/usr/share/pyshared/cogent/struct/rna2d.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 | #!/usr/bin/env python
"""Code for handling RNA secondary structure.
RNA secondary structures can be represented in many different ways. The
representation makes a large difference to the efficiency of different
algorithms, so several different structural representations (and the means
to interconvert them) are provided.
Provides following classes:
Stem: representation of a stem in a secondary structure
Partners: list holding partner of each position.
Pairs: list of base pairs in a structure.
StructureString: string holding a secondary structure representation.
ViennaStructure: representation of Vienna-format RNA structure.
WussStructure: Wash U secondary structure format, handles pseudoknots.
StructureNode: for tree representation of nested RNA structure.
"""
from numpy import zeros, put
from cogent.util.transform import make_trans, float_from_string
from cogent.core.tree import TreeNode, TreeError
from cogent.util.misc import not_none, flatten
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Rob Knight", "Sandra Smit", "Peter Maxwell"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
class PairError(ValueError):
"""Base class for errors in pairing."""
pass
class Stem(object):
"""Holds a Start, an End, and a Length.
Note that the Start and the End pair with each other, thus spanning the
range. Successive pairs count up from the Start and down from the End.
Stem is intended to be _very_ lightweight and does no error checking. In
other words, it will let you specify a Start that's after the End, a Length
that can't exist because there's insufficient separation between the Start
and the End, and so on. The same principle applies to __getitem__ (and hence
__iter__): you can iterate through pairs in a stem that can't exist, e.g.
Stem(6, 7, 10) will give you the 10 items from Stem(6,7,1) through
Stem(15, -2, 1) -- often not what you want.
Similarly, when you initialize a Stem it detects whether Start and End are
both set, and makes a pair accordingly, but updating the Start or End will
not re-do the check to see if a pair has formed or broken. The alternative
is to make Start, End and Length into properties that reset the state of
the others when updated, but this makes Stem too slow for applications such
as BayesFold.
"""
__slots__ = ['Start', 'End', 'Length']
def __init__(self, Start=None, End=None, Length=0):
"""Returns a new Stem object."""
self.Start = Start
self.End = End
#set length if specified
if Length:
self.Length = Length
#otherwise, set to 1 if paired and 0 if unpaired
elif Start is None or End is None:
self.Length = 0
else:
self.Length = 1
def __len__(self):
"""Returns self.Length."""
return self.Length
def __getitem__(self, item):
"""Masquerades as a list of single-base stems."""
length = self.Length
#bounds check
if item < 0:
item = length - item
if (item < 0) or (item >= length):
raise IndexError, "Index %s out of range." % item
#return appropriate base pair
return Stem(self.Start + item, self.End - item)
def __cmp__(self, other):
"""Sorts by start, then by end, then by length (if possible)."""
return cmp(self.Start, other.Start) or cmp(self.End, other.End) \
or cmp(self.Length, other.Length)
def extract(self, seq):
"""Returns bases in pairs as list of tuples.
Note: always returns list, even if only one base pair.
"""
if self.Length > 1:
return flatten([p.extract(seq) for p in self])
else:
if self.Start is not None:
start = seq[self.Start]
else:
start = None
if self.End is not None:
end = seq[self.End]
else:
end = None
return [(start, end)]
def __hash__(self):
"""Hashes the same as a tuple of (start, end, length).
WARNING: if you change any of the values once an object is in a
dict, you'll get unpleasant results. Don't do it!
"""
return hash((self.Start, self.End, self.Length))
def __str__(self):
"""String representation contains Start,End,Length."""
return '(%s,%s,%s)' % (self.Start, self.End, self.Length)
def __nonzero__(self):
"""Nonzero if length > 0."""
return self.Length > 0
class Partners(list):
"""Holds list p such that p[i] is the index of the partner of i, or None.
Primarily useful for testing whether a specified base is paired and, if so,
extracting its partner.
Each base may have precisely 0 or 1 partners. If A pairs with B, B must
pair with A.
All inconsistencies will be removed by setting previous partners to None.
Checking for conflicts and raising errors should be done in method that
constructs the Partners.
If constructing by hand, should initialize with list of [None] * seq_length.
