/usr/share/pyshared/cogent/seqsim/analysis.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 | #!/usr/bin/env python
from tree import RangeNode, balanced_breakpoints
from cogent.core.usage import DnaPairs
from usage import Counts
from random import choice
from numpy.linalg import det as determinant, inv as inverse
from numpy import sqrt, newaxis as NewAxis, exp, dot, zeros, ravel, array, \
float64, max, min, average, any, pi
from cogent.util.array import without_diag
from cogent.maths.svd import three_item_combos, two_item_combos
from cogent.maths.stats.test import std
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Rob Knight", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
def tree_threeway_counts(tree, lca_depths, alphabet=DnaPairs, attr='Sequence'):
"""From tree and array of lca_depths, returns n*n*n array of Count objects.
n is number of leaves.
lca_depths: array (leaf * leaf) of depths of last common ancestor.
alphabet: pair alphabet for input sequences.
Returns dict containing counts for (i, j, k) and (j, i, k) where k is the
outgroup of the three sequences. Will pick an arbitrary node to be the
outgroup if there is a polytomy.
Note: Leaves of tree must have sequences already assigned.
"""
outgroup_last = tree.outgroupLast
leaves = list(tree.traverse())
result = {}
for first, second, third in three_item_combos(leaves):
new_first, new_second, new_third = outgroup_last(first, second, third)
#get the sequence from each node
seq_1 = getattr(new_first, attr)
seq_2 = getattr(new_second, attr)
seq_3 = getattr(new_third, attr)
result[(new_first.Id, new_second.Id, new_third.Id)] = \
Counts.fromTriple(seq_1, seq_2, seq_3, alphabet)
#don't forget to do counts from both the non-outgroups
result[(new_second.Id, new_first.Id, new_third.Id)] = \
Counts.fromTriple(seq_2, seq_1, seq_3, alphabet)
return result
def dna_count_cleaner(counts):
"""Cleans DNA counts to just the 4-letter alphabet."""
return Counts(counts._data[:4,:4], DnaPairs)
def tree_threeway_counts_sample(tree, lca_depths, alphabet=DnaPairs, \
attr='Sequence', n=1000, check_rates=True, clean_f=None):
"""Like tree_threeway_counts, but takes random sample (w/o replacement)."""
leaves = list(tree.traverse())
num_leaves = len(leaves)
#do normal threeway counts if number of triples < n
num_triples = num_leaves * (num_leaves - 1) * (num_leaves-2) / 3
if num_triples < n:
counts = tree_threeway_counts(tree, lca_depths, alphabet, attr)
if clean_f:
result = {}
for k, v in counts.items():
result[k] = clean_f(v)
return result
else:
return counts
#if we got here, need to sample
outgroup_last = tree.outgroupLast
i = 0
seen = {}
result = {}
while i < n and len(seen) < num_triples:
#bail out if same node picked twice, or if resampling same combo
curr = choice(leaves), choice(leaves), choice(leaves)
ids = tuple([c.Id for c in curr])
if len(dict.fromkeys(ids)) < len(curr): #picked same thing twice
continue
if curr in seen:
continue
first, second, third = curr
new_first, new_second, new_third = outgroup_last(first, second, third)
seq_1 = getattr(new_first, attr)
seq_2 = getattr(new_second, attr)
seq_3 = getattr(new_third, attr)
counts = Counts.fromTriple(seq_1, seq_2, seq_3, alphabet)
if clean_f:
counts = clean_f(counts)
key = (new_first.Id, new_second.Id, new_third.Id)
#check rates if we need to
if check_rates:
try:
#skip probs with zero rows
if not min(max(counts._data,1)):
continue
probs = counts.toProbs()
rates = probs.toRates()
except (ZeroDivisionError, OverflowError, ValueError, \
FloatingPointError):
continue
result[key] = counts
i += 1
return result
def tree_twoway_counts(tree, alphabet=DnaPairs, average=True, attr='Sequence'):
"""From tree, return dict of Count objects.
Note: if average is True, only has counts in m[i,j] or m[j,i], not both.
