/usr/share/pyshared/cogent/recalculation/definition.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 | #!/usr/bin/env python
"""A recalculation engine, something like a spreadsheet.
Goals:
- Allow construction of a calculation in a flexible and declarative way.
- Enable caching at any step in the calculation where it makes sense.
Terms:
- Definition - defines one cachable step in a complex calculation.
- ParameterController - Sets parameter scope rules on a DAG of Definitions.
- Calculator - An instance of an internally caching function.
- Category - An arbitrary label.
- Dimension - A named set of categories.
- Scope - A subset of the categories from each dimension.
- Setting - A variable (Var) or constant (ConstVal).
- Assignments - A mapping from Scopes to Settings.
- Cell - Evaluates one Scope of one Definition.
- OptPar - A cell with indegree 0.
Structure:
- A Calculator holds a list of Cells: OptPars and EvaluatedCells.
- EvaluatedCells take their arguments from other Cells.
- Each type of cell (motifs, Qs, Psubs) made by a different CalculationDefn.
- No two cells from the same CalculationDefn have the same inputs, so nothing
is calculated twice.
Interface:
1) Define a function for each step in the calculation.
2) Instantiate a DAG of ParamDefns and CalcDefns, each CalcDefn like
CalcDefn(f)(*args) where 'f' is one of your functions and the '*args'
are Defns that correspond to the arguments of 'f'.
3) With your final CalcDefn called say 'top', PC = ParameterController(top)
to get a ParameterController.
4) PC.assignAll(param, value=value, **scope) to define the parameter
scopes. 'value' can be a constant float or an instance of Var.
5) calculator = PC.makeCalculator() to get a live Calculator.
6) calculator.optimise() etc.
Caching:
In addition to the caching provided by the update strategy (not recalculating
anything that hasn't changed), the calculator keeps a 1-deep cache of the
previous value for each cell so that it has a 1-deep undo capability. This
is ideal for the behaviour of a one-change-at-a-time simanneal optimiser,
which backtracks when a new value isn't accepted, ie it tries sequences like:
[0,0,0] [0,0,3] [0,8,0] [7,0,0] [0,0,4] [0,6,0] ...
when it isn't making progress, and
[0,0,0] [0,0,3] [0,8,3] [7,8,3] [7,8,9] ...
when it's having a lucky streak.
Each cell knows when it's out of date, but doesn't know why (ie: what input
changed) which limits the undo strategy to all-or-nothing. An optimiser that
tried values
[0,0,0] [0,3,8] [0,3,0] ...
(ie: the third step is a recombination of the previous two) would not get
any help from caching. This does keep things simple and fast though.
Recycling:
If defn.recycling is True then defn.calc() will be passed the previous
result as its first argument so it can be reused. This is to avoid
having to reallocate memory for say a large numpy array just at the
very moment that an old one of the same shape is being disposed of.
To prevent recycling from invalidating the caching system 3 values are
stored for each cell - current, previous and spare. The spare value is
the one to be used next for recycling.
"""
from __future__ import division, with_statement
import warnings
import numpy
# In this module we bring together scopes, settings and calculations.
# Most of the classes are 'Defns' with their superclasses in scope.py.
# These supply a makeCells() method which instantiates 'Cell'
# classes from calculation.py
from .calculation import EvaluatedCell, OptPar, LogOptPar, ConstCell
from .scope import _NonLeafDefn, _LeafDefn, _Defn, ParameterController
from .setting import Var, ConstVal
from cogent.util.dict_array import DictArrayTemplate
from cogent.maths.stats.distribution import chdtri
from cogent.util import parallel
__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Peter Maxwell"
__email__ = "pm67nz@gmail.com"
__status__ = "Production"
class CalculationDefn(_NonLeafDefn):
"""Defn for a derived value. In most cases use CalcDefn instead
The only reason for subclassing this directly would be to override
.makeCalcFunction() or setup()."""
recycling = False
# positional arguments are inputs to this step of the calculation,
# keyword arguments are passed on to self.setup(), likely to end up
# as static attributes of this CalculationDefn, to be used (as self.X)
# by its 'calc' method.
def makeParamController(self):
return ParameterController(self)
def setup(self):
pass
def makeCalcFunction(self):
return self.calc
def makeCell(self, *args):
calc = self.makeCalcFunction()
# can't calc outside correct parallel context, so can't do
# if [arg for arg in args if not arg.is_constant]:
cell = EvaluatedCell(self.name, calc, args,
recycling=self.recycling, default=self.default)
return cell
def makeCells(self, input_soup, variable=None):