Typically, Partners will be constructed by code from some other data. Use
the EmptyPartners(n) factory function to get an empty Partners list of
length n.
"""
def __setitem__(self, index, item):
"""Sets self[index] to item, enforcing integrity constraints."""
if index == item:
raise ValueError, "Cannot set base %s to pair with itself." % item
#if item already paired, raise Error or make partner unpaired
if item and self[item]:
self[self[item]] = None
#if already paired, need to make partner unpaired
curr_partner = self[index]
if curr_partner is not None:
list.__setitem__(self, curr_partner, None)
#set self[index] to item
list.__setitem__(self, index, item)
#if item is not None, set self[item] to index
if item is not None:
list.__setitem__(self, item, index)
def toPairs(self):
"""Converts the partners to sorted list of pairs."""
result = Pairs()
for first, second in enumerate(self):
if first < second:
result.append((first, second))
return result
def _not_implemented(self, *args, **kwargs):
"""Raises NotImplementedError for 'naughty' methods.
Not allowed any methods that insert/remove items or that change the
order of the items, including things like sort or reverse.
"""
raise NotImplementedError
__delitem__ = __delslice__ = __iadd__ = __imul__ = __setslice__ = append \
= extend = insert = pop = remove = reverse = sort = _not_implemented
def EmptyPartners(length):
"""Returns empty list of Partners with specified length."""
return Partners([None] * length)
class Pairs(list):
"""Holds list of base pairs, each of which is a 2-element sequence.
This is a very lightweight object for storing base pairs, and does not
perform any validation. Useful as an intermediate in many different
calculations.
"""
def toPartners(self, length, offset=0, strict=True):
"""Returns a Partners object, if possible.
length of resulting sequence must be specified.
offset is optional, and is added to each index.
strict specifies whether collisions cause fatal errors. if not strict
conflicts will be removed by the Partners object.
"""
result = EmptyPartners(length)
for up, down in self:
upstream = up + offset
downstream = down + offset
if result[upstream] or result[downstream]:
if strict:
raise ValueError, "Pairs contain conflicting partners: %s"\
% self
result[upstream] = downstream
return result
def toVienna(self, length, offset=0, strict=True):
"""Returns a Vienna structure string, if possible.
length of resulting sequence must be specified.
Instead of parsing the sequence length, you can also throw in
an object that has the required length (such as the sequence that
the structure corresponds to).
offset is optional, and is added to each index.
strict specifies whether collisions cause fatal errors.
"""
if self.hasPseudoknots():
raise PairError, "Pairs contains pseudoknots %s"%(self)
try:
length = int(length)
except ValueError: #raised when length can't be converted to int
length = len(length)
p = self.directed()
result = ['.'] * length
for up, down in p:
try:
upstream = up + offset
downstream = down + offset
except TypeError:
continue
if strict:
if (result[upstream] != '.') or (result[downstream] != '.'):
raise ValueError, "Pairs contain conflicting partners: %s"\
% self
result[upstream] = '('
result[downstream] = ')'
return ViennaStructure(''.join(result))
def tuples(self):
"""Converts all pairs in self to tuples, in place.
Useful for constructing dicts and for sorting (otherwise, pairs of
different types, e.g. lists and tuples, will sort according to type
rather than to position).
"""
self[:] = map(tuple, self)
def unique(self):
"""Returns copy of self omitting duplicate pairs, preserving order.
Keeps the first occurrence of each pair.
"""
seen = {}
result = []
for p in map(tuple, self):
if p not in seen:
seen[p] = True
result.append(p)
return Pairs(result)
def directed(self):
"""Returns copy of self where all pairs are (upstream, downstream).
Omits any unpaired bases and any duplicates. Result is in arbitrary
order.
"""
seen = {}
for up, down in self:
if (up is None) or (down is None):
continue #omit unpaired bases
if up > down:
up, down = down, up
seen[(up, down)] = True
result = seen.keys()
return Pairs(result)
def symmetric(self):
"""Retruns copy of self where each up, down pair has a down, up pair.
Result is in arbitrary order. Double pairs and pairs containing None
are left out.