"""
leaves = list(tree.traverse())
result = {}
if average:
#return symmetric matrix
for first, second in two_item_combos(leaves):
seq_1 = getattr(first, attr)
seq_2 = getattr(second, attr)
result[(first.Id, second.Id)] = \
Counts.fromPair(seq_1, seq_2, alphabet)
else:
for first, second in two_item_combos(leaves):
seq_1 = getattr(first, attr)
seq_2 = getattr(second, attr)
result[(first.Id, second.Id)] = \
Counts.fromPair(seq_1, seq_2, alphabet,False)
result[(second.Id, first.Id)] = \
Counts.fromPair(seq_2, seq_1, alphabet,False)
return result
def counts_to_probs(count_dict):
"""Converts counts to probs, omitting problem cases."""
result = {}
for key, val in count_dict.items():
#check for zero rows
if not min(max(val._data,1)):
continue
try:
p = val.toProbs()
#the following detects nan from divide by zero for empty rows
#this works because nan doesn't compare equal to itself
first_col = p._data[:,0]
if any(first_col != first_col):
raise ZeroDivisionError
#if we got here, everything was OK
result[key] = val.toProbs()
except (ZeroDivisionError, OverflowError,ValueError,FloatingPointError):
#errors are platform-dependent and arise when a row is zero
#(i.e. if a character doesn't appear in the sequence).
pass
return result
def probs_to_rates(prob_dict, fix_f=None, normalize=False, ftol=0.01):
"""Converts probs to rates, omitting problem cases (but not neg off-diags).
ftol is in log10 units, e.g. ftol of 1 means within one order of magnitude.
Default = 0.01.
NOTE: fix_f should be an unbound method of Rates, or other function that
expects a rate as a single parameter.
"""
result = {}
seen = {}
for key, val in prob_dict.items():
try:
rate = val.toRates(normalize)
if fix_f:
rate = fix_f(rate)
rounded = tuple(map(round, rate._data.flatten()/ftol))
if rounded in seen:
continue
else:
seen[rounded] = 1
#check for zero rows
if not min(max(rate._data,1)):
continue
#check for zero cols
if not min(max(rate._data)):
continue
if (not rate.isSignificantlyComplex()): # and rate.isValid():
result[key] = rate
except (ZeroDivisionError, OverflowError,ValueError,FloatingPointError):
#errors are platform-dependent
pass
return result
def tree_threeway_rates(tree, lca_depths, alphabet=DnaPairs, fix_f=None, \
normalize=False, without_diag=False):
"""Generates matrix of all valid three-way rate matrices from a tree.
Dimensions of matrix are (num_leaves, num_leaves, num_leaves, flat_rate),
i.e. m[0][1][2] gives you the matrix for leaves 0,1,2.
In general, expect to get matrices out of the tree by slicing rather than
by indexing, since many rates will be empty due to inference problems.
"""
leaves = len(list(tree.traverse()))
counts = tree_threeway_counts(tree, lca_depths, alphabet)
rates = probs_to_rates(counts_to_probs(counts), fix_f, normalize)
return threeway_rates_to_array(rates, leaves, alphabet, without_diag)
def tree_twoway_rates(tree, alphabet=DnaPairs, average=False, fix_f=None, \
normalize=False, without_diag=False):
"""Generates all valid two-way rate matrices from a tree.
Dimensions of matrix are (num_leaves, num_leaves, num_leaves, flat_rate),
i.e. m[0][1][2] gives you the matrix for leaves 0,1,2.
In general, expect to get matrices out of the tree by slicing rather than
by indexing, since many rates will be empty due to inference problems.