# input soups contains all necessary values for calc on self.
# Going from defns to cells.
cells = []
for input_nums in self.uniq:
args = []
for (arg, u) in zip(self.args, input_nums):
arg = input_soup[id(arg)][u]
args.append(arg)
cell = self.makeCell(*args)
cells.append(cell)
return (cells, cells)
class _FuncDefn(CalculationDefn):
def __init__(self, calc, *args, **kw):
self.calc = calc
CalculationDefn.__init__(self, *args, **kw)
# Use this rather than having to subclass CalculationDefinition
# just to supply the 'calc' method.
class CalcDefn(object):
"""CalcDefn(function)(arg1, arg2)"""
def __init__(self, calc, name=None, **kw):
self.calc = calc
if name is None:
name = self.calc.__name__
else:
assert isinstance(name, basestring), name
kw['name'] = name
self.kw = kw
def __call__(self, *args):
return _FuncDefn(self.calc, *args, **self.kw)
class WeightedPartitionDefn(CalculationDefn):
"""Uses a PartitionDefn (ie: N-1 optimiser parameters) to make
an array of floats with weighted average of 1.0"""
def __init__(self, weights, name):
N = len(weights.bin_names)
partition = PartitionDefn(size=N, name=name+'_partition')
partition.user_param = False
CalculationDefn.__init__(self, weights, partition,
name=name+'_distrib')
def calc(self, weights, values):
scale = numpy.sum(weights * values)
return values / scale
class MonotonicDefn(WeightedPartitionDefn):
"""Uses a PartitionDefn (ie: N-1 optimiser parameters) to make
an ordered array of floats with weighted average of 1.0"""
def calc(self, weights, increments):
values = numpy.add.accumulate(increments)
scale = numpy.sum(weights * values)
return values / scale
class GammaDefn(MonotonicDefn):
"""Uses 1 optimiser parameter to define a gamma distribution, divides
the distribution into N equal probability bins and makes an array of
their medians. If N > 2 medians are approx means so their average
is approx 1.0, but not quite so we scale them to make it exactly 1.0"""
name = 'gamma'
def __init__(self, weights, name=None, default_shape=1.0,
extra_label=None, dimensions=()):
name = self.makeName(name, extra_label)
shape = PositiveParamDefn(name+'_shape',
default=default_shape, dimensions=dimensions, lower=1e-2)
CalculationDefn.__init__(self, weights, shape, name=name+'_distrib')
def calc(self, weights, a):
from cogent.maths.stats.distribution import gdtri
weights = weights / numpy.sum(weights)
percentiles = (numpy.add.accumulate(weights) - weights*0.5)
medians = numpy.array([gdtri(a,a,p) for p in percentiles])
scale = numpy.sum(medians*weights)
#assert 0.5 < scale < 2.0, scale # medians as approx. to means.
return medians / scale
class _InputDefn(_LeafDefn):
user_param = True
def __init__(self, name=None, default=None, dimensions=None,
lower=None, upper=None, **kw):
_LeafDefn.__init__(self, name=name, dimensions=dimensions, **kw)
if default is not None:
if hasattr(default, '__len__'):
default = numpy.array(default)
self.default = default
# these two have no effect on constants
if lower is not None:
self.lower = lower
if upper is not None:
self.upper = upper
def makeParamController(self):
return ParameterController(self)
def updateFromCalculator(self, calc):
outputs = calc.getCurrentCellValuesForDefn(self)
for (output, setting) in zip(outputs, self.uniq):
setting.value = output
def getNumFreeParams(self):
(cells, outputs) = self.makeCells({}, None)
return len([c for c in cells if isinstance(c, OptPar)])
class ParamDefn(_InputDefn):
"""Defn for an optimisable, scalar input to the calculation"""
numeric = True
const_by_default = False
independent_by_default = False
opt_par_class = OptPar
# These can be overridden in a subclass or the constructor
default = 1.0
lower = -1e10
upper = +1e10
def makeDefaultSetting(self):
return Var(bounds = (self.lower, self.default, self.upper))
def checkSettingIsValid(self, setting):
pass
def makeCells(self, input_soup={}, variable=None):
uniq_cells = []
for (i, v) in enumerate(self.uniq):
scope = [key for key in self.assignments
if self.assignments[key] is v]
if v.is_constant or (variable is not None and variable is not v):
cell = ConstCell(self.name, v.value)
else:
cell = self.opt_par_class(self.name, scope, v.getBounds())
uniq_cells.append(cell)
return (uniq_cells, uniq_cells)
# Example / basic ParamDefn subclasses
class PositiveParamDefn(ParamDefn):
lower = 0.0
class ProbabilityParamDefn(PositiveParamDefn):
upper = 1.0
class RatioParamDefn(PositiveParamDefn):
lower = 1e-6
upper = 1e+6
opt_par_class = LogOptPar
class NonScalarDefn(_InputDefn):
"""Defn for an array or other such object that is an input but
can not be optimised"""
user_param = False
numeric = False
const_by_default = True
independent_by_default = False
default = None
def makeDefaultSetting(self):
if self.default is None:
return None
else:
return ConstVal(self.default)
def checkSettingIsValid(self, setting):
if not isinstance(setting, ConstVal):
raise ValueError("%s can only be constant" % self.name)
def makeCells(self, input_soup={}, variable=None):
if None in self.uniq:
if [v for v in self.uniq if v is not None]:
scope = [key for key in self.assignments
if self.assignments[key] is None]
msg = 'Unoptimisable input "%%s" not set for %s' % scope
else:
msg = 'Unoptimisable input "%s" not given'
raise ValueError(msg % self.name)
uniq_cells = [ConstCell(self.name, v.value) for v in self.uniq]
return (uniq_cells, uniq_cells)
def getNumFreeParams(self):
return 0
def updateFromCalculator(self, calc):
pass # don't reset parallel_context etc.
