/usr/share/pyshared/cogent/seqsim/usage.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 | #!/usr/bin/env python
"""usage.py: usage of symbols, including substitutions on pairwise alphabets.
Revision History
Created 10/12/04 by Rob Knight.
9/14/05 Rob Knight: Changed Usage constructor to allow Alphabet on the instance
level, and to eliminate the precalculated flag which was not used. Added
entropy method.
7/20/07 Mike Robeson: Under PairMatrix.__init__ changed 'if data:' to
'if data != None:
8/3/07 Daniel McDonald: Code now relies on numpy and cogent with the exception
of the one scipy function that still needs to be removed
"""
from cogent.maths.scipy_optimize import fmin, brent
from cogent.util.array import scale_trace, norm_diff, \
has_neg_off_diags, sum_neg_off_diags, with_diag, without_diag
from cogent.core.alphabet import get_array_type
from cogent.core.usage import RnaBases, DnaBases, DnaPairs, RnaPairs, Codons
from cogent.core.sequence import ModelSequence, ModelDnaSequence, \
ModelRnaSequence
from operator import add, sub, mul, div
from cogent.maths.matrix_logarithm import logm
from cogent.maths.stats.util import FreqsI
from cogent.maths.matrix_exponentiation import FastExponentiator as expm
from numpy import zeros, array, max, diag, log, nonzero, product, cumsum, \
searchsorted, exp, diagonal, choose, less, repeat, average,\
logical_and, logical_or, logical_not, transpose, compress,\
ravel, concatenate, equal, log, dot, identity, \
newaxis as NewAxis, sum, take, reshape, any, all, asarray
from numpy.linalg import eig
from numpy.linalg import inv as inverse
from numpy.random import random as randarray
ARRAY_TYPE = type(array([0]))
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Rob Knight", "Mike Robeson", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
class Usage(FreqsI):
"""Stores usage on a particular alphabet. Abstract class.
Note: Usage is abstract because most subclasses (e.g. CodonUsage,
AminoAcidUsage) have specific methods that depend on their alphabets.
Allowing generic Usage objects is disallowed to enforce use of the
appropriate Usage object for specific situations.
Supports most of the Cogent FreqsI interface.
"""
Alphabet = None # concrete subclasses have specific alphabets
def __init__(self, data=None, Alphabet=None):
"""Returns a new Usage object from array of symbol freqs.
Will interpret many different kinds of data, including precalculated
frequencies, arrays of symbols, and cogent.core.sequence.ModelSequence
objects.
Warning: it guesses whether you passed in frequencies or symbols based
on the length of the array, so for example Usage(DnaSequence('ATCG'))
will _not_ give the result you expect. If you know the data type,
use the alternative class method constructors.
"""
if Alphabet is not None:
self.Alphabet = Alphabet
if not self.Alphabet:
raise TypeError, "Usage subclasses must define alphabet."""
if isinstance(data, Usage):
self._data = data._data
else:
self._data = zeros(len(self), 'float64')
if any(data):
self += data
def __getitem__(self, i):
"""Returns item based on alphabet."""
return self._data[self.Alphabet.index(i)]
def __setitem__(self, key, val):
"""Sets item based on alphabet."""
self._data[self.Alphabet.index(key)] = val
def __str__(self):
"""Prints as though it were a tuple of key,value pairs."""
return str(self.items())
def __repr__(self):
"""String representation of self."""
return ''.join([self.__class__.__name__, '(', repr(self._data), ')'])
def __iter__(self):
"""Iterates over keys, like a dict."""
return iter(self.Alphabet)
def __eq__(self, other):
"""Tests whether two Usage objects have the same data."""
if hasattr(other, '_data'):
return all(self._data == other._data)
#if we get here, didn't compare equal
try:
return all(self._data == self.__class__(other)._data)
except:
return False
def __ne__(self, other):
"""Returns True if self and other are not equal."""
if hasattr(other, '_data'):
return any(self._data != other._data)
#if we get here, didn't compare equal
try:
return any(self._data != self.__class__(other)._data)
except:
return True
def __iadd__(self, other):
"""Adds data to self in-place."""
#check if other is nonzero; skip if it isn't
try:
if not other:
return self
except ValueError:
if not any(other):
return self
#first, check if it's a Usage object
if isinstance(other, Usage):
self._data += other._data
return self
#then, check if it's one of our ModelSequence objects
ac = self.Alphabet.counts
if isinstance(other, ModelSequence):
self._data += ac(other._data)
return self
#if it's the same length as self, try to add it as frequencies
try:
if len(other) == len(self):
self._data += other
return self
except TypeError:
pass
#then try to convert it using the alphabet
#WARNING: this will silently ignore unknown keys!
