This file is indexed.

/usr/share/pyshared/cogent/seqsim/usage.py is in python-cogent 1.5.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
#!/usr/bin/env python
"""usage.py: usage of symbols, including substitutions on pairwise alphabets.

Revision History

Created 10/12/04 by Rob Knight.

9/14/05 Rob Knight: Changed Usage constructor to allow Alphabet on the instance
level, and to eliminate the precalculated flag which was not used. Added
entropy method.

7/20/07 Mike Robeson: Under PairMatrix.__init__ changed 'if data:' to
        'if data != None:
8/3/07 Daniel McDonald: Code now relies on numpy and cogent with the exception
        of the one scipy function that still needs to be removed
"""
from cogent.maths.scipy_optimize import fmin, brent
from cogent.util.array import scale_trace, norm_diff, \
    has_neg_off_diags, sum_neg_off_diags, with_diag, without_diag

from cogent.core.alphabet import get_array_type
from cogent.core.usage import RnaBases, DnaBases, DnaPairs, RnaPairs, Codons
from cogent.core.sequence import ModelSequence, ModelDnaSequence, \
    ModelRnaSequence
from operator import add, sub, mul, div
from cogent.maths.matrix_logarithm import logm
from cogent.maths.stats.util import FreqsI
from cogent.maths.matrix_exponentiation import FastExponentiator as expm
from numpy import zeros, array, max, diag, log, nonzero, product, cumsum, \
                  searchsorted, exp, diagonal, choose, less, repeat, average,\
                  logical_and, logical_or, logical_not, transpose, compress,\
                  ravel, concatenate, equal, log, dot, identity, \
                  newaxis as NewAxis, sum, take, reshape, any, all, asarray
from numpy.linalg import eig
from numpy.linalg import inv as inverse
from numpy.random import random as randarray

ARRAY_TYPE = type(array([0]))

__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Rob Knight", "Mike Robeson", "Daniel McDonald"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"

class Usage(FreqsI):
    """Stores usage on a particular alphabet. Abstract class.
    
    Note: Usage is abstract because most subclasses (e.g. CodonUsage,
    AminoAcidUsage) have specific methods that depend on their alphabets.
    Allowing generic Usage objects is disallowed to enforce use of the
    appropriate Usage object for specific situations.

    Supports most of the Cogent FreqsI interface.
    """
    Alphabet = None # concrete subclasses have specific alphabets
    
    def __init__(self, data=None, Alphabet=None):
        """Returns a new Usage object from array of symbol freqs.
        
        Will interpret many different kinds of data, including precalculated
        frequencies, arrays of symbols, and cogent.core.sequence.ModelSequence 
        objects.

        Warning: it guesses whether you passed in frequencies or symbols based
        on the length of the array, so for example Usage(DnaSequence('ATCG'))
        will _not_ give the result you expect. If you know the data type,
        use the alternative class method constructors.
        """
        if Alphabet is not None:
            self.Alphabet = Alphabet
        if not self.Alphabet:
            raise TypeError, "Usage subclasses must define alphabet."""
        if isinstance(data, Usage):
            self._data = data._data
        else:
            self._data = zeros(len(self), 'float64')
            if any(data):
                self += data

    def __getitem__(self, i):
        """Returns item based on alphabet."""
        return self._data[self.Alphabet.index(i)]

    def __setitem__(self, key, val):
        """Sets item based on alphabet."""
        self._data[self.Alphabet.index(key)] = val

    def __str__(self):
        """Prints as though it were a tuple of key,value pairs."""
        return str(self.items())

    def __repr__(self):
        """String representation of self."""
        return ''.join([self.__class__.__name__, '(', repr(self._data), ')'])

    def __iter__(self):
        """Iterates over keys, like a dict."""
        return iter(self.Alphabet)

    def __eq__(self, other):
        """Tests whether two Usage objects have the same data."""
        if hasattr(other, '_data'):
            return all(self._data == other._data)
        #if we get here, didn't compare equal
        try:
            return all(self._data == self.__class__(other)._data)
        except:
            return False

    def __ne__(self, other):
        """Returns True if self and other are not equal."""
        if hasattr(other, '_data'):
            return any(self._data != other._data)
        #if we get here, didn't compare equal
        try:
            return any(self._data != self.__class__(other)._data)
        except:
            return True