"""
result = self.directed()
result.extend([(down, up) for up, down in result])
return Pairs(result)
def paired(self):
"""Returns copy of self omitting items where a 'partner' is None."""
return Pairs(filter(not_none, self))
def hasPseudoknots(self):
"""Returns True if the pair list contains pseudoknots.
(good_up,good_down) <=> (checked_up,checked_down)
pseudoknot if checked_up<good_down and checked_down>good_down
"""
pairs = self.directed()
seen = [] # list of pairs against which you compare each time
pairs.sort()
for pair in pairs:
if not seen:
seen.append(pair)
else:
lastseen_up, lastseen_down = seen[-1]
while pair[0] > lastseen_down:
seen.pop()
if not seen:
break
else:
lastseen_up,lastseen_down = seen[-1]
if not seen:
seen.append(pair)
continue
if pair[1]>lastseen_down:
#pseudoknot found
return True
else:
#good pair
seen.append(pair)
return False
def hasConflicts(self):
"""Returns True if the pair list contains conflicts.
Conflict occurs when a base has two different partners, or is asserted
to be both paired and unpaired.
"""
partners = {}
for first, second in self:
if first is None:
if second is None:
continue #no pairing info
else:
first, second = second, first #swap order so None is 2nd
if second is None: #check first isn't paired
if partners.get(first, None) is not None:
return True
else:
partners[first] = None
else: #first and second were both non-empty: check partners
if first in partners:
if partners[first] != second:
return True
if second in partners:
if partners[second] != first:
return True
#add current pair to the list of constraints
partners[first] = second
partners[second] = first
#can only get here if there weren't conflicts
return False
def mismatches(self, sequence, pairs=None):
"""Counts pairs that can't form in sequence.
Sequence must have a Pairs property that acts like a dictionary
containing a 2-element tuple for each valid pair. Can also pass in
the pairs explicitly.
"""
mismatches = 0
if pairs is None:
try:
pairs = sequence.Alphabet.Pairs
except AttributeError:
pairs = sequence.Pairs
for up, down in self.directed():
curr = (sequence[up], sequence[down])
if curr not in pairs:
mismatches += 1
return mismatches
wuss_to_vienna_table = make_trans('<([{>)]} ', '(((()))) ', '.')
def wuss_to_vienna(data):
"""Converts WUSS format string to Vienna format.
Any pseudoknots or unrecognized chars will convert to unpaired bases.
Spaces will be preserved.
"""
return ViennaStructure(data.translate(wuss_to_vienna_table))
class StructureString(str):
"""Base class for ViennaStructure and WussStructure. Immutable.
StructureString holds a structure and a energy. By default energy is
set to None.
If you compare two StructureStrings the structure is the only important
thing, since the energy is relative to the associated sequence.
"""
Alphabet=None
StartSymbols = '' #dict of symbols that start base pairs
EndSymbols = '' #dict of symbols that end base pairs
def __new__(cls, Structure, Energy=None):
"""Returns new StructureString."""
a = cls.Alphabet
if a:
for i in Structure:
if i not in a:
raise ValueError,\
"Tried to include unknown symbol '%s'" % i
return str.__new__(cls,Structure)
def __init__(self, Structure='', Energy=None):
"""Initializes StructureString with Structure and optionally Energy."""
self.Energy = Energy
self.toPartners()
def __str__(self):
"""Returns string representaion of structure and energy, if known.
Energy = 0 is different from Energy = None. Latter case is not printed.
"""
if not self.Energy == None:
return self + ' (' + str(self.Energy) + ')'
else:
return str.__str__(self)
def toPartners(self):
"""Makes list containing partner of each position.
Constructs a list from 0 to the number of bases, where each position
contains the index of its pair (or None if it is unpaired).
Note that the numbering starts at 0 for the first position.
The algorithm here relies on the fact that any completely nested
base-paired structure (no pseudoknots!) can be formally represented
as a tree. Consequently, when you hit a closed base pair, you know
that it it must pair with the last base pair you opened.