#since we know other wasn't nonzero, we won't accept
#the result if we can't convert anything.
try:
other_freqs = ac(other)
#check if we actually converted anything...
if any(other_freqs):
self._data += other_freqs
return self
except (IndexError, KeyError, TypeError):
pass
#then use the generic conversion function
f = self._find_conversion_function(other)
if f:
f(other, op=add)
return self
else:
raise TypeError, "Could not convert this to freqs: %s" % other
def __isub__(self, other):
"""Subtracts data from self in-place."""
#check if other is nonzero; skip if it isn't
try:
if not other:
return self
except ValueError:
if not any(other):
return self
#first, check if it's a Usage object
if isinstance(other, Usage):
self._data -= other._data
return self
#then, check if it's one of our ModelSequence objects
ac = self.Alphabet.counts
if isinstance(other, ModelSequence):
self._data -= ac(other._data)
return self
#if it's the same length as self, try to add it as frequencies
try:
if len(other) == len(self):
self._data -= other
return self
except TypeError:
pass
#then try to convert it using the alphabet
#WARNING: this will silently ignore unknown keys!
#since we know other wasn't nonzero, we won't accept
#the result if we can't convert anything.
try:
other_freqs = ac(other)
#check if we actually converted anything...
if other_freqs.any():
self._data -= other_freqs
return self
except (IndexError, KeyError, TypeError):
pass
#then use the generic conversion function
f = self._find_conversion_function(other)
if f:
f(other, op=sub)
return self
else:
raise TypeError, "Could not convert this to freqs: %s" % other
def __mul__(self, other):
"""Multiplies self by other (assumed scalar)."""
return self.__class__(self._data * other)
def __imul__(self, other):
"""Multiplies self by other in-place (assumed scalar)."""
self._data *= other
def __div__(self, other):
"""Divides self by other (assumed scalar). Always true division."""
return self.__class__(self._data / (other))
def __idiv__(self, other):
"""Divides self by other (assumed scalar) inplace. Maybe int division."""
self._data /= other
def scale_sum(self, sum_=1.0):
"""Returns copy of self scaled to specified sum."""
return self.__class__(self._data * (sum_/sum(self._data)))
def scale_max(self, max_=1.0):
"""Returns copy of self scaled to specified maximum (default 1)."""
return self.__class__(self._data * (max_/max(self._data)))
def probs(self):
"""Returns copy of self scaled so that the sum is 1."""
return self.__class__(self._data / (sum(self._data)))
def randomIndices(self, length, random_vector=None):
"""Produces random indices according to symbol freqs."""
freqs = cumsum(self._data/sum(self._data))[:-1]
if random_vector is None:
random_vector=randarray(length)
return searchsorted(freqs, random_vector)
def fromSeqData(cls, seq, Alphabet=None):
"""Returns new Usage object from Sequence object."""
return cls.fromArray(seq._data, Alphabet=Alphabet)
def fromArray(cls, a, Alphabet=None):
"""Returns new Usage object from array."""
return cls(cls.Alphabet.counts(a), Alphabet=Alphabet)
fromSeqData = classmethod(fromSeqData)
fromArray = classmethod(fromArray)
#following code is to support FreqsI
def get(self, key, default):
"""Returns self._data[self.Alphabet.index(key) if present, or default."""
try:
return self._data[self.Alphabet.index(key)]
except (KeyError, IndexError, TypeError):
return default
def values(self):
"""Returns list of keys in self (i.e. the alphabet)."""
return list(self._data)
def keys(self):
"""Returns list of values in self (i.e. the data)."""
return list(self.Alphabet)
def items(self):
"""Returns list of (key, value) pairs in self."""
return zip(self.Alphabet, self._data)
def isValid(self):
"""Always valid (except for negative numbers), so override."""
return min(self._data) >= 0
def copy(self):
"""Return copy of self with same alphabet, not sharing data."""
return self.__class__(self._data.copy())
def __delitem__(self, key):
"""Can't really delete items, but raise error if in alphabet."""
if key in self.Alphabet:
raise KeyError, "May not delete required key %s" % key
def purge(self):
"""Can't contain anything not in alphabet, so do nothing."""
pass
def normalize(self, total=1.0, purge=True):
"""Converts counts into probabilities, normalized to 1 in-place.
Changes result to Float64. Purge is always treated as True.