    def __iadd__(self, other):
        """Adds data to self in-place."""
        #check if other is nonzero; skip if it isn't
        try:
            if not other:
                return self
        except ValueError:
            if not any(other):
                return self
        #first, check if it's a Usage object
        if isinstance(other, Usage):
            self._data += other._data
            return self
        #then, check if it's one of our ModelSequence objects
        ac = self.Alphabet.counts
        if isinstance(other, ModelSequence):
            self._data += ac(other._data)
            return self
        #if it's the same length as self, try to add it as frequencies
        try:
            if len(other) == len(self):
                self._data += other
                return self
        except TypeError:
            pass
        #then try to convert it using the alphabet
        #WARNING: this will silently ignore unknown keys!
        #since we know other wasn't nonzero, we won't accept
        #the result if we can't convert anything.
        try:
            other_freqs = ac(other)
            #check if we actually converted anything...
            if any(other_freqs):
                self._data += other_freqs
                return self
        except (IndexError, KeyError, TypeError):
            pass
        #then use the generic conversion function
        f = self._find_conversion_function(other)
        if f:
            f(other, op=add)
            return self
        else:
            raise TypeError, "Could not convert this to freqs: %s" % other

    def __isub__(self, other):
        """Subtracts data from self in-place."""
        #check if other is nonzero; skip if it isn't
        try:
            if not other:
                return self
        except ValueError:
            if not any(other):
                return self
        #first, check if it's a Usage object
        if isinstance(other, Usage):
            self._data -= other._data
            return self
        #then, check if it's one of our ModelSequence objects
        ac = self.Alphabet.counts
        if isinstance(other, ModelSequence):
            self._data -= ac(other._data)
            return self
        #if it's the same length as self, try to add it as frequencies
        try:
            if len(other) == len(self):
                self._data -= other
                return self
        except TypeError:
            pass
        #then try to convert it using the alphabet
        #WARNING: this will silently ignore unknown keys!
        #since we know other wasn't nonzero, we won't accept
        #the result if we can't convert anything.
        try:
            other_freqs = ac(other)
            #check if we actually converted anything...
            if other_freqs.any():
                self._data -= other_freqs
                return self
        except (IndexError, KeyError, TypeError):
            pass
        #then use the generic conversion function
        f = self._find_conversion_function(other)
        if f:
            f(other, op=sub)
            return self
        else:
            raise TypeError, "Could not convert this to freqs: %s" % other
  
    def __mul__(self, other):
        """Multiplies self by other (assumed scalar)."""
        return self.__class__(self._data * other)

    def __imul__(self, other):
        """Multiplies self by other in-place (assumed scalar)."""
        self._data *= other
        
    def __div__(self, other):
        """Divides self by other (assumed scalar). Always true division."""
        return self.__class__(self._data / (other))

    def __idiv__(self, other):
        """Divides self by other (assumed scalar) inplace. Maybe int division."""
        self._data /= other

    def scale_sum(self, sum_=1.0):
        """Returns copy of self scaled to specified sum."""
        return self.__class__(self._data * (sum_/sum(self._data)))

    def scale_max(self, max_=1.0):
        """Returns copy of self scaled to specified maximum (default 1)."""
        return self.__class__(self._data * (max_/max(self._data)))

    def probs(self):
        """Returns copy of self scaled so that the sum is 1."""
        return self.__class__(self._data / (sum(self._data)))

    def randomIndices(self, length, random_vector=None):
        """Produces random indices according to symbol freqs."""
        freqs = cumsum(self._data/sum(self._data))[:-1]
        if random_vector is None:
            random_vector=randarray(length)
        return searchsorted(freqs, random_vector)

    def fromSeqData(cls, seq, Alphabet=None):
        """Returns new Usage object from Sequence object."""
        return cls.fromArray(seq._data, Alphabet=Alphabet)
    
    def fromArray(cls, a, Alphabet=None):
        """Returns new Usage object from array."""
        return cls(cls.Alphabet.counts(a), Alphabet=Alphabet)

    fromSeqData = classmethod(fromSeqData)
    fromArray = classmethod(fromArray)
    
    #following code is to support FreqsI
    def get(self, key, default):
        """Returns self._data[self.Alphabet.index(key) if present, or default."""
        try:
            return self._data[self.Alphabet.index(key)]
        except (KeyError, IndexError, TypeError):
            return default

    def values(self):
        """Returns list of keys in self (i.e. the alphabet)."""
        return list(self._data)

    def keys(self):
        """Returns list of values in self (i.e. the data)."""
        return list(self.Alphabet)

    def items(self):
        """Returns list of (key, value) pairs in self."""
        return zip(self.Alphabet, self._data)

    def isValid(self):
        """Always valid (except for negative numbers), so override."""
        return min(self._data) >= 0

    def copy(self):
        """Return copy of self with same alphabet, not sharing data."""
        return self.__class__(self._data.copy())

    def __delitem__(self, key):
        """Can't really delete items, but raise error if in alphabet."""
        if key in self.Alphabet:
            raise KeyError, "May not delete required key %s" % key

    def purge(self):
        """Can't contain anything not in alphabet, so do nothing."""
        pass

    def normalize(self, total=1.0, purge=True):
        """Converts counts into probabilities, normalized to 1 in-place.
        
