This file is indexed.

/usr/share/pyshared/cogent/phylo/distance.py is in python-cogent 1.5.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
#!/usr/bin/env python
"""Estimating pairwise distances between sequences.
"""
from cogent.util import parallel, table, warning, progress_display as UI
from cogent.maths.stats.util import Numbers
from cogent import LoadSeqs, LoadTree

from warnings import warn

__author__ = "Gavin Huttley"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Gavin Huttley", "Peter Maxwell", "Matthew Wakefield"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"

class EstimateDistances(object):
    """Base class used for estimating pairwise distances between sequences.
    Can also estimate other parameters from pairs."""
    
    def __init__(self, seqs, submodel, threeway=False, motif_probs = None,
                do_pair_align=False, rigorous_align=False, est_params=None,
                modify_lf=None):
        """Arguments:
            - seqs: an Alignment or SeqCollection instance with > 1 sequence
            - submodel: substitution model object Predefined models can
              be imported from cogent.evolve.models
            - threeway: a boolean flag for using threeway comparisons to
              estimate distances. default False. Ignored if do_pair_align is
              True.
            - do_pair_align: if the input sequences are to be pairwise aligned
              first and then the distance will be estimated. A pair HMM based
              on the submodel will be used.
            - rigorous_align: if True the pairwise alignments are actually
              numerically optimised, otherwise the current substitution model
              settings are used. This slows down estimation considerably.
            - est_params: substitution model parameters to save estimates from
              in addition to length (distance)
            - modify_lf: a callback function for that takes a likelihood
              function (with alignment set) and modifies it. Can be used to
              configure local_params, set bounds, optimise using a restriction
              for faster performance.
        
        Note: Unless you know a priori your alignment will be flush ended
        (meaning no sequence has terminal gaps) it is advisable to construct a
        substitution model that recodes gaps. Otherwise the terminal gaps will
        significantly bias the estimation of branch lengths when using
        do_pair_align.
        """
        
        if do_pair_align:
            self.__threeway = False
        else:
            # whether pairwise is to be estimated from 3-way
            self.__threeway = [threeway, False][do_pair_align]
        
        self.__seq_collection = seqs
        self.__seqnames = seqs.getSeqNames()
        self.__motif_probs = motif_probs
        # the following may be pairs or three way combinations
        self.__combination_aligns = None
        self._do_pair_align = do_pair_align
        self._rigorous_align = rigorous_align
        # substitution model stuff
        self.__sm = submodel
        
        self._modify_lf = modify_lf
        # store for the results
        self.__param_ests = {}
        self.__est_params = list(est_params or [])
        
        self.__run = False # a flag indicating whether estimation completed
        # whether we're on the master CPU or not
        self._on_master_cpu = parallel.getCommunicator().Get_rank() == 0
    
    def __str__(self):
        return str(self.getTable())
    
    def __make_pairwise_comparison_sets(self):
        comps = []
        names = self.__seq_collection.getSeqNames()
        n = len(names)
        for i in range(0, n - 1):
            for j in range(i + 1, n):
                comps.append((names[i], names[j]))
        return comps
    
    def __make_threeway_comparison_sets(self):
        comps = []
        names = self.__seq_collection.getSeqNames()
        n = len(names)
        for i in range(0, n - 2):
            for j in range(i + 1, n - 1):
                for k in range(j + 1, n):
                    comps.append((names[i], names[j], names[k]))
        return comps
    
    def __make_pair_alignment(self, seqs, opt_kwargs):
        lf = self.__sm.makeLikelihoodFunction(\
                    LoadTree(tip_names=seqs.getSeqNames()),
                    aligned=False)
        lf.setSequences(seqs.NamedSeqs)
        
        # allow user to modify the lf config
        if self._modify_lf:
            lf = self._modify_lf(lf)
        
        if self._rigorous_align:
            lf.optimise(**opt_kwargs)
        lnL = lf.getLogLikelihood()
        (vtLnL, aln) = lnL.edge.getViterbiScoreAndAlignment()
        return aln
    
    @UI.display_wrap
    def __doset(self, sequence_names, dist_opt_args, aln_opt_args, ui):
        # slice the alignment
        seqs = self.__seq_collection.takeSeqs(sequence_names)
        if self._do_pair_align:
            ui.display('Aligning', progress=0.0, current=.5)
            align = self.__make_pair_alignment(seqs, aln_opt_args)
            ui.display('', progress=.5, current=.5)
            
        else:
            align = seqs
            ui.display('', progress=0.0, current=1.0)
        # note that we may want to consider removing the redundant gaps
        
        # create the tree object
        tree = LoadTree(tip_names = sequence_names)
        
        # make the parameter controller
        lf = self.__sm.makeLikelihoodFunction(tree)
        if not self.__threeway:
            lf.setParamRule('length', is_independent = False)
        
        if self.__motif_probs:
            lf.setMotifProbs(self.__motif_probs)
        
        lf.setAlignment(align)
        
        # allow user modification of lf using the modify_lf
        if self._modify_lf:
            lf = self._modify_lf(lf)
        
        lf.optimise(**dist_opt_args)
                
        # get the statistics
        stats_dict = lf.getParamValueDict(['edge'], 
                params=['length'] + self.__est_params)
        
        # if two-way, grab first distance only
        if not self.__threeway:
            result = {'length': stats_dict['length'].values()[0] * 2.0}
        else:
            result = {'length': stats_dict['length']}
        
        # include any other params requested
        for param in self.__est_params:
            result[param] = stats_dict[param].values()[0]
            
        return result
    
    @UI.display_wrap
    def run(self, dist_opt_args=None, aln_opt_args=None, ui=None, **kwargs):
        """Start estimating the distances between sequences. Distance estimation
        is done using the Powell local optimiser. This can be changed using the
        dist_opt_args and aln_opt_args.
        