"""
leaves = len(list(tree.traverse()))
counts = tree_twoway_counts(tree, alphabet, average)
probs = counts_to_probs(counts)
r = probs_to_rates(probs, fix_f, normalize)
return twoway_rates_to_array(r, leaves, alphabet, without_diag)
def twoway_rates_to_array(rates, num_seqs, alphabet=DnaPairs, \
without_diag=True):
"""Fills an array with flat twoway_rates arrays."""
if without_diag:
result = zeros((num_seqs, num_seqs, len(alphabet)- \
len(alphabet.SubEnumerations[0])),
float64)
else:
result = zeros((num_seqs, num_seqs, len(alphabet)), float64)
return rates_to_array(rates, result, without_diag)
def threeway_rates_to_array(rates, num_seqs, alphabet=DnaPairs, \
without_diag=True):
"""Fills an array with flat threeway_rates arrays."""
if without_diag:
result = zeros((num_seqs, num_seqs, num_seqs, \
len(alphabet) - len(alphabet.SubEnumerations[0])), float64)
else:
result = zeros((num_seqs, num_seqs, num_seqs, len(alphabet)), float64)
return rates_to_array(rates, result, without_diag)
def rates_to_array(rates, to_fill, without_diagonal=False):
"""Fills rates into a pre-existing array object.
Assumes that all keys in rates are valid indices into to_fill, and that the
last dimension of to_fill is the same size as the flattened values in rates.
If without_diagonal is True (False by default), removes the diagonals from
the data before placing in the array. Note that we can't call this
without_diag or we collide with the function we want to call to strip
the diagonal.
WARNING: size of to_fill array must be adjusted to be the right size as the
inputs, i.e. last dimension same as flat array with/without diagonals.
"""
if without_diagonal:
for key, val in rates.items():
to_fill[key] = ravel(without_diag(val._data))
else:
for key, val in rates.items():
to_fill[key] = ravel(val._data)
return to_fill
def multivariate_normal_prob(x, cov, mean=None):
"""Returns multivariate normal probability density of vector x.
Formula: http://www.riskglossary.com/link/joint_normal_distribution.htm
"""
if mean is None:
mean = zeros(len(x))
diff_row = x-mean
diff_col = diff_row[:,NewAxis]
numerator = exp(-0.5 * dot(dot(diff_row, inverse(cov)), diff_col))
denominator = sqrt((2*pi)**(len(x)) * determinant(cov))
return numerator/denominator
######### WARNING: TESTS END HERE! ###########################
def classify_tree(tree, comparison_sets):
"""Takes a tree and a dict of label -> distributions. Returns node -> label."""
pass
def balanced_two_q_tree(n, length=0.05, seq_length=100, change_depth=2,\
perturb=True, both=False):
"""Makes single random tree with specified nodes, branch and seq length.
Two random rate matrices are assigned.
"""
t = BalancedTree(n)
t.assignLengths(length)
if perturb:
t.pertubrAttr('Length', xxx)
raise #NOT FINISHED
q = Rates.random()
scale_trace(q)
t.Q = q
curr_node = t
for i in range(change_depth):
curr_node = choice(curr_node)
q2 = random_q_matrix()
scale_trace(q2)
curr_node.Q = q2
t.assignQ()
t.assignP()
t.Sequence = rand_rna(seq_length)
t.assignSeqs()
if both:
return t, curr_node
else:
return t
def balanced_multi_q_tree(n, length=0.05, seq_length=100,perturb=True):
"""Makes single random tree with specified nodes, branch and seq length.
Every node gets its own random rate matrix.
"""
t = BalancedTree(n)
t.assignLengths({},default=length)
if perturb:
perturb_lengths(t)
for node in t.traverse():
q = random_q_matrix()
scale_trace(q)
node.Q = q
t.assignQ()
t.assignP()
t.Sequence = rand_rna(seq_length)
t.assignSeqs()
return t
def get_matrix_stats(qs, true_q=None):
"""Returns list of matrix stats. Expects flat q matrices as input."""