        Changes result to Float64. Purge is always treated as True. 
        """
        if self._data is not None and self._data.any():
            self._data = self._data / (total * sum(self._data))

    def choice(self, prob):
        """Returns item corresponding to Pr(prob)."""
        if prob > 1:
            return self.Alphabet[-1]
        summed = cumsum(self._data/sum(self._data))
        return self.Alphabet[searchsorted(summed, prob)]

    def randomSequence(self, n):
        """Returns list of n random choices, with replacement."""
        if not self:
            raise IndexError, "All frequencies are zero."
        return list(choose(self.randomIndices(n), self.Alphabet))

    def subset(self, items, keep=True):
        """Sets all frequencies not in items to 0.

        If keep is False, sets all frequencies in items to 0.
        """
        if keep:
            for i in self.Alphabet:
                if i not in items:
                    self[i] = 0
        else:
            for i in items:
                try:
                    self[i] = 0
                except KeyError:
                    pass

    def scale(self, factor=1, offset=0):
        """Linear transform of values in freqs where val= factor*val + offset."""
        self._data = factor * self._data + offset

    def __len__(self):
        """Returns length of alphabet."""
        return len(self.Alphabet)

    def setdefault(self, key, default):
        """Returns self[key] or sets self[key] to default."""
        if self[key]:
            return self[key]
        else:
            self[key] = default
            return default
        

    def __contains__(self, key):
        """Returns True if key in self."""
        try:
            return key in self.Alphabet
        except TypeError:
            return False
    
    def __nonzero__(self):
        """Returns True if self is nonzero."""
        return bool(sum(self._data) != 0)
       
    def rekey(self, key_map, default=None, constructor=None):
        """Returns new Freqs with keys remapped using key_map.

        key_map should be a dict of {old_key:new_key}.
        
        Values are summed across all keys that map to the same new value.
        Keys that are not in the key_map are omitted (if default is None),
        or set to the default.

        constructor defaults to self.__class__. However, if you're doing
        something like mapping amino acid frequencies onto charge frequencies,
        you probably want to specify the constructor since the result won't
        be valid on the alphabet of the current class.

        Note that the resulting Freqs object is not required to contain
        values for all the possible keys.
        """
        if constructor is None:
            constructor = self.__class__
        result = constructor()
        for key, val in self.items():
            new_key = key_map.get(key, default)
            curr = result.get(new_key, 0)
            try:
                result[new_key] = curr + val
            except KeyError:
                pass
        return result 

    def entropy(self, base=2):
        """Returns Shannon entropy of usage: sum of p log p."""
        ln_base = log(base)
        flat = ravel(self._data)
        total = sum(flat)
        if not total:
            return 0
        flat /= total
        ok_indices = nonzero(flat)[0]
        ok_vals = take(flat, ok_indices, axis=0)
        return -sum(ok_vals * log(ok_vals))/ln_base
   
class DnaUsage(Usage):
    """Stores usage on the DNA alphabet."""
    Alphabet = DnaBases
        
class RnaUsage(Usage):
    """Stores usage on the RNA alphabet."""
    Alphabet = RnaBases

class CodonUsage(Usage):
    """Stores usage on the Codon alphabet."""
    Alphabet = Codons

class DnaPairUsage(Usage):
    """Stores usage on the DnaPairs alphabet."""
    Alphabet = DnaPairs

class RnaPairUsage(Usage):
    """Stores usage on the RnaPairs alphabet."""
    Alphabet = RnaPairs

class PairMatrix(object):
    """Base class for Counts, Probs, and Rates matrices. Immutable.
    
    Holds any numeric relationship between pairs of objects on a JointAlphabet.
    Note that the two SubEnumerations of the JointAlphabet need not be the same,
    although many subclasses of PairMatrix will require that the two
    SubEnumerations _are_ the same because their methods assume square matrices.
    """
    def __init__(self, data, Alphabet, Name=None):
        """Returns new PairMatrix object containing data.
        
        WARNING: Alphabet must be a JointAlphabet where the two SubEnumerations
        are the same.
        """
        self.Alphabet = Alphabet
        if any(data):
            self._data = reshape(array(data, 'd'), Alphabet.Shape)
        else:
            self._data = zeros(Alphabet.Shape, 'd')
        self.Name = Name
 
    def toMatlab(self):
        """Returns Matlab-formatted string representation."""
        if self.Name is None:
            name = 'm'
        else:
            name = str(self.Name)
        return ''.join([name, '=', '[', \
            ';\n'.join([' '.join(map(str, r)) for r in self._data]), '];\n'])

    def __str__(self):
        """Returns string representation of array held in self."""
        return str(self._data)

    def __repr__(self):
        """Returns string representation of self."""
        return ''.join([self.__class__.__name__, '(', repr(self._data), \
            ',', repr(self.Alphabet), ',', repr(self.Name), ')'])

    def __getitem__(self, args):
        """__getitem__ passes everything to internal array.
        
