This file is indexed.

/usr/share/pyshared/cogent/recalculation/definition.py is in python-cogent 1.5.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
#!/usr/bin/env python
"""A recalculation engine, something like a spreadsheet.

Goals:
 - Allow construction of a calculation in a flexible and declarative way.
 - Enable caching at any step in the calculation where it makes sense.

Terms:
 - Definition - defines one cachable step in a complex calculation.
 - ParameterController - Sets parameter scope rules on a DAG of Definitions.
 - Calculator - An instance of an internally caching function.
 - Category - An arbitrary label.
 - Dimension - A named set of categories.
 - Scope - A subset of the categories from each dimension.
 - Setting - A variable (Var) or constant (ConstVal).
 - Assignments - A mapping from Scopes to Settings.
 - Cell - Evaluates one Scope of one Definition.
 - OptPar - A cell with indegree 0.

Structure:
 - A Calculator holds a list of Cells: OptPars and EvaluatedCells.
 - EvaluatedCells take their arguments from other Cells.
 - Each type of cell (motifs, Qs, Psubs) made by a different CalculationDefn.
 - No two cells from the same CalculationDefn have the same inputs, so nothing
   is calculated twice.

Interface:
  1) Define a function for each step in the calculation.
  2) Instantiate a DAG of ParamDefns and CalcDefns, each CalcDefn like
     CalcDefn(f)(*args) where 'f' is one of your functions and the '*args'
     are Defns that correspond to the arguments of 'f'.
  3) With your final CalcDefn called say 'top', PC = ParameterController(top)
     to get a ParameterController.
  4) PC.assignAll(param, value=value, **scope) to define the parameter
     scopes.  'value' can be a constant float or an instance of Var.
  5) calculator = PC.makeCalculator() to get a live Calculator.
  6) calculator.optimise() etc.

Caching:
  In addition to the caching provided by the update strategy (not recalculating
  anything that hasn't changed), the calculator keeps a 1-deep cache of the
  previous value for each cell so that it has a 1-deep undo capability.  This
  is ideal for the behaviour of a one-change-at-a-time simanneal optimiser,
  which backtracks when a new value isn't accepted, ie it tries sequences like:
    [0,0,0] [0,0,3] [0,8,0] [7,0,0] [0,0,4] [0,6,0] ...
  when it isn't making progress, and
    [0,0,0] [0,0,3] [0,8,3] [7,8,3] [7,8,9] ...
  when it's having a lucky streak.
  
  Each cell knows when it's out of date, but doesn't know why (ie: what input
  changed) which limits the undo strategy to all-or-nothing.  An optimiser that
  tried values
    [0,0,0] [0,3,8] [0,3,0] ...
  (ie: the third step is a recombination of the previous two) would not get
  any help from caching.  This does keep things simple and fast though.

Recycling:
  If defn.recycling is True then defn.calc() will be passed the previous
  result as its first argument so it can be reused.  This is to avoid
  having to reallocate memory for say a large numpy array just at the
  very moment that an old one of the same shape is being disposed of.
  To prevent recycling from invalidating the caching system 3 values are
  stored for each cell - current, previous and spare.  The spare value is
  the one to be used next for recycling.
"""
from __future__ import division, with_statement
import warnings
import numpy

# In this module we bring together scopes, settings and calculations.
# Most of the classes are 'Defns' with their superclasses in scope.py.
# These supply a makeCells() method which instantiates 'Cell'
# classes from calculation.py

from .calculation import EvaluatedCell, OptPar, LogOptPar, ConstCell
from .scope import _NonLeafDefn, _LeafDefn, _Defn, ParameterController
from .setting import Var, ConstVal

from cogent.util.dict_array import DictArrayTemplate
from cogent.maths.stats.distribution import chdtri
from cogent.util import parallel

__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Peter Maxwell", "Gavin Huttley"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Peter Maxwell"
__email__ = "pm67nz@gmail.com"
__status__ = "Production"


class CalculationDefn(_NonLeafDefn):
    """Defn for a derived value.  In most cases use CalcDefn instead
    
