/usr/share/pyshared/cogent/util/dict2d.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 | #!/usr/bin/env python
"""Dict2D: holds two-dimensional dict, acting as matrix with labeled rows/cols.
The Dict2D is useful for storing arbitrary, sparse data in a way that is easy
to access by labeled rows and columns. It is much slower than a numpy
array, so only use when the convenience outweighs the performance penalty.
It is especially useful for storing distance matrices between arbitrarily
labeled objects.
"""
__author__ = "Rob Knight"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Rob Knight"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Rob Knight"
__email__ = "rob@spot.colorado.edu"
__status__ = "Production"
class Dict2DError(Exception):
"""All Dict2D-specific errors come from here."""
pass
class Dict2DInitError(ValueError, Dict2DError):
"""Raised if Dict2D init fails."""
pass
class Dict2DSparseError(KeyError, Dict2DError):
"""Raised on operations that fail because the Dict2D is sparse."""
pass
## Following methods based on methods developed by Rob Knight
## These methods are intended to be used by the reflect function of
## SquareMatrix. Each method takes two values, and returns two values. The
## idea is to reflect a matrix you take the value from the upper triangle,
## and the value from the lower triangle perform the intended operation on
## them, and then return the new values for the upper triangle and the lower
## triangle.
def average(upper, lower):
"""Returns mean of the two values."""
try:
val = (upper + lower)/2.0
return val, val
except TypeError:
raise TypeError, "%s or %s invalid types for averaging."\
% (str(upper), str(lower))
def largest(upper, lower):
"""Returns largest of the two values."""
val = max(upper, lower)
return val, val
def smallest(upper, lower):
"""Returns smallest of the two values."""
val = min(upper, lower)
return val, val
def swap(upper, lower):
"""Swaps the two values."""
return lower, upper
def nonzero(upper, lower):
"""Fills both values to whichever evaluates True, or leaves in place."""
if upper and not lower:
return upper, upper
elif lower and not upper:
return lower, lower
else:
return upper, lower
def not_0(upper, lower):
"""Fills both values to whichever is not equal to 0, or leaves in place."""
# Note that I compare the values to zero istead of using if not lower
# This is because the values coming in can be anything, including an
# empty list, which should be considered nonzero
if upper == 0:
return lower, lower
elif lower == 0:
return upper, upper
else:
return upper, lower
def upper_to_lower(upper, lower):
""" return new symm matrix with upper tri copied to lower tri"""
return upper, upper
def lower_to_upper(upper, lower):
""" return new symm matrix with upper tri copied to lower tri"""
return lower, lower
# End methods developed by Rob Knight
class Dict2D(dict):
"""Implements dict of dicts with expanded functionality
This class is useful for creating and working with 2D dictionaries.
"""
#override these in subclasses for convenient customization.
RowOrder = None #default RowOrder
ColOrder = None #default ColOrder
Default = None #default Default value when m[r][c] absent
RowConstructor = dict #default row constructor
Pad = False #default state for automatic col and item padding
#list of attributes that is copied by the copy() method
_copied_attributes = ['RowOrder', 'ColOrder', 'Default', 'Pad', \
'RowConstructor']
def __init__(self, data=None, RowOrder=None, ColOrder=None, Default=None,
Pad=None, RowConstructor=None):
"""Returns new Dict2D with specified parameters.
data : can either be a dict of dicts, or a sequence of 3-item
sequences giving row, col, value.
RowOrder: list of 'interesting' row keys. If passed in during
init, all rows in RowOrder will be created. Rows not in RowOrder
will not be printed or used in most calculations, if they exist.
Default is None (calculates on the fly from self.keys().
ColOrder: list of 'interesting' column keys. If passed in
during init, all columns in ColOrder will be created in all rows.
Columns not in ColOrder will not be printed or used in most
calculations, if they exist. Default is None (calculates on the
fly by examining the keys in each row. This can be expensive!
Default: value returned when m[r][c] doesn't exist.
Pad: whether or not to pad Cols and Items with the default value
instead of raising an exception. Default False.
RowConstructor: constructor for inner rows. Defaults to class
value of dict. WARNING: Must be able to accept initialization
with no parameters (i.e. if you have a class that requires
parameters to initialize, RowConstructor should be a function
that supplies all the appropriate defaults.)
Note that all operations that alter the Dict2D act in place. If
you want to operate on a different object you should call the
Dict2D copy() to create an identical deep copy of your Dict2D
and then work on that one, leaving the original untouched.