"""
if self._data is not None and self._data.any():
self._data = self._data / (total * sum(self._data))
def choice(self, prob):
"""Returns item corresponding to Pr(prob)."""
if prob > 1:
return self.Alphabet[-1]
summed = cumsum(self._data/sum(self._data))
return self.Alphabet[searchsorted(summed, prob)]
def randomSequence(self, n):
"""Returns list of n random choices, with replacement."""
if not self:
raise IndexError, "All frequencies are zero."
return list(choose(self.randomIndices(n), self.Alphabet))
def subset(self, items, keep=True):
"""Sets all frequencies not in items to 0.
If keep is False, sets all frequencies in items to 0.
"""
if keep:
for i in self.Alphabet:
if i not in items:
self[i] = 0
else:
for i in items:
try:
self[i] = 0
except KeyError:
pass
def scale(self, factor=1, offset=0):
"""Linear transform of values in freqs where val= factor*val + offset."""
self._data = factor * self._data + offset
def __len__(self):
"""Returns length of alphabet."""
return len(self.Alphabet)
def setdefault(self, key, default):
"""Returns self[key] or sets self[key] to default."""
if self[key]:
return self[key]
else:
self[key] = default
return default
def __contains__(self, key):
"""Returns True if key in self."""
try:
return key in self.Alphabet
except TypeError:
return False
def __nonzero__(self):
"""Returns True if self is nonzero."""
return bool(sum(self._data) != 0)
def rekey(self, key_map, default=None, constructor=None):
"""Returns new Freqs with keys remapped using key_map.
key_map should be a dict of {old_key:new_key}.
Values are summed across all keys that map to the same new value.
Keys that are not in the key_map are omitted (if default is None),
or set to the default.
constructor defaults to self.__class__. However, if you're doing
something like mapping amino acid frequencies onto charge frequencies,
you probably want to specify the constructor since the result won't
be valid on the alphabet of the current class.
Note that the resulting Freqs object is not required to contain
values for all the possible keys.
"""
if constructor is None:
constructor = self.__class__
result = constructor()
for key, val in self.items():
new_key = key_map.get(key, default)
curr = result.get(new_key, 0)
try:
result[new_key] = curr + val
except KeyError:
pass
return result
def entropy(self, base=2):
"""Returns Shannon entropy of usage: sum of p log p."""
ln_base = log(base)
flat = ravel(self._data)
total = sum(flat)
if not total:
return 0
flat /= total
ok_indices = nonzero(flat)[0]
ok_vals = take(flat, ok_indices, axis=0)
return -sum(ok_vals * log(ok_vals))/ln_base
class DnaUsage(Usage):
"""Stores usage on the DNA alphabet."""
Alphabet = DnaBases
class RnaUsage(Usage):
"""Stores usage on the RNA alphabet."""
Alphabet = RnaBases
class CodonUsage(Usage):
"""Stores usage on the Codon alphabet."""
Alphabet = Codons
class DnaPairUsage(Usage):
"""Stores usage on the DnaPairs alphabet."""
Alphabet = DnaPairs
class RnaPairUsage(Usage):
"""Stores usage on the RnaPairs alphabet."""
Alphabet = RnaPairs
class PairMatrix(object):
"""Base class for Counts, Probs, and Rates matrices. Immutable.
Holds any numeric relationship between pairs of objects on a JointAlphabet.
Note that the two SubEnumerations of the JointAlphabet need not be the same,
although many subclasses of PairMatrix will require that the two
SubEnumerations _are_ the same because their methods assume square matrices.
"""
def __init__(self, data, Alphabet, Name=None):
"""Returns new PairMatrix object containing data.
WARNING: Alphabet must be a JointAlphabet where the two SubEnumerations
are the same.
"""
self.Alphabet = Alphabet
if any(data):
self._data = reshape(array(data, 'd'), Alphabet.Shape)
else:
self._data = zeros(Alphabet.Shape, 'd')
self.Name = Name
def toMatlab(self):
"""Returns Matlab-formatted string representation."""
if self.Name is None:
name = 'm'
else:
name = str(self.Name)
return ''.join([name, '=', '[', \
';\n'.join([' '.join(map(str, r)) for r in self._data]), '];\n'])
def __str__(self):
"""Returns string representation of array held in self."""
return str(self._data)
def __repr__(self):
"""Returns string representation of self."""
return ''.join([self.__class__.__name__, '(', repr(self._data), \
',', repr(self.Alphabet), ',', repr(self.Name), ')'])
def __getitem__(self, args):
"""__getitem__ passes everything to internal array.
WARNING: m[a,b] will work where a and b are symbols in the alphabet,
but m[a][b] will fail. This is because m[a] produces an array object
with the corresponding row, which is then passed b as an index. Because
the array object doesn't have the alphabet, it can't map the index into
a number.