    The only reason for subclassing this directly would be to override
    .makeCalcFunction() or setup()."""
    
    recycling = False
    
    # positional arguments are inputs to this step of the calculation,
    # keyword arguments are passed on to self.setup(), likely to end up
    # as static attributes of this CalculationDefn, to be used (as self.X)
    # by its 'calc' method.
    
    def makeParamController(self):
        return ParameterController(self)
    
    def setup(self):
        pass
    
    def makeCalcFunction(self):
        return self.calc
    
    def makeCell(self, *args):
        calc = self.makeCalcFunction()
        # can't calc outside correct parallel context, so can't do
        # if [arg for arg in args if not arg.is_constant]:
        cell = EvaluatedCell(self.name, calc, args,
                recycling=self.recycling, default=self.default)
        return cell
        
    def makeCells(self, input_soup, variable=None):
        # input soups contains all necessary values for calc on self. 
        # Going from defns to cells.
        cells = []
        for input_nums in self.uniq:
            args = []
            for (arg, u) in zip(self.args, input_nums):
                arg = input_soup[id(arg)][u]
                args.append(arg)
            cell = self.makeCell(*args)
            cells.append(cell)
        return (cells, cells)
    

class _FuncDefn(CalculationDefn):
    def __init__(self, calc, *args, **kw):
        self.calc = calc
        CalculationDefn.__init__(self, *args, **kw)
    

# Use this rather than having to subclass CalculationDefinition
# just to supply the 'calc' method.
class CalcDefn(object):
    """CalcDefn(function)(arg1, arg2)"""
    def __init__(self, calc, name=None, **kw):
        self.calc = calc
        
        if name is None:
            name = self.calc.__name__
        else:
            assert isinstance(name, basestring), name
        kw['name'] = name        
        self.kw = kw
    
    def __call__(self, *args):
        return _FuncDefn(self.calc, *args, **self.kw)

class WeightedPartitionDefn(CalculationDefn):
    """Uses a PartitionDefn (ie: N-1 optimiser parameters) to make
    an array of floats with weighted average of 1.0"""
    
    def __init__(self, weights, name):
        N = len(weights.bin_names)
        partition = PartitionDefn(size=N, name=name+'_partition')
        partition.user_param = False
        CalculationDefn.__init__(self, weights, partition,
                name=name+'_distrib')
    
    def calc(self, weights, values):
        scale = numpy.sum(weights * values)
        return values / scale
    

class MonotonicDefn(WeightedPartitionDefn):
    """Uses a PartitionDefn (ie: N-1 optimiser parameters) to make
    an ordered array of floats with weighted average of 1.0"""
    
    def calc(self, weights, increments):
        values = numpy.add.accumulate(increments)
        scale = numpy.sum(weights * values)
        return values / scale
    

class GammaDefn(MonotonicDefn):
    """Uses 1 optimiser parameter to define a gamma distribution, divides
    the distribution into N equal probability bins and makes an array of
    their medians.  If N > 2 medians are approx means so their average
    is approx 1.0, but not quite so we scale them to make it exactly 1.0"""
    
    name = 'gamma'
    
    def __init__(self, weights, name=None, default_shape=1.0,
            extra_label=None, dimensions=()):
        name = self.makeName(name, extra_label)
        shape = PositiveParamDefn(name+'_shape',
            default=default_shape, dimensions=dimensions, lower=1e-2)
        CalculationDefn.__init__(self, weights, shape, name=name+'_distrib')
    
    def calc(self, weights, a):
        from cogent.maths.stats.distribution import gdtri
        weights = weights / numpy.sum(weights)
        percentiles = (numpy.add.accumulate(weights) - weights*0.5)
        medians = numpy.array([gdtri(a,a,p) for p in percentiles])
        scale = numpy.sum(medians*weights)
        #assert 0.5 < scale < 2.0, scale # medians as approx. to means.
        return medians / scale