See doc string for Dict2D.copy() for usage information.
usage:
d = {'a':{'x':1,'y':2}, 'b':{'x':0, 'z':5}}
m = Dict2D(d)
m = Dict2D(d,Rows=['a','b'])
m = Dict2D(d,Cols=['x'],Default=99)
"""
#set the following as instance data if supplied; otherwise, will
#fall through to class data
if RowOrder is not None:
self.RowOrder = RowOrder
if ColOrder is not None:
self.ColOrder = ColOrder
if Default is not None:
self.Default = Default
if Pad is not None:
self.Pad = Pad
if RowConstructor is not None:
self.RowConstructor = RowConstructor
#initialize data as an empty dict if data = None
data = data or {}
init_method = self._guess_input_type(data)
if not init_method:
raise Dict2DInitError, \
"Dict2D init failed (data unknown type, or Row/Col order needed)."
#if we get here, we got an init method that it's safe to call
init_method(data)
#fill in any missing m[r][c] from RowOrder and ColOrder if self.Pad.
if self.Pad:
self.pad()
def _guess_input_type(self, data):
"""Guesses the input type of data, and returns appropriate init method.
Known init methods are fromDicts, fromIndices, and fromLists.
Returns None if it can't figure out the data type.
"""
if isinstance(data, dict):
#assume dict of dicts
return self.fromDicts
else:
RowOrder = self.RowOrder
ColOrder = self.ColOrder
try:
#guess list of lists or seq of 3-item seqs
if (RowOrder is not None) and \
(ColOrder is not None) and \
(len(data) == len(RowOrder)) and \
(len(data[0]) == len(ColOrder)):
#assume list of lists
return self.fromLists
elif len(data[0]) == 3:
#assume seq of 3-item seqs
return self.fromIndices
except:
#if there's any exception, we guessed the wrong type so
#will return None
pass
def fromDicts(self, data):
"""Fills self from dict of dicts."""
constructor = self.RowConstructor
try:
for key, val in data.items():
self[key] = constructor(val)
except (TypeError, ValueError, AttributeError):
raise Dict2DInitError, \
"Dict2D init from dicts failed."
def fromIndices(self, data):
"""Fills self from sequence of (row, col, value) sequences."""
constructor = self.RowConstructor
try:
for row, col, val in data:
curr_row = self.get(row, constructor())
curr_row[col] = val
self[row] = curr_row
except (TypeError, ValueError, AttributeError):
raise Dict2DInitError, \
"Dict2D init from indices failed."
def fromLists(self, data):
"""Fills self from list of lists.
Note that dimensions of list of lists must match RowOrder x ColOrder."""
constructor = self.RowConstructor
if (self.RowOrder is None) or (self.ColOrder is None):
raise Dict2DInitError, \
"Must have RowOrder and ColOrder to init Dict2D from list of lists."
try:
for key, row in zip(self.RowOrder, data):
self[key] = dict(zip(self.ColOrder, row))
except (TypeError):
raise Dict2DInitError, \
"Dict2D init from lists failed."
def pad(self, default=None):
"""Ensures self[r][c] exists for r in RowOrder for c in ColOrder.
default, if not specified, uses self.Default.
"""
constructor = self.RowConstructor
if default is None:
default = self.Default
row_order = self.RowOrder or self.rowKeys()
col_order = self.ColOrder or self.colKeys()
for r in row_order:
if r not in self:
self[r] = constructor()
curr_row = self[r]
for c in col_order:
if c not in curr_row:
curr_row[c] = default
def purge(self):
"""Keeps only items self[r][c] if r in RowOrder and c in ColOrder."""
#first, purge unwanted rows
if self.RowOrder:
wanted_keys = dict.fromkeys(self.RowOrder)
for key in self.keys():
if not key in wanted_keys:
del self[key]
#then, purge unwanted cols
if self.ColOrder:
wanted_keys = dict.fromkeys(self.ColOrder)
for row in self.values():
for key in row.keys():
if not key in wanted_keys:
del row[key]
def rowKeys(self):
"""Returns list of keys corresponding to all rows.
Same as list(self).
"""
return list(self)
def colKeys(self):
"""Returns list of keys corresponding to all cols."""
result = {}
for row in self.values():
result.update(row)
return list(result)
def sharedColKeys(self):
"""Returns list of keys shared by all cols."""
rows = self.values()
if not rows:
return []
result = rows[0]
for row in rows:
for key in result.keys():
if key not in row:
del result[key]
return list(result)
def square(self, default=None, reset_order=False):
"""Checks RowOrder and ColOrder share keys, and that self[r][c] exists.
If reset_order is True (default is False), appends additional Cols to
RowOrder and sets ColOrder to RowOrder.