        WARNING: m[a,b] will work where a and b are symbols in the alphabet,
        but m[a][b] will fail. This is because m[a] produces an array object
        with the corresponding row, which is then passed b as an index. Because
        the array object doesn't have the alphabet, it can't map the index into
        a number.

        Slicing is not supported.
        """
        # First, test whether args are in the JointAlphabet. Will always be tuple.
        if isinstance(args, tuple):
            try:
                return ravel(self._data)[self.Alphabet.index(tuple(args))]
            except (KeyError, TypeError):
                pass
        return self._data[self.Alphabet.SubEnumerations[0].index(args)]

    def __len__(self):
        """Returns number of rows."""
        return len(self._data)

    def empty(cls, Alphabet):
        """Class method: returns empty matrix sized for alphabet."""
        return cls(zeros(Alphabet.Shape), Alphabet)

    empty = classmethod(empty)

    def __eq__(self, other):
        """Tests whether two Usage objects have the same data."""
        try:
            return all(self._data == other._data)
            #return not bool(all(self._data != other._data))
        except:
            return False

    def __ne__(self, other):
        """Returns True if self and other are not equal."""
        try:
            return any(self._data != other._data)
            #return bool(all(self._data != other._data))
        except:
            return False

    def __iter__(self):
        """Iterates over rows in data."""
        return iter(self._data)

class Counts(PairMatrix):
    """Holds the data for a matrix of counts. Immutable.
    """
    
    def toProbs(self):
        """Returns copy of self where rows sum to 1."""
        return Probs(self._data/ (sum(self._data, 1)[:,NewAxis]), \
            self.Alphabet)

    def fromPair(cls, first, second, Alphabet, average=True):
        """Class method: returns new Counts from two sequences.
        """
        size = len(Alphabet.SubEnumerations[-1])
        #if they're ModelSequence objects, use the _data attribute
        if hasattr(first, '_data'):
            first, second = first._data, second._data

        #figure out what size we need the result to go in: note that the
        #result is on a pair alphabet, so the data type of the single
        #alphabet (that the sequence starts off in) might not work.
        data_type = get_array_type(product(map(len, Alphabet.SubEnumerations)))
        first = asarray(first, data_type)
        second = asarray(second, data_type)
        items = first * size + second
        
        counts = reshape(Alphabet.counts(items), Alphabet.Shape)
        if average:
            return cls((counts + transpose(counts))/2.0, Alphabet)
        else:
            return cls(counts, Alphabet)

    fromPair = classmethod(fromPair)

    def _from_triple_small(cls, first, second, outgroup, Alphabet):
        """Class method: returns new Counts for first from three sequences.

        Sequence order is first, second, outgroup.

        Use this method when the sequences are short and/or the alphabet is
        small: relatively memory intensive because it makes an array the size
        of the seq x the alphabet for each sequence. Fast on short sequences,
        though.

        NOTE: requires input to either all be ModelSequence objects, or all not
        be ModelSequence objects. Could change this if desirable.
        """
        #if they've got data, assume ModelSequence objects. Otherwise, arrays.
        if hasattr(first, '_data'):
            first, second, outgroup = first._data, second._data, outgroup._data

        size = len(Alphabet.SubEnumerations[-1])
        a_eq_b = equal(first, second)
        a_ne_b = logical_not(a_eq_b)
        a_eq_x = equal(first, outgroup)
        b_eq_x = equal(second, outgroup)

        #figure out what size we need the result to go in: note that the
        #result is on a pair alphabet, so the data type of the single
        #alphabet (that the sequence starts off in) might not work.
        data_type = get_array_type(product(map(len, Alphabet.SubEnumerations)))
        first = asarray(first, data_type)
        second = asarray(second, data_type)
       
        b_to_a = second*size + first
        a_to_a = first*size + first

        b_to_a_items = compress(logical_and(b_eq_x, a_ne_b), b_to_a)
        a_to_a_items = compress(logical_or(a_eq_b, a_eq_x), a_to_a)
        items = concatenate((b_to_a_items, a_to_a_items))
        counts = reshape(Alphabet.counts(items), Alphabet.Shape)

        return cls(counts, Alphabet)

    def _from_triple_large(cls, first, second, outgroup, Alphabet):
        """Same as _from_triple except copes with very long sequences.
        
        Specifically, allocates an array for the frequencies of each type,
        walks through the triple one base at a time, and updates the
        appropriate cell. Faster when alphabet and/or sequences are large;
        also avoids memory issues because it doesn't allocate the seq x
        alphabet array.

        NOTE: requires input to either all be ModelSequence objects, or all not
        be ModelSequence objects. Could change this if desirable.