class _InputDefn(_LeafDefn):
    user_param = True
    
    def __init__(self, name=None, default=None, dimensions=None,
            lower=None, upper=None, **kw):
        _LeafDefn.__init__(self, name=name, dimensions=dimensions, **kw)
        if default is not None:
            if hasattr(default, '__len__'):
                default = numpy.array(default)
            self.default = default
        # these two have no effect on constants
        if lower is not None:
            self.lower = lower
        if upper is not None:
            self.upper = upper
    
    def makeParamController(self):
        return ParameterController(self)
    
    def updateFromCalculator(self, calc):
        outputs = calc.getCurrentCellValuesForDefn(self)
        for (output, setting) in zip(outputs, self.uniq):
            setting.value = output
    
    def getNumFreeParams(self):
        (cells, outputs) = self.makeCells({}, None)
        return len([c for c in cells if isinstance(c, OptPar)])    

class ParamDefn(_InputDefn):
    """Defn for an optimisable, scalar input to the calculation"""
    
    numeric = True
    const_by_default = False
    independent_by_default = False
    opt_par_class = OptPar
    
    # These can be overridden in a subclass or the constructor
    default = 1.0
    lower = -1e10
    upper = +1e10
    
    def makeDefaultSetting(self):
        return Var(bounds = (self.lower, self.default, self.upper))
    
    def checkSettingIsValid(self, setting):
        pass
    
    def makeCells(self, input_soup={}, variable=None):
        uniq_cells = []
        for (i, v) in enumerate(self.uniq):
            scope = [key for key in self.assignments
                    if self.assignments[key] is v]
            if v.is_constant or (variable is not None and variable is not v):
                cell = ConstCell(self.name, v.value)
            else:
                cell = self.opt_par_class(self.name, scope, v.getBounds())
            uniq_cells.append(cell)
        
        return (uniq_cells, uniq_cells)
    

# Example / basic ParamDefn subclasses

class PositiveParamDefn(ParamDefn):
    lower = 0.0

class ProbabilityParamDefn(PositiveParamDefn):
    upper = 1.0

class RatioParamDefn(PositiveParamDefn):
    lower = 1e-6
    upper = 1e+6
    opt_par_class = LogOptPar

class NonScalarDefn(_InputDefn):
    """Defn for an array or other such object that is an input but
    can not be optimised"""
    
    user_param = False
    numeric = False
    const_by_default = True
    independent_by_default = False
    default = None
    
    def makeDefaultSetting(self):
        if self.default is None:
            return None
        else:
            return ConstVal(self.default)
    
    def checkSettingIsValid(self, setting):
        if not isinstance(setting, ConstVal):
            raise ValueError("%s can only be constant" % self.name)
    
    def makeCells(self, input_soup={}, variable=None):
        if None in self.uniq:
            if [v for v in self.uniq if v is not None]:
                scope = [key for key in self.assignments
                            if self.assignments[key] is None]
                msg = 'Unoptimisable input "%%s" not set for %s' % scope
            else:
                msg = 'Unoptimisable input "%s" not given'
            raise ValueError(msg % self.name)
        uniq_cells = [ConstCell(self.name, v.value) for v in self.uniq]
        return (uniq_cells, uniq_cells)
    
    def getNumFreeParams(self):
        return 0
        
    def updateFromCalculator(self, calc):
        pass # don't reset parallel_context etc.

    

def _proportions(total, params):
    """List of N proportions from N-1 ratios
    
    >>> _proportions(1.0, [3, 1, 1])
    [0.125, 0.125, 0.375, 0.375]"""
    if len(params) == 0:
        return [total]
    half = (len(params)+1) // 2
    part = 1.0 / (params[0] + 1.0) # ratio -> proportion
    return _proportions(total*part, params[1:half]) + \
        _proportions(total*(1.0-part), params[half:])

def _unpack_proportions(values):
    """List of N-1 ratios from N proportions"""
    if len(values) == 1:
        return []
    half = len(values) // 2
    (num, denom) = (sum(values[half:]), sum(values[:half]))
    assert num > 0 and denom > 0
    ratio = num / denom
    return [ratio] + _unpack_proportions(values[:half]) + \
        _unpack_proportions(values[half:])

class PartitionDefn(_InputDefn):
    """A partition such as mprobs can be const or optimised.  Optimised is
    a bit tricky since it isn't just a scalar."""
    