"""
row_order = self.RowOrder or self.rowKeys()
col_order = self.ColOrder or self.colKeys()
rows = dict.fromkeys(row_order)
cols = dict.fromkeys(col_order)
if reset_order:
if rows != cols:
for c in cols:
if c not in rows:
row_order.append(c)
self.RowOrder = row_order
#WARNING: we set self.ColOrder to row_order as well, _not_ to
#col_order, because we want the RowOrder and ColOrder to be
#the same after squaring.
self.ColOrder = row_order
else:
if rows != cols:
raise Dict2DError, \
"Rows and Cols must be the same to square a Dict2D."
self.pad(default)
def _get_rows(self):
"""Iterates over the rows, using RowOrder/ColOrder.
Converts the rows to lists of values, so r[i] is the same as
m[r][m.ColOrder.index(c)] (assuming that the items in ColOrder are
unique). zip(self.ColOrder, row) will associate the column label
with each item in the row.
If you actually want to get a list of the row objects, you probably
want self.values() or [self[i] for i in self.RowOrder] instead of
this method.
If self.Pad is True, will pad rows with self.Default instead of
raising an exception.
"""
row_order = self.RowOrder or self.rowKeys()
if self.Pad:
col_order = self.ColOrder or self.colKeys()
constructor = self.RowConstructor
default = self.Default
for r in row_order:
curr_row = self.get(r, constructor())
yield [curr_row.get(c, default) for c in col_order]
else:
col_order = self.ColOrder
if col_order: #need to get items into the right column order
try:
for r in row_order:
curr_row = self[r]
yield [curr_row[c] for c in col_order]
except KeyError:
raise Dict2DSparseError, \
"Can't iterate over rows of sparse Dict2D."
else: #if there's no ColOrder, just return what's there
for r in row_order:
curr_row = self[r]
yield curr_row.values()
Rows = property(_get_rows)
def _get_cols(self):
"""Iterates over the columns, using RowOrder/ColOrder.
Returns each column as a list of the values in that column, so that
c[i] = m[m.RowOrder.index(r)][c] (assuming the items in RowOrder are
unique).
zip(self.RowOrder, col) will associate the row label with each item
in the column.
If you want to get the column objects as dicts that support named
lookups, so that c[r] = m[r][c], your best bet is something like:
cols = self.copy()
cols.transpose()
return cols.values() #or [cols[r] for r in cols.RowOrder]
Will fail if ColOrder is specified and keys are missing.
"""
row_order = self.RowOrder or self.rowKeys()
col_order = self.ColOrder or self.colKeys()
if self.Pad:
default = self.Default
constructor = self.RowConstructor
for c in col_order:
yield [self.get(r, constructor()).get(c, default) for \
r in row_order]
else:
try:
for c in col_order:
yield [self[r][c] for r in row_order]
except KeyError:
raise Dict2DSparseError, \
"Can't iterate over cols of sparse Dict2D."
Cols = property(_get_cols)
def _get_items(self):
"""Iterates over the items, using RowOrder and ColOrder if present.
Returns a list of the items, by rows rather than by columns.
self.Pad controls whether to insert the default anywhere a value is
missing, or to return only the values that exist.
"""
for row in self.Rows:
for i in row:
yield i
Items = property(_get_items)
def getRows(self, rows, negate=False):
"""Returns new Dict2D containing only specified rows.
Note that the rows in the new Dict2D will be references to the
same objects as the rows in the old Dict2D.
If self.Pad is True, will create new rows rather than raising
KeyError.
"""
result = {}
if negate:
#copy everything except the specified rows
row_lookup = dict.fromkeys(rows)
for r, row in self.items():
if r not in row_lookup:
result[r] = row
else:
#copy only the specified rows
if self.Pad:
row_constructor = self.RowConstructor
for r in rows:
result[r] = self.get(r, row_constructor())
else:
for r in rows:
result[r] = self[r]
return self.__class__(result)
def getRowIndices(self, f, negate=False):
"""Returns list of keys of rows where f(row) is True.
List will be in the same order as self.RowOrder, if present.
Note that the function is applied to the row as given by self.Rows,
not to the original dict that contains it.
"""
#negate function if necessary
if negate:
new_f = lambda x: not f(x)
else:
new_f = f
#get all the rows where the function is True
row_order = self.RowOrder or self
return [key for key, row in zip(row_order,self.Rows) \
if new_f(row)]
def getRowsIf(self, f, negate=False):
"""Returns new Dict2D containing rows where f(row) is True.