Slicing is not supported.
"""
# First, test whether args are in the JointAlphabet. Will always be tuple.
if isinstance(args, tuple):
try:
return ravel(self._data)[self.Alphabet.index(tuple(args))]
except (KeyError, TypeError):
pass
return self._data[self.Alphabet.SubEnumerations[0].index(args)]
def __len__(self):
"""Returns number of rows."""
return len(self._data)
def empty(cls, Alphabet):
"""Class method: returns empty matrix sized for alphabet."""
return cls(zeros(Alphabet.Shape), Alphabet)
empty = classmethod(empty)
def __eq__(self, other):
"""Tests whether two Usage objects have the same data."""
try:
return all(self._data == other._data)
#return not bool(all(self._data != other._data))
except:
return False
def __ne__(self, other):
"""Returns True if self and other are not equal."""
try:
return any(self._data != other._data)
#return bool(all(self._data != other._data))
except:
return False
def __iter__(self):
"""Iterates over rows in data."""
return iter(self._data)
class Counts(PairMatrix):
"""Holds the data for a matrix of counts. Immutable.
"""
def toProbs(self):
"""Returns copy of self where rows sum to 1."""
return Probs(self._data/ (sum(self._data, 1)[:,NewAxis]), \
self.Alphabet)
def fromPair(cls, first, second, Alphabet, average=True):
"""Class method: returns new Counts from two sequences.
"""
size = len(Alphabet.SubEnumerations[-1])
#if they're ModelSequence objects, use the _data attribute
if hasattr(first, '_data'):
first, second = first._data, second._data
#figure out what size we need the result to go in: note that the
#result is on a pair alphabet, so the data type of the single
#alphabet (that the sequence starts off in) might not work.
data_type = get_array_type(product(map(len, Alphabet.SubEnumerations)))
first = asarray(first, data_type)
second = asarray(second, data_type)
items = first * size + second
counts = reshape(Alphabet.counts(items), Alphabet.Shape)
if average:
return cls((counts + transpose(counts))/2.0, Alphabet)
else:
return cls(counts, Alphabet)
fromPair = classmethod(fromPair)
def _from_triple_small(cls, first, second, outgroup, Alphabet):
"""Class method: returns new Counts for first from three sequences.
Sequence order is first, second, outgroup.
Use this method when the sequences are short and/or the alphabet is
small: relatively memory intensive because it makes an array the size
of the seq x the alphabet for each sequence. Fast on short sequences,
though.
NOTE: requires input to either all be ModelSequence objects, or all not
be ModelSequence objects. Could change this if desirable.
"""
#if they've got data, assume ModelSequence objects. Otherwise, arrays.
if hasattr(first, '_data'):
first, second, outgroup = first._data, second._data, outgroup._data
size = len(Alphabet.SubEnumerations[-1])
a_eq_b = equal(first, second)
a_ne_b = logical_not(a_eq_b)
a_eq_x = equal(first, outgroup)
b_eq_x = equal(second, outgroup)
#figure out what size we need the result to go in: note that the
#result is on a pair alphabet, so the data type of the single
#alphabet (that the sequence starts off in) might not work.
data_type = get_array_type(product(map(len, Alphabet.SubEnumerations)))
first = asarray(first, data_type)
second = asarray(second, data_type)
b_to_a = second*size + first
a_to_a = first*size + first
b_to_a_items = compress(logical_and(b_eq_x, a_ne_b), b_to_a)
a_to_a_items = compress(logical_or(a_eq_b, a_eq_x), a_to_a)
items = concatenate((b_to_a_items, a_to_a_items))
counts = reshape(Alphabet.counts(items), Alphabet.Shape)
return cls(counts, Alphabet)
def _from_triple_large(cls, first, second, outgroup, Alphabet):
"""Same as _from_triple except copes with very long sequences.
Specifically, allocates an array for the frequencies of each type,
walks through the triple one base at a time, and updates the
appropriate cell. Faster when alphabet and/or sequences are large;
also avoids memory issues because it doesn't allocate the seq x
alphabet array.
NOTE: requires input to either all be ModelSequence objects, or all not
be ModelSequence objects. Could change this if desirable.
WARNING: uses float, not int, as datatype in return value.
"""
#figure out if we already have the data in terms of alphabet indices.