"""
num_bases = len(self) #number of bases
result = [None] * len(self) #array of None, one for each base
stack = []
start = self.StartSymbols
end = self.EndSymbols
for i, symbol in enumerate(self):
if symbol in start: #open a pair
stack.append(i)
elif symbol in end: #close a pair
curr = stack.pop() #return and delete last element
result[i] = curr #make i pair with the last element...
result[curr] = i #...and the last element pair with i
#test whether there are any open pairs left unaccounted for
if stack:
raise IndexError, \
"Too many open pairs in structure:\n%s" % self
return Partners(result)
def toPairs(self):
"""Makes list of (upstream,downstream) partners.
Note that the numbering starts at 0 for the first position.
Key will always be smaller than value.
Result is in arbitrary order.
"""
result = {}
stack = []
start = self.StartSymbols
end = self.EndSymbols
for i, symbol in enumerate(self):
if symbol in start: #open a pair
stack.append(i)
elif symbol in end: #close a pair
result[stack.pop()] = i
#test whether there are any open pairs left unaccounted for
if stack:
raise IndexError, \
"Too many open pairs in structure:\n%s" % self
return Pairs([(key,result[key]) for key in result])
def toTree(self):
"""Returns tree version of structure.
Each node in the tree corresponds to a loop. Runs of nodes with single
non-leaf children correspond to stems.
"""
root = StructureNode()
curr_node = root
start = self.StartSymbols
end = self.EndSymbols
for index, symbol in enumerate(self):
if symbol in end:
curr_node.End = index
curr_node.Length = 1
curr_node = curr_node.Parent
else:
new_node = StructureNode()
new_node.Start = index
curr_node.Children.append(new_node)
new_node.Parent = curr_node
if symbol in start:
curr_node = new_node
return root
class ViennaStructure(StructureString):
"""Contains a Vienna dot-bracket structure, possibly with energy."""
Alphabet = dict.fromkeys('(.)')
StartSymbols = {'(':None} #dict of symbols that start base pairs
EndSymbols = {')':None} #dict of symbols that end base pairs
class WussStructure(StructureString):
"""Contains a Wuss Structure."""
Alphabet = dict.fromkeys(
'(<{[.~-,:_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ)>}]')
StartSymbols = dict.fromkeys('(<{[')#dict of symbols that start base pairs
EndSymbols = dict.fromkeys(')>}]') #dict of symbols that end base pairs
def Vienna(data,Energy=None):
"""Tries to extract structure and energy from string data.
Returns (structure, energy) where energy might be None.
structure is just anything before the first space: doesn't validate.
"""
pieces = data.strip().split(None, 1)
if not pieces:
return ViennaStructure('', Energy)
else:
if not Energy:
try:
energy = float_from_string(pieces[1])
except (TypeError, ValueError, IndexError):
energy = Energy
else: #energy given by user overrules the one in structure
energy = Energy
return ViennaStructure(pieces[0], energy)
class StructureNode(TreeNode):
"""Operations on StructureNodes, trees, and subtrees."""
Types = ["Stem", "Loop", "Bulge", "Junction", "End", "Flexible"]
def __init__(self, Data=None, Children=None, Parent=None):
"""Returns a new StructureNode object."""
#coerce data into correct type
if Data is None:
Data = Stem()
elif not isinstance(Data, Stem):
Data = Stem(Data)
#initalize as TreeNode: will forward attributes to Data
super(StructureNode, self).__init__(None, Children, Parent)
self.Data = Data
def _get_stems(self):
"""Returns nodes corresponding to stems leaving self."""
return [i for i in self if i.IsPaired]
def _get_unpaired(self):
"""Returns nodes corresponding to unpaired bases leaving self."""
return [i for i in self if not i.IsPaired]
Stems = property(_get_stems)
Unpaired = property(_get_unpaired)
def _get_end(self):
"""Gets End from self's data."""
return self.Data.End
def _set_end(self, val):
"""Sets End in self's data."""
self.Data.End = val
def _get_start(self):
"""Gets Start from self's data."""
return self.Data.Start
def _set_start(self, val):
"""Sets Start in self's data."""
self.Data.Start = val
def _get_length(self):
"""Gets Length from self's data."""
return self.Data.Length
def _set_length(self, val):
"""Sets Length in self's data."""
self.Data.Length = val
def _get_index(self):
"""Accessor for index: returns position of self in parent's list."""
if self.Parent is None:
return None
else:
ids = map(id, self.Parent.Children)
return ids.index(id(self))
def _set_index(self, index):
"""Mutator for index: moves self to new location in parent's list.