        WARNING: uses float, not int, as datatype in return value.
        """
        #figure out if we already have the data in terms of alphabet indices.
        #if not, we need to convert it.
        if hasattr(first, '_data'):
            first, second, outgroup = first._data, second._data, outgroup._data
        else:
            if hasattr(Alphabet, 'toIndices'):
                converter = Alphabet.toIndices
            else:
                converter = Alphabet.fromSequenceToArray

            # convert to alphabet indices
            first, second, outgroup = map(asarray, map(converter,
                                        [first, second, outgroup]))
        # only include positions where all three not different
        valid_posn = logical_not(logical_and(logical_and(first != outgroup,
                                                        second != outgroup),
                                                        first != second))
        valid_pos = [index for index, val in enumerate(valid_posn) if val]
        first = first.take(valid_pos)
        second = second.take(valid_pos)
        outgroup = outgroup.take(valid_pos)
        out_diffs = logical_and(first == second, first != outgroup)
        counts = zeros((len(Alphabet.SubEnumerations[0]), \
            len(Alphabet.SubEnumerations[0])))
        for x, y, out_diff in zip(outgroup, first,
                                       out_diffs):
            if out_diff:
                counts[y,y] += 1
            else:
                counts[x,y] += 1
        return cls(counts, Alphabet)

    def fromTriple(cls, first, second, outgroup, Alphabet, threshold=1e6):
       """Reads counts from triple of sequences, method chosen by data size."""
       if len(first) * len(Alphabet) > threshold:
           return cls._from_triple_large(first, second, outgroup, Alphabet)
       else:
           return cls._from_triple_small(first, second, outgroup, Alphabet)

    fromTriple = classmethod(fromTriple)
    _from_triple_small = classmethod(_from_triple_small)
    _from_triple_large = classmethod(_from_triple_large)
       
class Probs(PairMatrix):
    """Holds the data for a probability matrix. Immutable."""
    
    def isValid(self):
        """Returns True if all values positive and each row sums to 1."""
        for row in self:
            if sum(row) != 1.0 or min(row) < 0.0:
                return False
        return True

    def makeModel(self, seq):
        """Returns substitution model for seq based on self's rows."""
        return take(self._data, seq, axis=0)

    def mutate(self, seq, random_vector=None):
        """Returns mutated version of seq, according to self.

        seq should behave like a Numeric array.
        
        random_vector should be vector of 0 and 1 of same length as sequence,
        if supplied.

        Result is always an array, not coerced into seq's class.
        """
        sums = cumsum(self._data, 1)
        model = take(sums, seq, axis=0)
        if random_vector is None:
            random_vector = randarray(seq.shape)
        return sum(transpose(model)[:-1] < random_vector, axis=0)
        #transpose needed to align frames
        

    def toCounts(self, num):
        """Returns count matrix with approximately num counts.

        Rounding error may prevent counts from summing exactly to num.
        """
        num_rows = len(self)
        return Counts(self._data * (num/num_rows), self.Alphabet)

    def toRates(self, normalize=False):
        """Returns rate matrix. Does not normalize by default."""
        return Rates(logm(self._data), self.Alphabet, self.Name, normalize)

    def random(cls, Alphabet, diags=None):
        """Makes random P-matrix with specified diag elements and size.

        diags can be a single float, or vector of values with same number
        of chars as individual alphabet (e.g. list of 4 elements will act
        as elements for the 4 bases).
        """
        shape = Alphabet.Shape
        if diags is None:
            result = randarray(shape)
            return cls(result/sum(result, 1)[:,NewAxis], Alphabet)
        else:
            single_size = shape[0]
            diags = array(diags, 'd')
            #handle scalar case
            if not diags.shape:
                diags = reshape(diags, (1,))
            if len(diags) == 1:
                diags = repeat(diags, single_size)
            temp = randarray((single_size, single_size-1))
            temp *= ((1.0-diags)/sum(temp, 1))[:,NewAxis]
            result = diag(diags)
            for r, row in enumerate(temp):
                result[r][:r] = row[:r]
                result[r][r+1:] = row[r:]
            return cls(result, Alphabet)

    random = classmethod(random)

class Rates(PairMatrix):
    """Holds the data for a rate matrix. Immutable."""

    def __init__(self, data, Alphabet, name=None, normalize=False):
        """Returns new Rates matrix, normalizing trace to -1 if necessary."""
        data = array(data)
        #check for complex input array
        if data.dtype == 'complex128':
            self.imag = data.imag
            data = data.real
        super(Rates, self).__init__(data, Alphabet)
        if normalize:
            self._normalize_inplace()

    def isComplex(self):
        """Returns True if self has a complex component."""
        return hasattr(self, 'imag')

    def isSignificantlyComplex(self, threshold=0.1):
        """Returns True if complex component is above threshold."""
        if hasattr(self, 'imag'):
            return sum(ravel(self.imag)) > threshold
        else:
            return False

    def isValid(self, threshold=1e-7):
        """Rate matrix is valid if rows sum to 0 and no negative off-diags.
        
        threshold gives maximum error allowed in row sums.
        """
        if max(abs(sum(self._data, -1)) > threshold):
            return False
        return not has_neg_off_diags(self._data)
    
    def _normalize_inplace(self):
        """Normalizes trace to -1, in-place.
        