#if not, we need to convert it.
if hasattr(first, '_data'):
first, second, outgroup = first._data, second._data, outgroup._data
else:
if hasattr(Alphabet, 'toIndices'):
converter = Alphabet.toIndices
else:
converter = Alphabet.fromSequenceToArray
# convert to alphabet indices
first, second, outgroup = map(asarray, map(converter,
[first, second, outgroup]))
# only include positions where all three not different
valid_posn = logical_not(logical_and(logical_and(first != outgroup,
second != outgroup),
first != second))
valid_pos = [index for index, val in enumerate(valid_posn) if val]
first = first.take(valid_pos)
second = second.take(valid_pos)
outgroup = outgroup.take(valid_pos)
out_diffs = logical_and(first == second, first != outgroup)
counts = zeros((len(Alphabet.SubEnumerations[0]), \
len(Alphabet.SubEnumerations[0])))
for x, y, out_diff in zip(outgroup, first,
out_diffs):
if out_diff:
counts[y,y] += 1
else:
counts[x,y] += 1
return cls(counts, Alphabet)
def fromTriple(cls, first, second, outgroup, Alphabet, threshold=1e6):
"""Reads counts from triple of sequences, method chosen by data size."""
if len(first) * len(Alphabet) > threshold:
return cls._from_triple_large(first, second, outgroup, Alphabet)
else:
return cls._from_triple_small(first, second, outgroup, Alphabet)
fromTriple = classmethod(fromTriple)
_from_triple_small = classmethod(_from_triple_small)
_from_triple_large = classmethod(_from_triple_large)
class Probs(PairMatrix):
"""Holds the data for a probability matrix. Immutable."""
def isValid(self):
"""Returns True if all values positive and each row sums to 1."""
for row in self:
if sum(row) != 1.0 or min(row) < 0.0:
return False
return True
def makeModel(self, seq):
"""Returns substitution model for seq based on self's rows."""
return take(self._data, seq, axis=0)
def mutate(self, seq, random_vector=None):
"""Returns mutated version of seq, according to self.
seq should behave like a Numeric array.
random_vector should be vector of 0 and 1 of same length as sequence,
if supplied.
Result is always an array, not coerced into seq's class.
"""
sums = cumsum(self._data, 1)
model = take(sums, seq, axis=0)
if random_vector is None:
random_vector = randarray(seq.shape)
return sum(transpose(model)[:-1] < random_vector, axis=0)
#transpose needed to align frames
def toCounts(self, num):
"""Returns count matrix with approximately num counts.
Rounding error may prevent counts from summing exactly to num.
"""
num_rows = len(self)
return Counts(self._data * (num/num_rows), self.Alphabet)
def toRates(self, normalize=False):
"""Returns rate matrix. Does not normalize by default."""
return Rates(logm(self._data), self.Alphabet, self.Name, normalize)
def random(cls, Alphabet, diags=None):
"""Makes random P-matrix with specified diag elements and size.
diags can be a single float, or vector of values with same number
of chars as individual alphabet (e.g. list of 4 elements will act
as elements for the 4 bases).
"""
shape = Alphabet.Shape
if diags is None:
result = randarray(shape)
return cls(result/sum(result, 1)[:,NewAxis], Alphabet)
else:
single_size = shape[0]
diags = array(diags, 'd')
#handle scalar case
if not diags.shape:
diags = reshape(diags, (1,))
if len(diags) == 1:
diags = repeat(diags, single_size)
temp = randarray((single_size, single_size-1))
temp *= ((1.0-diags)/sum(temp, 1))[:,NewAxis]
result = diag(diags)
for r, row in enumerate(temp):
result[r][:r] = row[:r]
result[r][r+1:] = row[r:]
return cls(result, Alphabet)
random = classmethod(random)
class Rates(PairMatrix):
"""Holds the data for a rate matrix. Immutable."""
def __init__(self, data, Alphabet, name=None, normalize=False):
"""Returns new Rates matrix, normalizing trace to -1 if necessary."""
data = array(data)
#check for complex input array
if data.dtype == 'complex128':
self.imag = data.imag
data = data.real
super(Rates, self).__init__(data, Alphabet)
if normalize:
self._normalize_inplace()
def isComplex(self):
"""Returns True if self has a complex component."""
return hasattr(self, 'imag')
def isSignificantlyComplex(self, threshold=0.1):
"""Returns True if complex component is above threshold."""
if hasattr(self, 'imag'):
return sum(ravel(self.imag)) > threshold
else:
return False
def isValid(self, threshold=1e-7):
"""Rate matrix is valid if rows sum to 0 and no negative off-diags.
threshold gives maximum error allowed in row sums.
"""
if max(abs(sum(self._data, -1)) > threshold):
return False
return not has_neg_off_diags(self._data)
def _normalize_inplace(self):
"""Normalizes trace to -1, in-place.