#set up flat q matrices
flat_qs = flatten_q_matrices(qs)
for q in qs:
scale_trace(qs)
flat_scaled_qs = flatten_q_matrices(qs)
#get covariance and correl matrices
covar = cov(flat_qs)
correl = corrcoef(flat_qs)
norm_covar = euclidean_norm(covar)
norm_correl = euclidean_norm(correl)
covar_e = list(eigenvalues(covar).real)
covar_e.sort()
covar_e.reverse()
correl_e = list(eigenvalues(correl).real)
correl_e.sort()
correl_e.reverse()
two_best_covar = ratio_two_best(covar_e)
two_best_correl = ratio_two_best(correl_e)
frac_best_covar = ratio_best_to_sum(covar_e)
frac_best_correl = ratio_best_to_sum(correl_e)
weiss_stat = weiss(covar_e)
#get summary stats from scaled qs
distances = dists_from_mean(flat_scaled_qs)
mean_dist = average(distances)
var_dist = var(distances)
if true_q:
mean_q = mean(flat_scaled_qs)
q_error = euclidean_distance(mean_q, true_q)
else:
q_error = 0
norm_scaled_covar = euclidean_norm(cov(flat_scaled_qs))
result = [norm_covar, norm_correl, two_best_covar, \
two_best_correl, frac_best_covar, frac_best_correl, weiss_stat, \
mean_dist, var_dist, q_error, norm_scaled_covar]
result.extend(correl_e)
result.extend(covar_e)
return result
def compare_distance_to_weiss(t):
"""Given a tree, calculate 2-sequence Weiss statistic and 3-seq variation.
Returns tuple containing Weiss, eigenvector ratio, and var of 3-seq dist."""
three_subs = all_p_from_tree(t)
pair_subs = pair_p_from_tree(t)
three_qs = get_qs(three_subs)
pair_qs = get_qs(pair_subs)
pairs_no_diag = map(array, map(take_off_diag, pair_qs))
three_qs_copy = [i.copy() for i in three_qs]
for i in three_qs: scale_trace(i)
pairs_flat = flatten_q_matrices(pairs_no_diag)
three_flat = flatten_q_matrices(three_qs)
three_distances = dists_from_mean(three_flat)
mean_three = average(three_distances)
var_three = var(three_distances)
pair_distances = dists_from_mean(pairs_flat)
mean_pair = average(pair_distances)
var_pair = var(pair_distances)
three_qs_copy_flat = flatten_q_matrices(three_qs_copy)
three_cor_matrix = corrcoef(three_qs_copy_flat)
three_ratio = ratio_two_best(list(eigenvalues(three_cor_matrix).real))
cov_matrix = cov(pairs_flat)
covar_e = list(eigenvalues(cov_matrix).real)
covar_e.sort()
covar_e.reverse()
two_ratio = ratio_two_best(covar_e)
weiss_stat = weiss(covar_e)
return [mean_pair, var_pair, mean_three, var_three, two_ratio, three_ratio, weiss_stat]
def distance_to_weiss_header():
return ['mean_pair', 'var_pair', 'mean_three', 'var_three', 'two_ratio',\
'three_ratio', 'weiss_stat']
def mean_var_eigen(t):
"""Returns mean and variance of branch lengths and 3-seq eigen of tree"""
three_subs = all_p_from_tree(t)
three_qs = get_qs(three_subs)
three_qs_copy = [i.copy() for i in three_qs]
for i in three_qs: scale_trace(i)
three_flat = flatten_q_matrices(three_qs)
three_distances = dists_from_mean(three_flat)
mean_three = average(three_distances)
var_three = var(three_distances)
three_qs_copy_flat = flatten_q_matrices(three_qs_copy)
three_cor_matrix = corrcoef(three_qs_copy_flat)
three_ratio = ratio_two_best(list(eigenvalues(three_cor_matrix).real))
return [mean_three, var_three, three_ratio]
def mean_var_eigen_header():
return ['mean_three', 'var_three', 'ratio_three']
def svd_tests(n):
"""Runs some tests of svd on samples of n random matrices"""
print 'SVD tests...'
tests = {'random':random_mats, 'random q':random_q_mats, \
'scaled q':scale_one_q, 'scaled many': scale_many_q}
for name, f in tests.items():
print name, ':\n', svd_q(f(n))
def tree_tests(n, leaves=8, slen=100, blen=0.1):
"""Runs some tests of svd on trees"""
print "Tree tests..."