NOTE: index is relative to the new list after self is removed, not to
the old list before self is removed.
"""
if self.Parent is None:
raise TreeError, "Can't set Index in node %s without parent." % self
else:
curr_parent = self.Parent
curr_parent.removeNode(self)
curr_parent.Children.insert(index, self)
End = property(_get_end, _set_end)
Start = property(_get_start, _set_start)
Length = property(_get_length, _set_length)
Index = property(_get_index, _set_index)
def _is_paired(self):
"""Returns True if self is paired, false otherwise."""
return self.End is not None
IsPaired = property(_is_paired)
def _get_type(self):
"""Returns type of the node, depending on stems in and out."""
#easy cases first
if self.Parent is None:
return "Root"
if self.IsPaired:
return "Stem"
#if grandparent is None (i.e. it is a child of the root node), either
#end or 'flexible' depending on whether the current node is outside
#the first and last helices or between them.
if self.Parent.Parent is None:
stems = self.Parent.Stems
if not stems:
return "End"
first, last = stems[0], stems[-1]
index = self.Index
if index < stems[0].Index or index > stems[-1].Index:
return "End"
else:
return "Flexible"
#otherwise, depends on number of stems coming out of parent: if none,
#it's a loop, if one, it's a bulge, and otherwise it's a junction.
else:
out_stems = self.Parent.Stems
if not out_stems:
return "Loop"
elif len(out_stems) == 1:
return "Bulge"
else:
return "Junction"
#should never get down here, since all cases are handled above
raise ValueError, '_get_type failed on node with start %s, end %s' % \
(self.Start, self.End)
Type = property(_get_type)
def renumber(self, start=0):
"""Renumbers self and all child nodes consecutively.
Returns the next number to be used.
"""
if self.Parent is None: #no number for root node
curr = start
else:
self.Start = start
curr = start + max(1, self.Length) #still add 1 if it's unpaired
for i in self:
curr = i.renumber(curr)
if self.IsPaired:
curr += self.Length
self.End = curr - 1
return curr
def classify(self, terminate=True):
"""Returns string containing site classification"""
#check whether we're at the original node or in an internal node
if not terminate:
#if it's paired, need to add 'S' for self, plus handle children
if self.IsPaired:
result = ['S']
for i in self:
result.extend(i.classify(False))
result.append('S')
return result
#otherwise, it's unpaired and we need to figure out what it is
else:
return self.Type[0] #just want first letter
else: #if it's the root, just need to handle children
result = []
for i in self:
result.extend(i.classify(False))
return ''.join(result)
def __str__(self):
"""Returns string representation of tree, in Vienna format."""
if self.IsPaired:
prefix = '(' * self.Length
suffix = ')' * self.Length
return prefix + ''.join(map(str, self)) + suffix
elif self.Parent is None: #root node
return ''.join(map(str, self))
else: #unpaired base
return '.'
def unpair(self):
"""Breaks the first pair represented by the current node, if any.
Returns True if the node is changed, False if it wasn't.
"""
if self.IsPaired:
curr_idx = self.Index
first = StructureNode(Data=Stem(self.Start))
last = StructureNode(Data=Stem(self.End))
if self.Length > 1: #not melting the whole helix
self.Start += 1
self.End -= 1
self.Length -= 1
result = [first, self, last]
else: #melting the whole helix
result = [first] + self.Children + [last]
#replace current record in parent with the result
#note use of a slice assignment instead of an index! This is to
#replace with the elements, not with a list of the elements.
self.Parent[curr_idx:curr_idx+1] = result
return True
else:
return False
def _pair_before_indices(self):
"""Detects the pair of positions before the current node.
Returns a tuple of (upstream, downstream) if possible; None
otherwise.