        Should only call during __init__, since it mutates the object.
        WARNING: Only normalizes real component.
        """
        scale_trace(self._data)

    def normalize(self):
        """Returns normalized copy of self where trace is -1.
        
        WARNING: Only normalizes real component.
        """
        return Rates(self._data, self.Alphabet, normalize=True)

    def _get_diagonalized(self):
        """Gets diagonalization of self as u, v, w; caches values."""
        if not hasattr(self, '_diag_cache'):
            error_tolerance = 1e-4  #amount of error allowed in product
            eigenvalues, eigenvectors = eig(self._data)
            u = transpose(eigenvectors)
            v = eigenvalues
            w = inverse(u)
            #check that the diagonalization actually worked by multiplying
            #the results back together
            result = dot(dot(u,v),w)
            if abs(sum(ravel(result))) > error_tolerance:
                raise ValueError, "Diagonalization failed with erroneous result."
            self._diag_cache = u, v, w
        return self._diag_cache

    _diagonalized = property(_get_diagonalized)
        
    def toProbs(self, time=1.0):
        """Returns probs at exp(self*scale_factor).
        
        The way this works is by diagonalizing the rate matrix so that u is
        the matrix with eigenvectors as columns, v is a vector of eigenvalues,
        and w is the inverse of u. u * diag(v) * w reconstructs the original
        rate matrix. u * diag(exp(v*t)) * w exponentiates the rate matrix to
        time t.

        This is more expensive than a single exponentiation if the rate matrix
        is going to be sxponentiated only once, but faster if it is to be
        exponentiated to many different time points.

        Note that the diagonalization is not the same as the svd.

        If the diagonalization fails, we use the naive version of just
        multiplying the rate matrix by the time and exponentiating.
        """
        try:
            u, v, w = self._diagonalized
            #scale v to the right time by exp(v_0*t)
            v = diag(exp(v * time))
            return Probs(dot(dot(u,v), w), self.Alphabet)
        except:
            return Probs(expm(self._data)(time), self.Alphabet)

    def _timeForSimilarity_naive(self, similarity, freqs=None):
        """Returns time exponent so that exp(q*time) diverges to right distance.

        Takes symbol freqs into account if specified; otherwise assumes equal.

        freqs: vector of frequencies, applied to each row successively.

        WARNING: Factor of 5 slower than timeForSimilarity. Included for 
        testing that results are identical.
        """
        q = self._data
        if freqs is None:
            def similarity_f(t):
                return abs(average(diagonal(expm(q)(t)))-similarity)
        else:
            def similarity_f(t):
                return abs(sum(diagonal(expm(q)(t)*freqs)) - similarity)
        initial_guess = array([1.0])
        result = fmin(similarity_f, initial_guess, disp=0)
        #disp=0 turns off fmin messages
        return result

    def timeForSimilarity(self, similarity, freqs=None):
        """Returns time exponent so that exp(q*time) diverges to right distance.

        Takes symbol freqs into account if specified; otherwise assumes equal.

        freqs: vector of frequencies, applied to each row successively.

        NOTE: harder to understand, but a factor of 5 faster than the naive
        version. The nested matrixmultiply calls have the same effect as
        exponentiating the matrix.
        """
        #if there's no change, the time is 0
        if similarity == 1:
            return 0.0
        #try fast version first, but if it fails we'll use the naive version.
        try:
            u, v, w = self._diagonalized
            if freqs is None:
                def similarity_f(t):
                    return abs(average(diagonal(dot(u, \
                    dot(diag(exp(v*t)), w)))) - similarity)
            else:
                def similarity_f(t):
                    return abs(sum(diagonal(dot(u, \
                    dot(diag(exp(v*t)), w)))*freqs) - similarity)
        except (TypeError, ValueError):
            #get here if diagonalization fails
            q = self._data
            if freqs is None:
                def similarity_f(t):
                    return abs(average(diagonal(expm(q)(t)))-similarity)
            else:
                def similarity_f(t):
                    return abs(sum(diagonal(expm(q)(t)*freqs))-similarity)
        return brent(similarity_f)

    def toSimilarProbs(self, similarity, freqs=None):
        """Returns Probs at specified divergence.