def _proportions(total, params):
"""List of N proportions from N-1 ratios
>>> _proportions(1.0, [3, 1, 1])
[0.125, 0.125, 0.375, 0.375]"""
if len(params) == 0:
return [total]
half = (len(params)+1) // 2
part = 1.0 / (params[0] + 1.0) # ratio -> proportion
return _proportions(total*part, params[1:half]) + \
_proportions(total*(1.0-part), params[half:])
def _unpack_proportions(values):
"""List of N-1 ratios from N proportions"""
if len(values) == 1:
return []
half = len(values) // 2
(num, denom) = (sum(values[half:]), sum(values[:half]))
assert num > 0 and denom > 0
ratio = num / denom
return [ratio] + _unpack_proportions(values[:half]) + \
_unpack_proportions(values[half:])
class PartitionDefn(_InputDefn):
"""A partition such as mprobs can be const or optimised. Optimised is
a bit tricky since it isn't just a scalar."""
numeric = False # well, not scalar anyway
const_by_default = False
independent_by_default = False
def __init__(self, default=None, name=None, dimensions=None,
dimension=None, size=None, **kw):
assert name
if size is not None:
pass
elif default is not None:
size = len(default)
elif dimension is not None:
size = len(dimension[1])
self.size = size
if dimension is not None:
self.internal_dimension = dimension
(dim_name, dim_cats) = dimension
self.bin_names = dim_cats
self.array_template = DictArrayTemplate(dim_cats)
self.internal_dimensions = (dim_name,)
if default is None:
default = self._makeDefaultValue()
elif self.array_template is not None:
default = self.array_template.unwrap(default)
else:
default = numpy.asarray(default)
_InputDefn.__init__(self, name=name, default=default,
dimensions=dimensions, **kw)
self.checkValueIsValid(default, True)
def _makeDefaultValue(self):
return numpy.array([1.0/self.size] * self.size)
def makeDefaultSetting(self):
#return ConstVal(self.default)
return Var((None, self.default.copy(), None))
def checkSettingIsValid(self, setting):
value = setting.getDefaultValue()
return self.checkValueIsValid(value, setting.is_constant)
def checkValueIsValid(self, value, is_constant):
if value.shape != (self.size,):
raise ValueError("Wrong array shape %s for %s, expected (%s,)" %
(value.shape, self.name, self.size))
for part in value:
if part < 0:
raise ValueError("Negative probability in %s" % self.name)
if part > 1:
raise ValueError("Probability > 1 in %s" % self.name)
if not is_constant:
# 0 or 1 leads to log(0) or log(inf) in optimiser code
if part == 0:
raise ValueError("Zeros allowed in %s only when constant" %
self.name)
if part == 1:
raise ValueError("Ones allowed in %s only when constant" %
self.name)
if abs(sum(value) - 1.0) > .00001:
raise ValueError("Elements of %s must sum to 1.0, not %s" %
(self.name, sum(value)))
def _makePartitionCell(self, name, scope, value):