"""
curr_idx = self.Index
curr_parent = self.Parent
#bail out if it's the first or last base
if (curr_idx == 0) or (curr_idx == len(curr_parent) - 1):
return None
#bail out if the base before and after self aren't unpaired
before = curr_parent[curr_idx - 1]
after = curr_parent[curr_idx + 1]
if before.IsPaired or after.IsPaired:
return None
return (before.Start, after.Start)
def pairBefore(self):
"""Forms a pair before the current node, if possible.
Returns True if the pair was successfully created, False otherwise.
"""
#get the indices of the pair, if possible
indices = self._pair_before_indices()
if not indices:
return False
#cache the current index and parent
curr_idx = self.Index
curr_parent = self.Parent
#create a new pair, and add self to it
new_pair = StructureNode(Data=Stem(indices[0], indices[1], 1))
new_pair.Children.append(self)
self.Parent = new_pair
#add the new pair to parent, and delete its unpaired siblings
curr_parent.Children.insert(curr_idx, new_pair)
new_pair.Parent = curr_parent
del curr_parent.Children[curr_idx + 1]
del curr_parent.Children[curr_idx - 1]
return True
def _pair_after_indices(self):
"""Returns indices of the pair after the current node, if possible.
Returns tuple containing the indices if possible, None otherwise.
"""
#can't work if one or fewer children
if len(self) < 2:
return None
before = self[0]
after = self[-1]
if before.IsPaired or after.IsPaired:
return None
return (before.Start, after.Start)
def pairAfter(self):
"""Forms a pair after the current node, if possible.
Returns True if the pair was successfully created, False otherwise.
Note that all children of self will become children of the newly-
created pair.
"""
indices = self._pair_after_indices()
if not indices:
return False
#make the new pair and devolve children to it
new_pair = StructureNode(Data=Stem(indices[0], indices[1], 1))
new_pair.Children[:] = self.Children[1:-1] #all except start and end
for c in new_pair.Children:
c.Parent = new_pair
self.Children[:] = [new_pair]
new_pair.Parent = self
return True
def pairChildren(self, first, second):
"""Forms a pair using two of the children of self.
first and second can be the node objects or the indices.
Returns True if the pair was created, False otherwise.
"""
#check that first and second are really instances of self, or
#convert from indices
if isinstance(first, int):
if first >= 0:
first_index = first
else:
first_index = len(self) + first
first_node = self[first]
else:
first_index = first.Index
first_node = first
if isinstance(second, int):
if second >= 0:
second_index = second
else:
second_index = len(self) + second
second_node = self[second]
else:
second_index = second.Index
second_node = second
#check that the nodes are really children of self, and that they're
#not the same, and that they're not already paired
if self is not first_node.Parent or self is not second_node.Parent:
return False
if first_node is second_node:
return False
if first_node.IsPaired or second_node.IsPaired:
return False
#create the new node and append the appropriate children
new_node = StructureNode(Data= \
Stem(first_node.Start, second_node.Start, 1))
del self.Children[second_index]
new_node.Children[:] = self.Children[first_index + 1 : second_index]
for c in new_node.Children:
c.Parent = new_node
self.Children[first_index] = new_node
new_node.Parent = self
return True
def expand(self):
"""If self is a stem, expands self into n separate pair nodes.
Returns True if the node was expanded, False otherwise.
"""
if self.Length <= 1:
return False
children = self.Children[:]
self.Children[:] = []
curr_pair = self
start = self.Start
end = self.End
for i in range(1, self.Length):
new_pair = StructureNode(Data=Stem(start+i, end-i, 1))
curr_pair.Children.append(new_pair)
new_pair.Parent = curr_pair
curr_pair = new_pair
new_pair.Children[:] = children
for c in new_pair.Children:
c.Parent = new_pair
self.Length = 1
return True
def expandAll(self):
"""Expands self and all children of self."""
for i in self:
i.expandAll()
self.expand()
def collapse(self):
"""If self is a stem, extends self with as many base pairs as possible.
Returns True if the stem was extended, False otherwise.