Should only call during __init__, since it mutates the object.
WARNING: Only normalizes real component.
"""
scale_trace(self._data)
def normalize(self):
"""Returns normalized copy of self where trace is -1.
WARNING: Only normalizes real component.
"""
return Rates(self._data, self.Alphabet, normalize=True)
def _get_diagonalized(self):
"""Gets diagonalization of self as u, v, w; caches values."""
if not hasattr(self, '_diag_cache'):
error_tolerance = 1e-4 #amount of error allowed in product
eigenvalues, eigenvectors = eig(self._data)
u = transpose(eigenvectors)
v = eigenvalues
w = inverse(u)
#check that the diagonalization actually worked by multiplying
#the results back together
result = dot(dot(u,v),w)
if abs(sum(ravel(result))) > error_tolerance:
raise ValueError, "Diagonalization failed with erroneous result."
self._diag_cache = u, v, w
return self._diag_cache
_diagonalized = property(_get_diagonalized)
def toProbs(self, time=1.0):
"""Returns probs at exp(self*scale_factor).
The way this works is by diagonalizing the rate matrix so that u is
the matrix with eigenvectors as columns, v is a vector of eigenvalues,
and w is the inverse of u. u * diag(v) * w reconstructs the original
rate matrix. u * diag(exp(v*t)) * w exponentiates the rate matrix to
time t.
This is more expensive than a single exponentiation if the rate matrix
is going to be sxponentiated only once, but faster if it is to be
exponentiated to many different time points.
Note that the diagonalization is not the same as the svd.
If the diagonalization fails, we use the naive version of just
multiplying the rate matrix by the time and exponentiating.
"""
try:
u, v, w = self._diagonalized
#scale v to the right time by exp(v_0*t)
v = diag(exp(v * time))
return Probs(dot(dot(u,v), w), self.Alphabet)
except:
return Probs(expm(self._data)(time), self.Alphabet)
def _timeForSimilarity_naive(self, similarity, freqs=None):
"""Returns time exponent so that exp(q*time) diverges to right distance.
Takes symbol freqs into account if specified; otherwise assumes equal.
freqs: vector of frequencies, applied to each row successively.
WARNING: Factor of 5 slower than timeForSimilarity. Included for
testing that results are identical.
"""
q = self._data
if freqs is None:
def similarity_f(t):
return abs(average(diagonal(expm(q)(t)))-similarity)
else:
def similarity_f(t):
return abs(sum(diagonal(expm(q)(t)*freqs)) - similarity)
initial_guess = array([1.0])
result = fmin(similarity_f, initial_guess, disp=0)
#disp=0 turns off fmin messages
return result
def timeForSimilarity(self, similarity, freqs=None):
"""Returns time exponent so that exp(q*time) diverges to right distance.
Takes symbol freqs into account if specified; otherwise assumes equal.
freqs: vector of frequencies, applied to each row successively.
NOTE: harder to understand, but a factor of 5 faster than the naive
version. The nested matrixmultiply calls have the same effect as
exponentiating the matrix.
"""
#if there's no change, the time is 0
if similarity == 1:
return 0.0
#try fast version first, but if it fails we'll use the naive version.
try:
u, v, w = self._diagonalized
if freqs is None:
def similarity_f(t):
return abs(average(diagonal(dot(u, \
dot(diag(exp(v*t)), w)))) - similarity)
else:
def similarity_f(t):
return abs(sum(diagonal(dot(u, \
dot(diag(exp(v*t)), w)))*freqs) - similarity)
except (TypeError, ValueError):
#get here if diagonalization fails
q = self._data
if freqs is None:
def similarity_f(t):
return abs(average(diagonal(expm(q)(t)))-similarity)
else:
def similarity_f(t):
return abs(sum(diagonal(expm(q)(t)*freqs))-similarity)
return brent(similarity_f)
def toSimilarProbs(self, similarity, freqs=None):
"""Returns Probs at specified divergence.
Convenience wrapper for toProbs and timeForSimilarity.
"""
return self.toProbs(self.timeForSimilarity(similarity, freqs))
def random(cls, Alphabet, diags=None):
"""Makes random Q-matrix with specified diag elements and size.
diags can be a single float, or vector of values with same number
of chars as individual alphabet (e.g. list of 4 elements will act
as elements for the 4 bases).
