/usr/share/pyshared/cogent/seqsim/markov.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 | #!/usr/bin/env python
"""markov.py: various types of random and non-random generators.
Currently provides:
MarkovGenerator: reads in k-word frequencies from a text, and generates random text based on those frequencies. Also calculates the average entropy of the (k+1)th symbol (for sufficiently large k, converges on the entropy of the text).
NOTE: The text must be a list of strings (e.g. lines of text). If
a single string is passed into the constructor it should be
put into a list (i.e. ['your_string']) or it will result in errors
when calculating kword frequencies.
"""
from __future__ import division
from operator import mul
from random import choice, shuffle, randrange
from cogent.maths.stats.util import UnsafeFreqs as Freqs
from cogent.util.array import cartesian_product
from cogent.maths.stats.test import G_fit
from copy import copy,deepcopy
from numpy import ones, zeros, ravel, array, rank, put, argsort, searchsorted,\
take
from numpy.random import random
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Rob Knight", "Jesse Zaneveld", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Development"
class MarkovGenerator(object):
"""Holds k-word probabilities read from file, and can generate text."""
def __init__(self, text=None, order=1, linebreaks=False, \
calc_entropy=False, freqs=None, overlapping=True, \
array_pseudocounts=0, delete_bad_suffixes=True):
"""Sets text and generates k-word frequencies."""
self.Text = text
self.Linebreaks = linebreaks
self.Order = order
self.Frequencies = freqs or {}
self.RawCounts = {}
self.FrequencyArray=None
self.CountArray=None
self.ExcludedCounts=None
self.ArrayPseudocounts=array_pseudocounts
self._calc_entropy = calc_entropy
self.Entropy = None
self.Prior = None
self.Overlapping=overlapping
if self.Text:
self.calcFrequencies(delete_bad_suffixes)
def calcFrequencies(self, delete_bad_suffixes=True):
"""For order k, gets the (k-1)-word frequencies plus what follows."""
#reset text if possible -- but it might just be a string, so don't
#complain if the reset fails.
overlapping=self.Overlapping
try:
self.Text.reset()
except AttributeError:
try:
self.Text.seek(0)
except AttributeError:
pass
k = self.Order
if k < 1: #must be 0 or '-1': just need to count single bases
self._first_order_frequency_calculation()
else: #need to figure out what comes after the first k bases
all_freqs = {}
for line in self.Text:
if not self.Linebreaks:
line = line.strip()
#skip the line if it's blank
if (not line):
continue
#otherwise, make a frequency distribution of symbols
end = len(line) - k
if overlapping:
rang=xrange(end)
else:
rang=xrange(0,end,(k+1))
for i in rang:
word, next = line[i:i+k], line[i+k]
curr = all_freqs.get(word, None)
if curr is None:
curr = Freqs({next:1})
all_freqs[word] = curr
else:
curr += next
if self._calc_entropy:
self.Entropy = self._entropy(all_freqs)
self.Frequencies = all_freqs
if delete_bad_suffixes:
self.deleteBadSuffixes()
self.RawCounts=deepcopy(all_freqs)
#preserve non-normalized freqs
for dist in self.Frequencies.values():
dist.normalize()
def wordToUniqueKey\
(self,word, conversion_dict={'a':0,'c':1,'t':2,'g':3}):
#since conversion_dict values are used as array indices later,
#values of conversion dict should range from 0 to (n-1),
#where n=number of characters in your alphabet
uniqueKey=0
alpha_len = len(conversion_dict)
for i in range(0,len(word)):
uniqueKey += (conversion_dict[word[i]]*alpha_len**i)
return uniqueKey
def makeCountArray(self):
"""Generates a 1 column array with indices equal to the keys for each
kword + character and raw counts of the occurances of that key as values.