"""
#no effect if we're at the root, or if the position isn't paired
if not self.IsPaired or self.Parent is None:
return False
extended = False
while len(self) == 1 and self[0].IsPaired:
self.Children[:] = self[0].Children[:]
for c in self.Children:
c.Parent = self
self.Length += 1
extended = True
return extended
def collapseAll(self):
"""Collapse self and all children of self."""
self.collapse()
for i in self:
i.collapseAll()
def breakBadPairs(self, seq):
"""Breaks all pairs in self that can't form in seq."""
pairs = seq.Alphabet.Pairs
self.expandAll()
for i in self.traverse_recursive():
if i.IsPaired:
if not (seq[i.Start], seq[i.End]) in pairs:
i.unpair()
def extendHelix(self, seq):
"""Extends helix represented by self as far as possible with seq.
Assumes that helix has already been collapsed.
"""
pairs = seq.Alphabet.Pairs
#form as many contiguous pairs before as possible
curr = self
while 1:
indices = curr._pair_before_indices()
if indices and ((seq[indices[0]], seq[indices[1]]) in pairs):
curr.pairBefore()
#see if we can extend the newly-created pair
curr = curr.Parent
else:
break
#form as many contiguous pairs after as possible
curr = self
while 1:
indices = curr._pair_after_indices()
if indices and ((seq[indices[0]], seq[indices[1]]) in pairs) \
and (curr.Stems or (len(curr.Unpaired) >= 5)):
curr.pairAfter()
#see if we can extend the newly-created pair
curr = curr[0]
else:
break
def extendHelices(self, seq):
"""Extends all helices in self and its children as far as possible."""
for i in self.traverse_recursive():
if i.IsPaired:
i.extendHelix(seq)
def fitSeq(self, seq):
"""Corrects the structure in self according to the specified sequence.
seq must be a Sequence object with .Alphabet, etc.
Note that fitSeq does not renumber the structure; it may be necessary
to call renumber(), especially if the structure does not start at the
beginning of the sequence.
Assumes that it will be called starting with the root node; does not
check backwards in the tree.
"""
self.breakBadPairs(seq)
self.extendHelices(seq)
def classify(struct, verbose=False):
"""Classifies a Vienna-format string into structural categories.
struct may be a string or a real Vienna structure. It is tested on
validity, because classifying invalid structures is very unreliable.
If the number of closing brackets is larger than the number of opening
brackets, an error would be raised, but if it's the other way around,
weird characters could be added to the string. For instance, classifying
'.((.)' would give "\x00SSLS". This happens because the ends are not
handled correctly if the stack is not back to its one-level state.
"""
#Test whether structure is valid. Classifying invalid structures
#is very unreliable.
try:
Vienna(struct)
except IndexError:
raise IndexError, "Trying to classify an invalid Vienna structure: %s"\
%(struct)
MAX_STEMS=1000
#implement stack as three-item list
PARENT = 0
ITEMS = 1
DEGREE = 2
STEM, LOOP, BULGE, JUNCTION, END, FLEXIBLE = map(ord, 'SLBJEF')
#WARNING: won't work if more than max_stems come off a junction
LEVELS = [FLEXIBLE, LOOP, BULGE] + [JUNCTION]*MAX_STEMS
length = len(struct)
result = zeros((length,), 'B')
stack = [None,[],0]
curr_level = stack
if verbose:
print 'curr_level:', curr_level
print 'result:', result
for i, c in enumerate(struct):
if verbose:
print 'pos, char:',i,c
#open parens add new level to stack
if c == '(':
curr_level = [curr_level,[],1]
result[i] = STEM
#unpaired base gets appended to current level
elif c == '.':
curr_level[ITEMS].append(i)
#closed parens subtract level from stack and assign state
elif c == ')': #note: will handle end separately
result[i] = STEM
put(result, curr_level[ITEMS], LEVELS[curr_level[DEGREE]])
curr_level = curr_level[PARENT]
curr_level[DEGREE] += 1
if verbose:
print 'curr_level:', curr_level
print 'result', result
#handle ends and flexible bases
end_items = curr_level[ITEMS]
if end_items:
first_start = struct.find('(')
if first_start == -1:
first_start = length+1
last_end = struct.rfind(')')
put(result, [i for i in end_items if first_start<i<last_end], FLEXIBLE)
put(result, [i for i in end_items if not first_start<i<last_end], END)
return result.tostring()
|