"""
shape = Alphabet.Shape
single_size = shape[0]
if diags is None:
diags = -randarray(single_size)
else:
diags = array(diags, 'd')
#handle scalar case
if not diags.shape:
diags = reshape(diags, (1,))
if len(diags) == 1:
diags = repeat(diags, single_size)
temp = randarray((single_size, single_size-1))
temp *= ((-diags)/sum(temp, 1))[:,NewAxis]
result = diag(diags)
for r, row in enumerate(temp):
result[r][:r] = row[:r]
result[r][r+1:] = row[r:]
return cls(result, Alphabet)
random = classmethod(random)
def hasNegOffDiags(self):
"""Returns True if any off-diagonal elements negative."""
return has_neg_off_diags(self._data)
def sumNegOffDiags(self):
"""Returns sum of negative off-diagonal elements."""
return sum_neg_off_diags(self._data)
def fixNegsDiag(self):
"""Returns copy of self w/o negative off-diags, using 'diag' heuristic.
If a negative off-diagonal element is encountered, sets it to 0.
Subtracts all the negative off-diagonals from the diagonal to preserve
row sum = 0.
"""
m = self._data.copy()
#clip to 0
m = choose(less(m, 0.), (m, 0.))
for i, row in enumerate(m):
row[i] = -sum(row)
return self.__class__(m, self.Alphabet)
def fixNegsEven(self):
"""Returns copy of self w/o negative off-diags, using 'even' heuristic.
If a negative off-diagonal is encountered, sets it to 0.
Distributes the negative score evenly among the other elements.
"""
m = without_diag(self._data)
for i, row in enumerate(m):
is_neg = row < 0
if any(is_neg):
num_negs = sum(is_neg)
sum_negs = sum(is_neg*row)
is_not_neg = logical_not(is_neg)
num_not_neg = sum(is_not_neg)
new_row = (row + (sum_negs/(num_not_neg+1)))*is_not_neg
m[i] = new_row
return self.__class__(with_diag(m, -sum(m,1)), self.Alphabet)
def _make_error_f(self, to_minimize):
"""Make error function whose minimization estimates q = ln(p)."""
p = expm(self._data)(t=1)
BIG = 1e10
def result(q):
new_q = reshape(q, (4,4))
neg_sum = sum_neg_off_diags(new_q)
p_new = expm(new_q)(t=1)
return to_minimize(ravel(p), ravel(p_new)) - (BIG * neg_sum) \
+ (BIG * sum(abs(sum(new_q,1))))
return result
def fixNegsFmin(self, method=fmin, to_minimize=norm_diff, debug=False):
"""Uses an fmin method to find a good approximate q matrix.
Possible values for method:
fmin: simplex method (the default)
fmin_bfgs: bfgs optimizer #always produces negative elements!
fmin_cg: cg optimizer #doesn't work!
fmin_powell: powell method #doesn't work!
"""
q = self._data
#bail out if q is already ok to start with
if not sum_neg_off_diags(q):
return self
err_f = self._make_error_f(to_minimize)
initial_guess = q.copy()
xmin = method(err_f, initial_guess.flat, disp=0)
#disp=0 turns off messages
new_q = reshape(xmin, self.Alphabet.Shape)[:]
if debug:
if sum_neg_off_diags(new_q):
raise Exception, 'Made invalid Q matrix: %s' % q
return self.__class__(new_q, self.Alphabet)
def fixNegsConstrainedOpt(self, to_minimize=norm_diff, badness=1e6):
"""Uses constrained minimization to find approx q matrix.
to_minimize: metric for comparing orig result and new result.
badness: scale factor for penalizing negative off-diagonal values.
"""
if not sum_neg_off_diags(self._data):
return self
q = ravel(without_diag(self._data))
p = expm(self._data)(t=1)
def err_f(q):
new_q = reshape(array(q), (4,3))
new_q = with_diag(new_q, -sum(new_q, 1))
p_new = expm(new_q)(t=1)
result = to_minimize(ravel(p), ravel(p_new))
if q.min() < 0:
result += -q.min() * badness
return result
a = array(q)
xmin = fmin(func=err_f, x0=a, disp=0)
r = reshape(xmin, (4,3))
new_q = with_diag(r, -sum(r, 1))
return self.__class__(new_q, self.Alphabet)
def fixNegsReflect(self):
"""Fixes negative off-diagonals by subtracting m[i][j] from m[j][i].
Specifically, if m[i][j] is negative, subtracts this value from
m[i][j] and m[i][i] to keep the row total at 0, and then subtracts
it from m[j][i] and m[j][j] to convert a negative flux in the forward
direction into a positive flux in the reverse direction. If both
m[i][j] and m[j][i] are negative, this algorithm converts them both
into positive values, effectively exchanging the magnitudes of the
changes and making the signs positive.