        Convenience wrapper for toProbs and timeForSimilarity.
        """
        return self.toProbs(self.timeForSimilarity(similarity, freqs))

    def random(cls, Alphabet, diags=None):
        """Makes random Q-matrix with specified diag elements and size.

        diags can be a single float, or vector of values with same number
        of chars as individual alphabet (e.g. list of 4 elements will act
        as elements for the 4 bases).
        """
        shape = Alphabet.Shape
        single_size = shape[0]
        if diags is None:
            diags = -randarray(single_size)
        else:
            diags = array(diags, 'd')
            #handle scalar case
            if not diags.shape:
                diags = reshape(diags, (1,))
            if len(diags) == 1:
                diags = repeat(diags, single_size)
        temp = randarray((single_size, single_size-1))
        temp *= ((-diags)/sum(temp, 1))[:,NewAxis]
        result = diag(diags)
        for r, row in enumerate(temp):
            result[r][:r] = row[:r]
            result[r][r+1:] = row[r:]
        return cls(result, Alphabet)

    random = classmethod(random)

    def hasNegOffDiags(self):
        """Returns True if any off-diagonal elements negative."""
        return has_neg_off_diags(self._data)

    def sumNegOffDiags(self):
        """Returns sum of negative off-diagonal elements."""
        return sum_neg_off_diags(self._data)

    def fixNegsDiag(self):
        """Returns copy of self w/o negative off-diags, using 'diag' heuristic.

        If a negative off-diagonal element is encountered, sets it to 0.

        Subtracts all the negative off-diagonals from the diagonal to preserve
        row sum = 0.
        """
        m = self._data.copy()
        #clip to 0
        m = choose(less(m, 0.), (m, 0.))
        for i, row in enumerate(m):
            row[i] = -sum(row)
        return self.__class__(m, self.Alphabet)

    def fixNegsEven(self):
        """Returns copy of self w/o negative off-diags, using 'even' heuristic.
        
        If a negative off-diagonal is encountered, sets it to 0.

        Distributes the negative score evenly among the other elements.
        """
        m = without_diag(self._data)
        for i, row in enumerate(m):
            is_neg = row < 0
            if any(is_neg):
                num_negs = sum(is_neg)
                sum_negs = sum(is_neg*row)
                is_not_neg = logical_not(is_neg)
                num_not_neg = sum(is_not_neg)
                new_row = (row + (sum_negs/(num_not_neg+1)))*is_not_neg
                m[i] = new_row
        return self.__class__(with_diag(m, -sum(m,1)), self.Alphabet)

    def _make_error_f(self, to_minimize):
        """Make error function whose minimization estimates q = ln(p)."""
        p = expm(self._data)(t=1)
        BIG = 1e10
        def result(q):
            new_q = reshape(q, (4,4))
            neg_sum = sum_neg_off_diags(new_q)
            p_new = expm(new_q)(t=1)
            return to_minimize(ravel(p), ravel(p_new)) - (BIG * neg_sum) \
                + (BIG * sum(abs(sum(new_q,1))))
        return result

    def fixNegsFmin(self, method=fmin, to_minimize=norm_diff, debug=False):
        """Uses an fmin method to find a good approximate q matrix.

        Possible values for method:
            
            fmin:           simplex method (the default)
            fmin_bfgs:      bfgs optimizer  #always produces negative elements!
            fmin_cg:        cg optimizer    #doesn't work!
            fmin_powell:    powell method   #doesn't work!
        """
        q = self._data
        #bail out if q is already ok to start with
        if not sum_neg_off_diags(q):
            return self
        err_f = self._make_error_f(to_minimize)
        initial_guess = q.copy()
        xmin = method(err_f, initial_guess.flat, disp=0)
        #disp=0 turns off messages
        new_q = reshape(xmin, self.Alphabet.Shape)[:]
        if debug:
            if sum_neg_off_diags(new_q):
                raise Exception, 'Made invalid Q matrix: %s' % q
        return self.__class__(new_q, self.Alphabet)

    def fixNegsConstrainedOpt(self, to_minimize=norm_diff, badness=1e6):
        """Uses constrained minimization to find approx q matrix.

        to_minimize: metric for comparing orig result and new result.

        badness: scale factor for penalizing negative off-diagonal values.
        """
        if not sum_neg_off_diags(self._data):
            return self
        q = ravel(without_diag(self._data))
        p = expm(self._data)(t=1)
        def err_f(q):
            new_q = reshape(array(q), (4,3))
            new_q = with_diag(new_q, -sum(new_q, 1))
            p_new = expm(new_q)(t=1)
            result = to_minimize(ravel(p), ravel(p_new))
            if q.min() < 0:
                result += -q.min() * badness
            return result
        a = array(q)
        xmin = fmin(func=err_f, x0=a, disp=0)
        r = reshape(xmin, (4,3))
        new_q = with_diag(r, -sum(r, 1))
        return self.__class__(new_q, self.Alphabet)

    def fixNegsReflect(self):
        """Fixes negative off-diagonals by subtracting m[i][j] from m[j][i].
        
        Specifically, if m[i][j] is negative, subtracts this value from
        m[i][j] and m[i][i] to keep the row total at 0, and then subtracts
        it from m[j][i] and m[j][j] to convert a negative flux in the forward
        direction into a positive flux in the reverse direction. If both
        m[i][j] and m[j][i] are negative, this algorithm converts them both
        into positive values, effectively exchanging the magnitudes of the
        changes and making the signs positive.