This allows counts for many k+1 long strings to be
found simultaneously with evaluateArrayProbability
(which also normalizes the raw counts to frequencies)"""
#print "makeCountArray: before replaceDegen self.Rawcounts=",\
# self.RawCounts
self.replaceDegenerateBases()
#print "makeCountArray:self.RawCounts=",self.RawCounts #debugging
counts=self.RawCounts
self.CountArray=zeros((4**(self.Order+1)),'f')
#Order 0 --> 4 spots ('a','c','t','g') 1 --> 16 etc
#TODO: may generate problems if Order = -1
if self.Order==0:
#print "makeCountArray:counts=",counts #debugging
for key in counts['']:
#print "attempting to put",float(counts[''][key]),"into index",\
# self.wordToUniqueKey(key),\
# "of array CountArray=",self.CountArray #debugging
put(self.CountArray,self.wordToUniqueKey(key),\
float(counts[''][key]))
self.CountArray[self.wordToUniqueKey(key)]=counts[''][key]
#print "placement successful!" #debugging
else:
for kword in counts.keys():
for key in counts[kword]:
index=self.wordToUniqueKey(kword+key)
#debugging
#print "attempting to put",counts[kword][key],"at index",\
# index,"of self.CountArray, which =",self.CountArray
put(self.CountArray,index,counts[kword][key])
#print "placement sucessful!" #debugging
#print "makeCountArray:raveling self" #debugging
if self.ArrayPseudocounts:
self.CountArray = self.CountArray + float(self.ArrayPseudocounts)
# adds to each count, giving unobserved keys frequency
#pseudocounts/n
#n= number of observed counts (rather than 0 frequency)
# When the number of pseudocounts added is one,
# this is 'Laplace's rule'
#(See 'Biological Sequence Analysis',Durbin et. al, p.115)
self.CountArray=ravel(self.CountArray)
#print "makeCountArray:final CountArray=",self.CountArray
def updateFrequencyArray(self):
"""updates the frequency array by re-normalizing CountArray"""
self.FrequencyArray=deepcopy(self.CountArray) #preserve raw counts
total_counts=sum(self.FrequencyArray)
self.FrequencyArray=self.FrequencyArray/total_counts
def replaceDegenerateBases(self,normal_bases=['a','t','c','g']):
"""remove all characters from self.Text that aren't
a,t,c or g and replace them with random characters
(when degenerate characters are rare, this is useful
because it avoids assigning all kwords with those
characters artificially low conditional probabilities)"""
def normalize_character(base,bases=normal_bases):
if base not in bases:
base=choice(bases)
return base
text=self.Text
for i in range(len(text)):
text[i]=\
''.join(map(normalize_character,text[i].lower()))
self.Text=text
def deleteBadSuffixes(self):
"""Deletes all suffixes that can't lead to prefixes.
For example, with word size 3, if acg is present but cg* is not
present, acg is not allowed.
Need to repeat until no more suffixes are deleted.
"""
f = self.Frequencies
#loop until we make a pass where we don't delete anything
deleted = True
while deleted:
deleted = False
for k, v in f.items():
suffix = k[1:]
for last_char in v.keys():
#if we can't make suffix + last_char, can't select that char
if suffix + last_char not in f:
del v[last_char]
deleted=True
if not v: #if we deleted the last item, delete prefix
del f[k]
deleted = True
def _entropy(self, frequencies):
"""Calcuates average entropy of the (k+1)th character for k-words."""
sum_ = 0.
sum_entropy = 0.
count = 0.
for i in frequencies.values():
curr_entropy = i.Uncertainty
curr_sum = sum(i.values())
sum_ += curr_sum
sum_entropy += curr_sum * curr_entropy
count += 1
return sum_entropy/sum_
def _first_order_frequency_calculation(self):
"""Handles single-character calculations, which are independent.
Specifically, don't need to take into account any other characters, and
can just feed the whole thing into a single Freqs.
"""
freqs = Freqs('')
for line in self.Text:
freqs += line
#get rid of line breaks if necessary
if not self.Linebreaks:
for badkey in ['\r', '\n']:
try:
del freqs[badkey]
except KeyError:
pass #don't care if there weren't any
#if order is negative, equalize the frequencies
if self.Order < 0:
for key in freqs:
freqs[key] = 1
self.RawCounts= {'':deepcopy(freqs)}
freqs.normalize()
self.Frequencies = {'':freqs}
def next(self, length=1, burn=0):
"""Generates random text of specified length with current freqs.
burn specifies the number of iterations to throw away while the chain
converges.