NOTE: It's important to iterate over the original and make changes to
the copy to avoid incorrect results in cases where both m[i][j] and
m[j][i] are negative.
"""
orig = self._data
result = orig.copy()
for i, row in enumerate(orig):
for j, val in enumerate(row):
#skip diagonal
if i == j:
continue
#only make changes if element < 0
if val < 0:
result[i][j] -= val
result[i][i] += val
result[j][i] -= val
result[j][j] += val
return self.__class__(result, self.Alphabet)
def goldman_q_rna_triple(seq1, seq2, outgroup):
"""Returns the Goldman rate matrix for seq1"""
if len(seq1) != len(seq2) != len(outgroup):
raise ValueError, "seq1,seq2 and outgroup are not the same length!"
seq1 = ModelRnaSequence(seq1)
seq2 = ModelRnaSequence(seq2)
outgroup = ModelRnaSequence(outgroup)
m = Counts.fromTriple(seq1, seq2, outgroup, RnaPairs)._data
q = m / m.sum(axis=1)[:,NewAxis]
new_diag = -(q.sum(axis=1) - diag(q))
for i,v in enumerate(new_diag):
q[i,i] = v
return q
def goldman_q_dna_triple(seq1, seq2, outgroup):
"""Returns the Goldman rate matrix for seq1"""
if len(seq1) != len(seq2) != len(outgroup):
raise ValueError, "seq1,seq2 and outgroup are not the same length!"
seq1 = ModelDnaSequence(seq1)
seq2 = ModelDnaSequence(seq2)
outgroup = ModelDnaSequence(outgroup)
m = Counts.fromTriple(seq1, seq2, outgroup, DnaPairs)._data
q = m / m.sum(axis=1)[:,NewAxis]
new_diag = -(q.sum(axis=1) - diag(q))
for i,v in enumerate(new_diag):
q[i,i] = v
return q
def goldman_q_dna_pair(seq1, seq2):
"""Returns the Goldman rate matrix"""
if len(seq1) != len(seq2):
raise ValueError, "seq1 and seq2 are not the same length!"
seq1, seq2 = ModelDnaSequence(seq1), ModelDnaSequence(seq2)
m = Counts.fromPair(seq1, seq2, DnaPairs,average=True)._data
q = m / m.sum(axis=1)[:,NewAxis]
new_diag = -(q.sum(axis=1) - diag(q))
for i,v in enumerate(new_diag):
q[i,i] = v
return q
def goldman_q_rna_pair(seq1, seq2):
"""Returns the Goldman rate matrix"""
if len(seq1) != len(seq2):
raise ValueError, "seq1 and seq2 are not the same length!"
seq1, seq2 = ModelRnaSequence(seq1), ModelRnaSequence(seq2)
m = Counts.fromPair(seq1, seq2, RnaPairs,average=True)._data
q = m / m.sum(axis=1)[:,NewAxis]
new_diag = -(q.sum(axis=1) - diag(q))
for i,v in enumerate(new_diag):
q[i,i] = v
return q
def make_random_from_file(lines):
"""Simulates array random() using values from an iterator."""
def result(shape):
size = product(shape)
items = map(float, [lines.next() for s in range(size)])
a = reshape(array(items), shape)
return a
return result
#randarray = make_random_from_file(open('/Users/rob/random.txt'))
def test_heuristics(p_range=None, num_to_do=71, heuristics=None):
if p_range is None:
p_range = [0.6]
if heuristics is None:
heuristics = ['fixNegsDiag', 'fixNegsEven', 'fixNegsReflect', 'fixNegsConstrainedOpt']
num_heuristics = len(heuristics)
print '\t'.join(['p'] + heuristics)
for p in p_range:
result = zeros((num_to_do, num_heuristics), Float64)
has_nonzero = 0
i = 0
while i < num_to_do:
curr_row = result[i]
random_p = Probs.random(DnaPairs, p)
q = random_p.toRates()
if not q.hasNegOffDiags():
continue
has_nonzero += 1
#print "P:"
#print random_p._data
#print "Q:"
#print q._data
i += 1
for j, h in enumerate(heuristics):
#print "HEURISTIC: ", h
q_corr = getattr(q, h)()
#print "CORRECTED Q: "
#print q_corr._data
p_corr = expm(q_corr._data)(t=1)
#print "CORRECTED P:"
#print p_corr
dist = norm_diff(p_corr, random_p._data)
#print "DISTANCE: ", dist
curr_row[j] = dist
averages = average(result)
print p, '\t', '\t'.join(map(str, averages))
if __name__ == '__main__':
test_heuristics()
|