print "single matrix"
for i in range(n):
t = balanced_one_q_tree(n=leaves, seq_length=slen, length=blen)
ps = all_p_from_tree(t)
print svd_q(get_qs(ps)).real
print "two matrices"
for i in range(n):
t = balanced_two_q_tree(n=leaves, seq_length=slen, length=blen)
ps = all_p_from_tree(t)
print svd_q(get_qs(all_p_from_tree(t))).real
print "many matrices"
for i in range(n):
ps = all_p_from_tree(t)
t = balanced_multi_q_tree(n=leaves, seq_length=slen, length=blen)
print svd_q(get_qs(all_p_from_tree(t))).real
def stats_from_tree(t):
ps = all_p_from_tree(t)
qs = get_qs(ps)
return get_matrix_stats(qs)
def tree_stats(n, tree_f, result_f):
for i in range(n):
t = tree_f()
yield result_f(t)
def tree_stats_header():
header += ['norm_covar', 'norm_correl', 'two_best_covar', 'two_best_correl',
'frac_best_covar', 'frac_best_correl', 'weiss_stat', 'mean_dist',
'var_dist', 'q_error', 'norm_scaled_covar']
for i in range(16):
header.append('cor_'+str(i))
for i in range(16):
header.append('cov_'+str(i))
return header
def tree_stats_analysis(n, header_f, result_f, leaves=16, slen=1000, blen=0.1, \
tree_f=balanced_two_q_tree, tree_f_name='two_q'):
make_tree = lambda: tree_f(n=leaves, seq_length=slen, length=blen)
shared_params = [leaves, slen, blen, tree_f_name]
shared_header = ['n', 'leaves', 'seq_len', 'branch_len', 'type']
print '\t'.join(shared_header + header_f())
for i, data in enumerate(tree_stats(n, make_tree, result_f)):
result = [i] + shared_params + data
print '\t'.join(map(str, result))
def perturb_lengths(t):
"""Perturbs the branch lengths in t by multiplying each by (0.5,1.5)."""
for node in t.traverse():
if node.Length:
node.Length *= (0.5 + random())
def stats_from_tree_analysis(n):
tree_stats_analysis(n, header_f=tree_stats_header, result_f=stats_from_tree)
def q_matrix_compare_analysis(n):
tree_stats_analysis(n, header_f=distance_to_weiss_header, \
result_f=compare_distance_to_weiss, tree_f=balanced_one_q_tree, \
tree_f_name='one_q')
tree_stats_analysis(n, header_f=distance_to_weiss_header, \
result_f=compare_distance_to_weiss, tree_f=balanced_two_q_tree, \
tree_f_name='two_q')
tree_stats_analysis(n, header_f=distance_to_weiss_header, \
result_f=compare_distance_to_weiss, tree_f=balanced_multi_q_tree, \
tree_f_name='multi_q')
def change_length_analysis(n, branch_lengths=\
[0.05, 0.1, 0.15, 0.2, 0.25,0.3, 0.35, 0.4], leaves=16, slen=1000):
header = ['mean_three_m','mean_three_sd','var_three_m', 'var_three_sd', \
'ratio_three_m', 'ratio_three_sd']
conditions = {'one_q':balanced_one_q_tree, 'two_q':balanced_two_q_tree, \
'multi_q':balanced_multi_q_tree}
condition_names = ['one_q', 'two_q', 'multi_q']
result_f = mean_var_eigen
full_header = ['length'] + \
[name+i for name in condition_names for i in header]
print '\t'.join(full_header)
for b in lengths:
result = [b]
for c in condition_names:
tree_f = conditions[c]
make_tree = lambda:tree_f(n=leaves,seq_length=slen,length=b,\
perturb=False)
samples = list(tree_stats(n, make_tree, result_f))
means = average(samples)
stdevs = std(samples)
for i in zip(means, stdevs):
result.extend(i)
print '\t'.join(map(str, result))
def tree_change_analysis(n):
"""Test whether we can see a change in stats for the first subtree w/ Q2"""
header = ['mean_three','var_three', 'ratio_three']
result_f = mean_var_eigen
print '\t'.join(['n'] + header + header)
for i in range(n):
t, d = balanced_two_q_tree(n=16, seq_length=1000, length=0.1, \
perturb=False, both=True)
d_result = result_f(d)
p_result = result_f(d.Parent)
print '\t'.join(map(str, [i] + d_result + p_result))
if __name__ == '__main__':
t = tree_controller()
|