Note that the rows in the new Dict2D are the same objects as the
rows in the old Dict2D, not copies.
"""
#pass negate to get RowIndices
return self.getRows(self.getRowIndices(f, negate))
def getCols(self, cols, negate=False, row_constructor=None):
"""Returns new Dict2D containing only specified cols.
By default, the rows will be dicts, but an alternative constructor
can be specified.
Note that getCols should not fail on ragged columns, and will just
ignore any elements that are not explicitly present in a given row
whether or not self.Pad is set.
"""
if row_constructor is None:
row_constructor = self.RowConstructor
result = {}
#if we're negating, pick out all the columns except specified indices
if negate:
col_lookup = dict.fromkeys(cols)
for key, row in self.items():
result[key] = row_constructor([(i, row[i]) for i in row \
if (i in row) and (i not in col_lookup)])
#otherwise, just get the requested indices
else:
for key, row in self.items():
result[key] = row_constructor([(i, row[i]) for i in cols \
if i in row])
return self.__class__(result)
def getColIndices(self, f, negate=False):
"""Returns list of column indices for which f(col) is True."""
#negate f if necessary
if negate:
new_f = lambda x: not f(x)
else:
new_f = f
return [i for i, col in zip(self.ColOrder or self.colKeys(), self.Cols)\
if new_f(col)]
def getColsIf(self, f, negate=False, row_constructor=None):
"""Returns new Dict2D containing cols where f(col) is True.
Note that the rows in the new Dict2D are always new objects. Default
constructor is list(), but an alternative can be passed in.
"""
if row_constructor is None:
row_constructor = self.RowConstructor
return self.getCols(self.getColIndices(f, negate), \
row_constructor=row_constructor)
def getItems(self, items, negate=False):
"""Returns list containing only specified items.
items should be a list of (row_key, col_key) tuples.
getItems will fail with KeyError if items that don't exist are
requested, unless self.Pad is True.
Items will be returned in order (according to self.ColOrder and
self.RowOrder) when negate is True; when negate is False, they'll
be returned in the order in which they were passed in.
"""
if negate:
#have to cycle through every item and check that it's not in
#the list of items to return
item_lookup = dict.fromkeys(map(tuple, items))
result = []
if self.Pad:
default = self.Default
row_constructor = self.RowConstructor
for r in self.RowOrder or self:
curr_row = self.get(r, row_constructor())
for c in self.ColOrder or curr_row:
if (r, c) not in items:
result.append(curr_row.get(c, default))
else:
for r in self.RowOrder or self:
curr_row = self[r]
for c in self.ColOrder or curr_row:
if c in curr_row and (r, c) not in items:
result.append(curr_row[c])
return result
#otherwise, just pick the selected items out of the list
else:
if self.Pad:
row_constructor = self.RowConstructor
default = self.Default
return [self.get(row, row_constructor()).get(col, default) \
for row, col in items]
else:
return [self[row][col] for row, col in items]
def getItemIndices(self, f, negate=False):
"""Returns list of (key,val) tuples where f(self[key][val]) is True."""
if negate:
new_f = lambda x: not f(x)
else:
new_f = f
result = []
for row_label in self.RowOrder or self:
curr_row = self[row_label]
for col_label in self.ColOrder or curr_row:
if col_label in curr_row and new_f(curr_row[col_label]):
result.append((row_label, col_label))
return result
def getItemsIf(self, f, negate=False):
"""Returns list of items where f(self[row][col]) is True."""
return self.getItems(self.getItemIndices(f, negate))
def toLists(self, headers=False):
"""Return copy of self as list of lists, in order if specified.
headers specifies whether to include the row and col headers (default:
False).
If the class data specifies RowOrder and ColOrder, can recapture the
data in a new Dict2D object using self.fromLists() on the result of this
method.
Pads with self.Default if self.Pad is True; otherwise, raises exception
on missing values.
The result of toLists() can be passed to the array() function of
numpy to generate a real array object for numerical calculations (if
headers are False, the default).
"""
col_order = self.ColOrder or self.colKeys()
row_order = self.RowOrder or self.rowKeys()
if self.Pad:
default = self.Default
result = []
for r in row_order:
result.append([self[r].get(c, default) for c in col_order])
else:
try:
result = []
for r in row_order:
result.append([self[r][c] for c in col_order])
except KeyError:
raise Dict2DSparseError, \
"Unpadded Dict2D can't convert to list of lists if sparse."
if headers:
for header, row in zip(row_order, result):
row.insert(0, header)
result = [['-'] + list(col_order)] + result
return result
def copy(self):
"""Returns a new deep copy of the data in self (rows are new objects).