        NOTE: It's important to iterate over the original and make changes to
        the copy to avoid incorrect results in cases where both m[i][j] and
        m[j][i] are negative.
        """
        orig = self._data
        result = orig.copy()
        for i, row in enumerate(orig):
            for j, val in enumerate(row):
                #skip diagonal
                if i == j:
                    continue
                #only make changes if element < 0
                if val < 0:
                    result[i][j] -= val
                    result[i][i] += val
                    result[j][i] -= val
                    result[j][j] += val
        return self.__class__(result, self.Alphabet)

def goldman_q_rna_triple(seq1, seq2, outgroup):
    """Returns the Goldman rate matrix for seq1"""
    if len(seq1) != len(seq2) != len(outgroup):
        raise ValueError, "seq1,seq2 and outgroup are not the same length!"

    seq1 = ModelRnaSequence(seq1)
    seq2 = ModelRnaSequence(seq2)
    outgroup = ModelRnaSequence(outgroup)

    m = Counts.fromTriple(seq1, seq2, outgroup, RnaPairs)._data

    q = m / m.sum(axis=1)[:,NewAxis]
    new_diag = -(q.sum(axis=1) - diag(q))

    for i,v in enumerate(new_diag):
        q[i,i] = v

    return q

def goldman_q_dna_triple(seq1, seq2, outgroup):
    """Returns the Goldman rate matrix for seq1"""
    if len(seq1) != len(seq2) != len(outgroup):
        raise ValueError, "seq1,seq2 and outgroup are not the same length!"

    seq1 = ModelDnaSequence(seq1)
    seq2 = ModelDnaSequence(seq2)
    outgroup = ModelDnaSequence(outgroup)

    m = Counts.fromTriple(seq1, seq2, outgroup, DnaPairs)._data

    q = m / m.sum(axis=1)[:,NewAxis]
    new_diag = -(q.sum(axis=1) - diag(q))

    for i,v in enumerate(new_diag):
        q[i,i] = v

    return q

def goldman_q_dna_pair(seq1, seq2):
    """Returns the Goldman rate matrix"""
    if len(seq1) != len(seq2):
        raise ValueError, "seq1 and seq2 are not the same length!"

    seq1, seq2 = ModelDnaSequence(seq1), ModelDnaSequence(seq2)

    m = Counts.fromPair(seq1, seq2, DnaPairs,average=True)._data

    q = m / m.sum(axis=1)[:,NewAxis]
    new_diag = -(q.sum(axis=1) - diag(q))

    for i,v in enumerate(new_diag):
        q[i,i] = v

    return q

def goldman_q_rna_pair(seq1, seq2):
    """Returns the Goldman rate matrix"""
    if len(seq1) != len(seq2):
        raise ValueError, "seq1 and seq2 are not the same length!"

    seq1, seq2 = ModelRnaSequence(seq1), ModelRnaSequence(seq2)

    m = Counts.fromPair(seq1, seq2, RnaPairs,average=True)._data

    q = m / m.sum(axis=1)[:,NewAxis]
    new_diag = -(q.sum(axis=1) - diag(q))

    for i,v in enumerate(new_diag):
        q[i,i] = v

    return q

def make_random_from_file(lines):
    """Simulates array random() using values from an iterator."""
    def result(shape):
        size = product(shape)
        items = map(float, [lines.next() for s in range(size)])
        a = reshape(array(items), shape)
        return a
    return result


#randarray = make_random_from_file(open('/Users/rob/random.txt'))

def test_heuristics(p_range=None, num_to_do=71, heuristics=None):
    if p_range is None:
        p_range = [0.6]
    if heuristics is None:
        heuristics = ['fixNegsDiag', 'fixNegsEven', 'fixNegsReflect', 'fixNegsConstrainedOpt']
    num_heuristics = len(heuristics)
    print '\t'.join(['p'] + heuristics)
    for p in p_range:
        result = zeros((num_to_do, num_heuristics), Float64)
        has_nonzero = 0
        i = 0
        while i < num_to_do:
            curr_row = result[i]
            random_p = Probs.random(DnaPairs, p)
            q = random_p.toRates()
            if not q.hasNegOffDiags():
                continue
            has_nonzero += 1
            #print "P:"
            #print random_p._data
            #print "Q:"
            #print q._data
            i += 1
            for j, h in enumerate(heuristics):
                #print "HEURISTIC: ", h
                q_corr = getattr(q, h)()
                #print "CORRECTED Q: "
                #print q_corr._data
                p_corr = expm(q_corr._data)(t=1)
                #print "CORRECTED P:"
                #print p_corr
                dist = norm_diff(p_corr, random_p._data)
                #print "DISTANCE: ", dist
                curr_row[j] = dist
        averages = average(result)
        print p, '\t', '\t'.join(map(str, averages))

if __name__ == '__main__':
    test_heuristics()