        Arguments:
            - show_progress: whether to display progress. More detailed progress
              information from individual optimisation is controlled by the
              ..opt_args.
            - dist_opt_args, aln_opt_args: arguments for the optimise method for
              the distance estimation and alignment estimation respectively."""
        
        if 'local' in kwargs:
              warn("local argument ignored, provide it to dist_opt_args or"\
              " aln_opt_args", DeprecationWarning, stacklevel=2)
        
        ui.display("Distances")
        dist_opt_args = dist_opt_args or {}
        aln_opt_args = aln_opt_args or {}
        # set the optimiser defaults
        dist_opt_args['local'] = dist_opt_args.get('local', True)
        aln_opt_args['local'] = aln_opt_args.get('local', True)
        # generate the list of unique sequence sets (pairs or triples) to be
        # analysed
        if self.__threeway:
            combination_aligns = self.__make_threeway_comparison_sets()
            desc = "triplet "
        else:
            combination_aligns = self.__make_pairwise_comparison_sets()
            desc = "pair "
        labels = [desc + ','.join(names) for names in combination_aligns]
                            
        def _one_alignment(comp):
            result = self.__doset(comp, dist_opt_args, aln_opt_args)
            return (comp, result)
        
        for (comp, value) in ui.imap(_one_alignment, combination_aligns,
                labels=labels):
            self.__param_ests[comp] = value
    
    def getPairwiseParam(self, param, summary_function="mean"):
        """Return the pairwise statistic estimates as a dictionary keyed by
        (seq1, seq2)
        
        Arguments:
            - param: name of a parameter in est_params or 'length'
            - summary_function: a string naming the function used for
              estimating param from threeway distances. Valid values are 'mean'
              (default) and 'median'."""
        summary_func = summary_function.capitalize()
        pairwise_stats = {}
        assert param in self.__est_params + ['length'], \
                "unrecognised param %s" % param
        if self.__threeway and param == 'length':
            pairwise = self.__make_pairwise_comparison_sets()
            # get all the distances involving this pair
            for a, b in pairwise:
                values = Numbers()
                for comp_names, param_vals in self.__param_ests.items():
                    if a in comp_names and b in comp_names:
                        values.append(param_vals[param][a] + \
                                    param_vals[param][b])
                
                pairwise_stats[(a,b)] = getattr(values, summary_func)
        else:
            # no additional processing of the distances is required
            
            for comp_names, param_vals in self.__param_ests.items():
                pairwise_stats[comp_names] = param_vals[param]
            
        return pairwise_stats
    
    def getPairwiseDistances(self,summary_function="mean", **kwargs):
        """Return the pairwise distances as a dictionary keyed by (seq1, seq2).
        Convenience interface to getPairwiseParam.
        
        Arguments:
            - summary_function: a string naming the function used for
              estimating param from threeway distances. Valid values are 'mean'
              (default) and 'median'.
        """
        return self.getPairwiseParam('length',summary_function=summary_function,
                                    **kwargs)
    
    def getParamValues(self, param, **kwargs):
        """Returns a Numbers object with all estimated values of param.
        
        Arguments:
            - param: name of a parameter in est_params or 'length'
            - **kwargs: arguments passed to getPairwiseParam"""
        ests = self.getPairwiseParam(param, **kwargs)
        return Numbers(ests.values())
    
    def getTable(self,summary_function="mean", **kwargs):
        """returns a Table instance of the distance matrix.
        
        Arguments:
            - summary_function: a string naming the function used for
              estimating param from threeway distances. Valid values are 'mean'
              (default) and 'median'."""
        d = \
         self.getPairwiseDistances(summary_function=summary_function,**kwargs)
        if not d:
            d = {}
            for s1 in self.__seqnames:
                for s2 in self.__seqnames:
                    if s1 == s2:
                        continue
                    else:
                        d[(s1,s2)] = 'Not Done'
        twoD = []
        for s1 in self.__seqnames:
            row = [s1]
            for s2 in self.__seqnames:
                if s1 == s2:
                    row.append('')
                    continue
                try:
                    row.append(d[(s1,s2)])
                except KeyError:
                    row.append(d[(s2,s1)])
            twoD.append(row)
        T = table.Table(['Seq1 \ Seq2'] + self.__seqnames, twoD, row_ids = True,
                        missing_data = "*")
        return T
    
    def getNewickTrees(self):
        """Returns a list of Newick format trees for supertree methods."""
        trees = []
        for comp_names, param_vals in self.__param_ests.items():
            tips = []
            for name in comp_names:
                tips.append(repr(name)+":%s" % param_vals[name])
            trees.append("("+",".join(tips)+");")
        
        return trees
    
    def writeToFile(self, filename, summary_function="mean", format='phylip',
            **kwargs):
        """Save the pairwise distances to a file using phylip format. Other
        formats can be obtained by getting to a Table.  If running in parallel,
        the master CPU writes out.
        
        Arguments:
            - filename: where distances will be written, required.
            - summary_function: a string naming the function used for
              estimating param from threeway distances. Valid values are 'mean'
              (default) and 'median'.
            - format: output format of distance matrix
        """
        
        if self._on_master_cpu:
             # only write output from 0th node
             table = self.getTable(summary_function=summary_function, **kwargs)
             table.writeToFile(filename, format=format)