NOTE: only copies the attributes in self._copied_attributes. Remember
to override _copied_attributes in subclasses that need to copy
additional data.
usage:
d = {'a':{'a':0}}
m = Dict2D(d)
c = m.copy()
c['a']['a'] = 1
c['a']['a'] != m['a']['a']
"""
#create new copy of the data
data = {}
for key, row in self.items():
data[key] = row.copy()
#convert the result to the same class as self
result = self.__class__(data)
#copy any of self's attributes that aren't the same as the class values
for attr in self._copied_attributes:
curr_value = getattr(self, attr)
if curr_value is not getattr(self.__class__, attr):
setattr(result, attr, curr_value)
return result
def fill(self, val, rows=None, cols=None, set_orders=False):
"""Fills self[r][c] with val for r in rows and c in cols.
If rows or cols is not specified, fills all the appropriate values
that are already present in self.
val: value to fill with. Required.
rows: row indices to fill. If None, all rows are affected. Every row
in rows will be created if necessary.
cols: col indices to fill. If None, all cols are affected. Every col
in cols will be created if necessary.
set_orders: if True, sets self.RowOrder to rows and self.ColOrder
to cols (default False). Otherwise, RowOrder and ColOrder are
unaffected.
NOTE: RowOrder and ColOrder are _not_ used as defaults for rows and
cols, in order to make it convenient to fill only the elements that
actually exist.
"""
if set_orders:
self.RowOrder = rows
self.ColOrder = cols
if rows is None: #affect all rows
for r in self.values():
for c in (cols or r): #if not cols, affect everything in row
r[c] = val
else: #affect only specified rows
constructor = self.RowConstructor #might need to create new rows
for r in rows:
#create row if needed
if r not in self:
self[r] = constructor()
#bind current row
curr_row = self[r]
for c in (cols or curr_row):
curr_row[c] = val
def setDiag(self, val):
"""Set the diagonal to val (required).
Note: only affects keys that are rows (i.e. does not create rows for
keys that are in the cols only). Use self.square() in this situation.
"""
for k in self:
self[k][k] = val
def scale(self, f):
"""Applies f(x) to all elements of self."""
for r in self:
curr_row = self[r]
for c, val in curr_row.items():
curr_row[c] = f(val)
def transpose(self):
"""Converts self in-place so self[r][c] -> self[c][r].
Also swaps RowOrder and ColOrder.
"""
t = {}
for r, row in self.items():
for c, val in row.items():
if c not in t:
t[c] = {}
t[c][r] = val
self.clear()
self.fromDicts(t)
self.RowOrder, self.ColOrder = self.ColOrder, self.RowOrder
def reflect(self, method=average):
"""Reflects items across diagonal, as given by RowOrder and ColOrder.
Fails if RowOrder and ColOrder aren't equal, or if they're unspecified.
Works fine on triangular matrices (i.e. no need to make the matrix
square first) -- however, the diagonal won't be set if it wasn't
present originally.
"""
row_order = self.RowOrder
col_order = self.ColOrder
if (row_order is None) or (col_order is None):
raise Dict2DError, \
"Can't reflect a Dict2D without both RowOrder and ColOrder."
if row_order != col_order:
raise Dict2DError, \
"Can only reflect Dict2D if RowOrder and ColOrder are the same."
constructor = self.RowConstructor
default = self.Default
for row_index in range(len(row_order)):
r = row_order[row_index]
if r not in self:
self[r] = constructor()
curr_row = self[r]
for col_index in range(row_index):
c = row_order[col_index]
if c not in self:
self[c] = constructor()
curr_col = self[c]
# Note that rows and cols need to be transposed, the way the
# functions are currently written. I think that changing the
# functions would break existing code, and they make sense
# as written.
curr_row[c], curr_col[r] = \
method(curr_col.get(r, default), curr_row.get(c, default))
def toDelimited(self, headers=True, item_delimiter='\t', \
row_delimiter = '\n', formatter=str):
"""Printable string of items in self, optionally including headers.
headers: whether or not to print headers (default True).
delimiter: inserted between fields (default tab).
formatter: applied to each element (default str). Note that the
formatter is also applied to the headers, so should be a function that
can handle strings as well as whatever the elements of the matrix are
(i.e. if it's a number formatter, it should detect strings and return
them without formatting).
If RowOrder or ColOrder is present, only prints the relevant rows and
cols. Always pads missing values with str(self.Default).
"""
lists = self.toLists(headers)
return row_delimiter.join([item_delimiter.join(map(formatter, r)) \
for r in lists])
|