    numeric = False # well, not scalar anyway
    const_by_default = False
    independent_by_default = False
    
    def __init__(self, default=None, name=None, dimensions=None,
            dimension=None, size=None, **kw):
        assert name
        if size is not None:
            pass
        elif default is not None:
            size = len(default)
        elif dimension is not None:
            size = len(dimension[1])
        self.size = size
        if dimension is not None:
            self.internal_dimension = dimension
            (dim_name, dim_cats) = dimension
            self.bin_names = dim_cats
            self.array_template = DictArrayTemplate(dim_cats)
            self.internal_dimensions = (dim_name,)
        if default is None:
            default = self._makeDefaultValue()
        elif self.array_template is not None:
            default = self.array_template.unwrap(default)
        else:
            default = numpy.asarray(default)
        _InputDefn.__init__(self, name=name, default=default,
            dimensions=dimensions, **kw)
        self.checkValueIsValid(default, True)
    
    def _makeDefaultValue(self):
        return numpy.array([1.0/self.size] * self.size)
        
    def makeDefaultSetting(self):
        #return ConstVal(self.default)
        return Var((None, self.default.copy(), None))
    
    def checkSettingIsValid(self, setting):
        value = setting.getDefaultValue()
        return self.checkValueIsValid(value, setting.is_constant)

    def checkValueIsValid(self, value, is_constant):
        if value.shape != (self.size,):
            raise ValueError("Wrong array shape %s for %s, expected (%s,)" % 
                    (value.shape, self.name, self.size))
        for part in value:
            if part < 0:
                raise ValueError("Negative probability in %s" % self.name)                
            if part > 1:
                raise ValueError("Probability > 1 in %s" % self.name)                
            if not is_constant:
                # 0 or 1 leads to log(0) or log(inf) in optimiser code
                if part == 0:
                    raise ValueError("Zeros allowed in %s only when constant" % 
                        self.name)                
                if part == 1:
                    raise ValueError("Ones allowed in %s only when constant" % 
                        self.name)
        if abs(sum(value) - 1.0) > .00001:
            raise ValueError("Elements of %s must sum to 1.0, not %s" %
                (self.name, sum(value)))
    
    def _makePartitionCell(self, name, scope, value):
        # This was originally put in its own function so as to provide a 
        # closure containing the value of sum(value), which is no longer 
        # required since it is now always 1.0.
        N = len(value)
        assert abs(sum(value) - 1.0) < .00001
        ratios = _unpack_proportions(value)
        ratios = [LogOptPar(name+'_ratio', scope, (1e-6,r,1e+6))
                for r in ratios]
        def r2p(*ratios):
            return numpy.asarray(_proportions(1.0, ratios))
        partition = EvaluatedCell(name, r2p, tuple(ratios))
        return (ratios, partition)
    
    def makeCells(self, input_soup={}, variable=None):
        uniq_cells = []
        all_cells = []
        for (i, v) in enumerate(self.uniq):
            if v is None:
                raise ValueError("input %s not set" % self.name)
            assert hasattr(v, 'getDefaultValue'), v
            value = v.getDefaultValue()
            assert hasattr(value, 'shape'), value
            assert value.shape == (self.size,)
            scope = [key for key in self.assignments
                    if self.assignments[key] is v]
            assert value is not None
            if v.is_constant or (variable is not None and variable is not v):
                partition = ConstCell(self.name, value)
            else:
                (ratios, partition) = self._makePartitionCell(
                        self.name, scope, value)
                all_cells.extend(ratios)
            all_cells.append(partition)
            uniq_cells.append(partition)
        return (all_cells, uniq_cells)
    
