xopt, self.checkpointer.filename)
            run.schedule.checkSameConditions(schedule)
        else:
            run = AnnealingRun(function, xopt, schedule, random_series)
        self.restore = False
        
        result = run.run(
            function,
            tolerance,
            checkpointer = self.checkpointer,
            show_remaining = show_remaining)
                
        return result.XOPT