# This was originally put in its own function so as to provide a
# closure containing the value of sum(value), which is no longer
# required since it is now always 1.0.
N = len(value)
assert abs(sum(value) - 1.0) < .00001
ratios = _unpack_proportions(value)
ratios = [LogOptPar(name+'_ratio', scope, (1e-6,r,1e+6))
for r in ratios]
def r2p(*ratios):
return numpy.asarray(_proportions(1.0, ratios))
partition = EvaluatedCell(name, r2p, tuple(ratios))
return (ratios, partition)
def makeCells(self, input_soup={}, variable=None):
uniq_cells = []
all_cells = []
for (i, v) in enumerate(self.uniq):
if v is None:
raise ValueError("input %s not set" % self.name)
assert hasattr(v, 'getDefaultValue'), v
value = v.getDefaultValue()
assert hasattr(value, 'shape'), value
assert value.shape == (self.size,)
scope = [key for key in self.assignments
if self.assignments[key] is v]
assert value is not None
if v.is_constant or (variable is not None and variable is not v):
partition = ConstCell(self.name, value)
else:
(ratios, partition) = self._makePartitionCell(
self.name, scope, value)
all_cells.extend(ratios)
all_cells.append(partition)
uniq_cells.append(partition)
return (all_cells, uniq_cells)
def NonParamDefn(name, dimensions=None, **kw):
# Just to get 2nd arg as dimensions
return NonScalarDefn(name=name, dimensions=dimensions, **kw)
class ConstDefn(NonScalarDefn):
# This isn't really needed - just use NonParamDefn
name_required = False
def __init__(self, value, name=None, **kw):
NonScalarDefn.__init__(self, default=value, name=name, **kw)
def checkSettingIsValid(self, setting):
if setting is not None and setting.value is not self.default:
raise ValueError("%s is constant" % self.name)
class SelectForDimension(_Defn):
"""A special kind of Defn used to bridge from Defns where a particular
dimension is wrapped up inside an array to later Defns where each
value has its own Defn, eg: gamma distributed rates"""
name = 'select'
user_param = True
numeric=True # not guarenteed!
internal_dimensions = ()
def __init__(self, arg, dimension, name=None):
assert not arg.activated, arg.name
if name is not None:
self.name = name
_Defn.__init__(self)
self.args = (arg,)
self.arg = arg
self.valid_dimensions = arg.valid_dimensions
if dimension not in self.valid_dimensions:
self.valid_dimensions = self.valid_dimensions + (dimension,)
self.dimension = dimension
arg.addClient(self)
def update(self):
for scope_t in self.assignments:
scope = dict(zip(self.valid_dimensions, scope_t))
scope2 = dict((n,v) for (n,v) in scope.items() if n!=self.dimension)
input_num = self.arg.outputOrdinalFor(scope2)
pos = self.arg.bin_names.index(scope[self.dimension])
self.assignments[scope_t] = (input_num, pos)
self._update_from_assignments()
self.values = [self.arg.values[i][p] for (i,p) in self.uniq]
def _select(self, arg, p):
return arg[p]
def makeCells(self, input_soup, variable=None):
cells = []
distribs = input_soup[id(self.arg)]
for (input_num, bin_num) in self.uniq:
cell = EvaluatedCell(
self.name, (lambda x,p=bin_num:x[p]), (distribs[input_num],))
cells.append(cell)
return (cells, cells)
# Some simple CalcDefns
#SumDefn = CalcDefn(lambda *args:sum(args), 'sum')
#ProductDefn = CalcDefn(lambda *args:numpy.product(args), 'product')
#CallDefn = CalcDefn(lambda func,*args:func(*args), 'call')
#ParallelSumDefn = CalcDefn(lambda comm,local:comm.sum(local), 'parallel_sum')
class SwitchDefn(CalculationDefn):
name = 'switch'
def calc(self, condition, *args):
return args[condition]
def getShortcutCell(self, condition, *args):
if condition.is_constant:
return self.calc(self, condition.value, *args)
class VectorMatrixInnerDefn(CalculationDefn):
name = 'evolve'
def calc(self, pi, psub):
return numpy.inner(pi, psub)
def getShortcutCell(self, pi, psub):
if psub.is_stationary:
return pi
class SumDefn(CalculationDefn):
name = 'sum'
def calc(self, *args):
return sum(args)
class ProductDefn(CalculationDefn):
name = 'product'
def calc(self, *args):
return numpy.product(args)
class CallDefn(CalculationDefn):
name = 'call'
def calc(self, func, *args):
return func(*args)
class ParallelSumDefn(CalculationDefn):
name = 'parallel_sum'
def calc(self, comm, local):
return comm.allreduce(local) # default MPI op is SUM
__all__ = ['ConstDefn', 'NonParamDefn', 'CalcDefn', 'SumDefn', 'ProductDefn',
'CallDefn', 'ParallelSumDefn'] + [
n for (n,c) in vars().items()
if (isinstance(c, type) and issubclass(c, _Defn) and n[0] != '_')
or isinstance(c, CalcDefn)]
|