def NonParamDefn(name, dimensions=None, **kw):
    # Just to get 2nd arg as dimensions
    return NonScalarDefn(name=name, dimensions=dimensions, **kw)

class ConstDefn(NonScalarDefn):
    # This isn't really needed - just use NonParamDefn
    name_required = False
    
    def __init__(self, value, name=None, **kw):
        NonScalarDefn.__init__(self, default=value, name=name, **kw)
    
    def checkSettingIsValid(self, setting):
        if setting is not None and setting.value is not self.default:
            raise ValueError("%s is constant" % self.name)


class SelectForDimension(_Defn):
    """A special kind of Defn used to bridge from Defns where a particular
    dimension is wrapped up inside an array to later Defns where each
    value has its own Defn, eg: gamma distributed rates"""
    
    name = 'select'
    user_param = True
    numeric=True # not guarenteed!
    internal_dimensions = ()
    
    def __init__(self, arg, dimension, name=None):
        assert not arg.activated, arg.name
        if name is not None:
            self.name = name
        _Defn.__init__(self)
        self.args = (arg,)
        self.arg = arg
        self.valid_dimensions = arg.valid_dimensions
        if dimension not in self.valid_dimensions:
            self.valid_dimensions =  self.valid_dimensions + (dimension,)
        self.dimension = dimension
        arg.addClient(self)
    
    def update(self):
        for scope_t in self.assignments:
            scope = dict(zip(self.valid_dimensions, scope_t))
            scope2 = dict((n,v) for (n,v) in scope.items() if n!=self.dimension)
            input_num = self.arg.outputOrdinalFor(scope2)
            pos = self.arg.bin_names.index(scope[self.dimension])
            self.assignments[scope_t] = (input_num, pos)
        self._update_from_assignments()
        self.values = [self.arg.values[i][p] for (i,p) in self.uniq]
    
    def _select(self, arg, p):
        return arg[p]
    
    def makeCells(self, input_soup, variable=None):
        cells = []
        distribs = input_soup[id(self.arg)]
        for (input_num, bin_num) in self.uniq:
            cell = EvaluatedCell(
                self.name, (lambda x,p=bin_num:x[p]), (distribs[input_num],))
            cells.append(cell)
        return (cells, cells)
    

# Some simple CalcDefns

#SumDefn = CalcDefn(lambda *args:sum(args), 'sum')
#ProductDefn = CalcDefn(lambda *args:numpy.product(args), 'product')
#CallDefn = CalcDefn(lambda func,*args:func(*args), 'call')
#ParallelSumDefn = CalcDefn(lambda comm,local:comm.sum(local), 'parallel_sum')

class SwitchDefn(CalculationDefn):
    name = 'switch'
    def calc(self, condition, *args):
        return args[condition]

    def getShortcutCell(self, condition, *args):
        if condition.is_constant:
            return self.calc(self, condition.value, *args)

class VectorMatrixInnerDefn(CalculationDefn):
    name = 'evolve'
    def calc(self, pi, psub):
        return numpy.inner(pi, psub)
        
    def getShortcutCell(self, pi, psub):
        if psub.is_stationary:
            return pi
    
class SumDefn(CalculationDefn):
    name = 'sum'
    def calc(self, *args):
        return sum(args)
    

class ProductDefn(CalculationDefn):
    name = 'product'
    def calc(self, *args):
        return numpy.product(args)
    

class CallDefn(CalculationDefn):
    name = 'call'
    def calc(self, func, *args):
        return func(*args)
    

class ParallelSumDefn(CalculationDefn):
    name = 'parallel_sum'
    def calc(self, comm, local):
        return comm.allreduce(local)  # default MPI op is SUM
    

__all__ = ['ConstDefn', 'NonParamDefn', 'CalcDefn', 'SumDefn', 'ProductDefn',
        'CallDefn', 'ParallelSumDefn'] + [
        n for (n,c) in vars().items()
        if (isinstance(c, type) and issubclass(c, _Defn) and n[0] != '_')
        or isinstance(c, CalcDefn)]