"""
if self.Order < 1:
return self._next_for_uncorrelated_model(length)
freqs = self.Frequencies #cache reference since it's frequently used
#just pick one of the items at random, since calculating the weighted
#frequencies is not possible without storing lots of extra info
keys = freqs.keys()
curr = choice(keys)
result = []
for i in range(burn +length):
next = freqs[curr].choice(random())
if i >= burn:
result.append(next)
curr = curr[1:] + next
return ''.join(result)
def _next_for_uncorrelated_model(self, length):
"""Special case for characters that don't depend on previous text."""
return ''.join(self.Frequencies[''].randomSequence(length))
def evaluateProbability(self,seq):
"""Evaluates the probability of generating a
user-specified sequence given the model."""
conditional_prob=1
order=self.Order
for i in range(0,(len(seq)-(order)),1):
k=seq[i:i+order+1]
try:
conditional_prob *= self.Frequencies[k[:-1]][k[-1]]
except KeyError:
#if key not in Frequencies 0 < Freq < 1/n
#To be conservative in the exclusion of models, use 1/n
if conditional_prob:
conditional_prob *= 1.0/(float(len(self.Text)))
else:
conditional_prob = 1.0/(float(len(self.Text)))
return conditional_prob
def evaluateWordProbability(self,word):
k=word[:self.Order+1]
try:
conditional_prob= self.Frequencies[k[:-1]][k[-1]]
except KeyError:
conditional_prob = 1.0/(float(len(self.Text)))
return conditional_prob
def evaluateArrayProbability(self,id_array):
#takes an array of unique integer keys
#corresponding to (k+1) long strings
#[can be generated by self.wordToUniqueKey()]
#Outputs probability
if self.FrequencyArray is None:
if self.CountArray is None:
self.makeCountArray()
self.updateFrequencyArray()
freqs=take(self.FrequencyArray,id_array)
prob=reduce(mul,freqs)
return float(prob)
def evaluateInitiationFrequency(self,kword,\
allowed_bases=['a','t','c','g']):
# takes a unique key corresponding to a k long word
# calculates the initiation frequency for that kword
# which is equal to its relative frequency
#TODO: add case where order is < 1
if len(kword) != (self.Order):
raise KwordError #kword must be equal to markov model order
if self.CountArray is None:
self.makeCountArray()
unique_keys=[]
#add term for each possible letter
for base in allowed_bases:
unique_keys.append(self.wordToUniqueKey(kword+base))
id_array=ravel(array(unique_keys))
counts=take(self.CountArray,id_array)
total_kword_counts=sum(counts)
total_counts=sum(self.CountArray)
prob=float(total_kword_counts)/float(total_counts)
return prob
def excludeContribution(self,excluded_texts):
#"""Excludes the contribution of a set of texts
#from the markov model. This can be useful, for example,
#to prevent self-contribution of the data in a gene to
#the model under which that gene is evaluated.
#
#A Markov Model is made from the strings, converted to a CountArray,
#and then that Count array (stored as ExcludedCounts) is subtracted
#from the current CountArray, and FrequencyArray is updated.
#
#The data excluded with this function can be restored with
#restoreContribution
#
#Only one list of texts can be excluded at any time. If a list of
#texts is already excluded when excludeContribution is called, that
#data will be restored before the new data is excluded"""
#print "excludeContribution:excluded_texts=",excluded_texts #debugging
if self.CountArray is None:
#print ".excludeContribution:missing countArray" #debugging
self.makeCountArray()
if self.ExcludedCounts:
self.restoreContribution()
#generate mm using same parameters as current model
exclusion_model=MarkovGenerator(excluded_texts,order=self.Order,\
overlapping=self.Overlapping)
exclusion_model.makeCountArray()
self.ExcludedCounts=\
(exclusion_model.CountArray)
self.CountArray = self.CountArray-(self.ExcludedCounts)
self.updateFrequencyArray()
def restoreContribution(self):
"""Restores data excluded using excludeContribution, and
renormalizes FrequencyArray"""
if self.ExcludedCounts:
self.CountArray += (self.ExcludedCounts)
self.ExcludedCounts=None
self.updateFrequencyArray()
def count_kwords(source, k, delimiter=''):
"""Makes dict of {word:count} for specified k."""
result = {}
#reset to beginning if possible
if hasattr(source, 'seek'):
source.seek(0)
elif hasattr(source, 'reset'):
source.reset()
if isinstance(source, str):
if delimiter:
source = source.split(delimiter)
else:
source = [source]
for s in source:
for i in range(len(s) - k + 1):
curr = s[i:i+k]
if curr in result:
result[curr] += 1
else:
result[curr] = 1
return result
def extract_prefix(kwords):
"""Converts dict of {w:count} to {w[:-1]:{w[-1]:count}}"""
result = {}
for w, count in kwords.items():
prefix = w[:-1]
suffix = w[-1]
if prefix not in result:
result[prefix] = {}
curr = result[prefix]
if suffix not in curr:
curr[suffix] = {}
curr[suffix] = count
return result
def _get_expected_counts(kwords, kminus1):
"""Gets expected counts from counts of 2 successive kword lengths.."""
result = []
total = sum(kminus1.values()) #shortest
prefixes = extract_prefix(kminus1)
for k in kwords:
result.append(kminus1[k[:-1]] * prefixes[k[1:-1]]/kminus1[k[:-1]])
def _pair_product(p, i, j):
"""Return product of counts of i and j from data."""
try:
return sum(p[i].values())*sum(p[j].values())
except KeyError:
return 0
def markov_order(word_counts, k, alpha):
"""Estimates Markov order of a source, using G test for fit.
Uses following procedure:
A source depends on the previous k letters more than the previous (k-1)
letters iff Pr(a|w_k) != Pr(a|w_{k-1}) for all words of length k. If we
know Pr(a|w) for all symbols a and words of length k and k-1, we would
expect count(a|w_i) to equal count(a|w_i[1:]) * count(w)/count(w[1:]).
We can compare these expected frequencies to observed frequencies using
the G test.
max_length: maximum correlation length to try
"""
if k == 0: #special case: test for unequal freqs
obs = word_counts.values()
total = sum(obs) #will remain defined through loop
exp = [total/len(word_counts)] * len(word_counts)
elif k == 1: #special case: test for pair freqs
prefix_counts = extract_prefix(word_counts)
total = sum(word_counts.values())
words = word_counts.keys()
exp = [_pair_product(prefix_counts, w[0], w[1])/total for w in words]
obs = word_counts.values()
else: # k >= 3: need to do general Markov chain
#expect count(a_i.w.b_i) to be Pr(b_i|w)*count(a_i.w)
cwb = {} #count of word.b
cw = {} #count of word
caw = {} #count of a.word
#build up counts of prefix, word, and suffix
for word, count in word_counts.items():
aw, w, wb = word[:-1], word[1:-1], word[1:]
if not wb in cwb:
cwb[wb] = 0
cwb[wb] += count
if not aw in caw:
caw[aw] = 0
caw[aw] += count
if not w in cw:
cw[w] = 0
cw[w] += count
obs = word_counts.values()
exp = [cwb[w[1:]]/(cw[w[1:-1]])*caw[w[:-1]] for w in \
word_counts.keys()]
return G_fit(obs, exp)
def random_source(a, k, random_f=random):
"""Makes a random Markov source on alphabet a with memory k.
Specifically, for all words k, pr(i|k) = rand().
"""
result = dict.fromkeys(map(''.join, cartesian_product([a]*k)))
for k in result:
result[k] = Freqs(dict(zip(a, random_f(len(a)))))
return result
def markov_order_tests(a, max_order=5, text_len=10000, verbose=False):
"""Tests of the Markov order inferrer using Markov chains of diff. orders.
"""
result = []
max_estimated_order = max_order + 2
for real_order in range(max_order):
print "Actual Markov order:", real_order
s = random_source(a, real_order)
m = MarkovGenerator(order=real_order, freqs=s)
text = m.next(text_len)
for word_length in range(1, max_estimated_order+1):
words = count_kwords(text, word_length)
g, prob = markov_order(words, word_length-1, a)
if verbose:
print "Inferred order: %s G=%s P=%s" % (word_length-1, g, prob)
result.append([word_length-1, g, prob])
return result
if __name__ == '__main__':
"""Makes text of specified # chars from training file.
Note: these were tested from the command line and confirmed working by RK
on 8/6/07.
"""
from sys import argv, exit
if len(argv) == 2 and argv[1] == 'm':
markov_order_tests('tcag', verbose=True)
elif len(argv) == 3 and argv[1] == 'm':
infilename = argv[2]
max_estimated_order = 12
text = open(infilename).read().split('\n')
for word_length in range(1, max_estimated_order):
words = count_kwords(text, word_length)
g, prob = markov_order(words, word_length-1, 'ATGC')
print "Inferred order: %s G=%s P=%s" % (word_length-1, g, prob)
else:
try:
length = int(argv[1])
max_order = int(argv[2])
text = open(argv[3], 'U')
except:
print "Usage: python markov.py num_chars order training_file"
print "...or python markov.py m training_file to check order"
exit()
for order in range(max_order + 1):
m = MarkovGenerator(text, order, calc_entropy=True)
print order,':', 'Entropy=', m.Entropy, m.next(length=length)
|