/usr/share/pyshared/cogent/util/parallel.py is in python-cogent 1.5.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | #!/usr/bin/env python
from __future__ import with_statement
import os, sys
from contextlib import contextmanager
import warnings
import threading
import multiprocessing
import multiprocessing.pool
__author__ = "Peter Maxwell"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Andrew Butterfield", "Peter Maxwell", "Gavin Huttley",
"Matthew Wakefield", "Edward Lang"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Gavin Huttley"
__email__ = "Gavin Huttley"
__status__ = "Production"
# A flag to control if excess CPUs are worth a warning.
inefficiency_forgiven = False
class _FakeCommunicator(object):
"""Looks like a 1-cpu MPI communicator, but isn't"""
def Get_rank(self):
return 0
def Get_size(self):
return 1
def Split(self, colour, key=0):
return (self, self)
def allreduce(self, value, op=None):
return value
def allgather(self, value):
return [value]
def bcast(self, obj, source):
return obj
def Bcast(self, array, source):
pass
def Barrier(self):
pass
FAKE_MPI_COMM = _FakeCommunicator()
class _FakeMPI(object):
# required MPI module constants
SUM = MAX = DOUBLE = 'fake'
COMM_WORLD = FAKE_MPI_COMM
if os.environ.get('DONT_USE_MPI', 0):
print >>sys.stderr, 'Not using MPI'
MPI = None
else:
try:
from mpi4py import MPI
except ImportError:
warnings.warn('Not using MPI as mpi4py not found', stacklevel=2)
MPI = None
else:
size = MPI.COMM_WORLD.Get_size()
if size == 1:
MPI = None
if MPI is None:
USING_MPI = False
MPI = _FakeMPI()
else:
USING_MPI = True
class ParallelContext(object):
"""A parallel context encapsulates the number of CPUs available and the
mechanism by which they communicate. All contexts offer the lowest-common-
denominator of parallel mechanisms - parallel imap."""
pass
class NonParallelContext(ParallelContext):
"""This dummy parallel context is used when there is only one CPU available
"""
size = 1
def getCommunicator(self):
return FAKE_MPI_COMM
def split(self, jobs):
return (self, self)
def imap(self, f, s, chunksize=None):
for element in s:
yield f(element)
NONE = NonParallelContext()
class UnFlattened(list):
pass
class MPIParallelContext(ParallelContext):
"""This parallel context divides the available CPUs into groups of equal
size. Inner levels of potential parallelism can then further subdivide
those groups. It helps to have a CPU count which is divisible by the
task count."""
def __init__(self, comm=None):
if comm is None:
comm = MPI.COMM_WORLD
self.comm = comm
self.size = comm.Get_size()
def getCommunicator(self):
return self.comm
def split(self, jobs):
assert jobs > 0
size = self.size
group_count = min(jobs, size)
while size % group_count:
group_count += 1
if group_count == 1:
(next, sub) = (NONE, self)
elif group_count == size:
(next, sub) = (self, NONE)
else:
rank = self.comm.Get_rank()
klass = type(self)
next = klass(self.comm.Split(rank // group_count, rank))
sub = klass(self.comm.Split(rank % group_count, rank))
return (next, sub)
def imap(self, f, s, chunksize=1):
comm = self.comm
(size, rank) = (comm.Get_size(), comm.Get_rank())
ordinals = range(0, len(s), size*chunksize)
# ensure same number of allgather calls in every process
for start in ordinals:
start += rank
local_results = UnFlattened([f(x) for x in s[start:start+chunksize]])
for results in comm.allgather(local_results):
# mpi4py allgather has a nasty inconsistancy about flattening
# lists of simple values
if isinstance(results, UnFlattened):
for result in results:
yield result
else:
yield results
# Helping MultiprocessingParallelContext map unpicklable functions
_FUNCTIONS = {}
class PicklableAndCallable(object):
def __init__(self, key):
self.key = key
self.func = None
def __call__(self, *args, **kw):
if self.func is None:
try:
self.func = _FUNCTIONS[self.key]
except KeyError:
raise RuntimeError
return self.func(*args, **kw)
class MultiprocessingParallelContext(ParallelContext):
"""At the outermost opportunity, this parallel context delegates all
work to a multiprocessing.Pool.
Subprocesses may also make pools if the outer pool is more than half idle.
Ideally the pool would be reused for later tasks, but cogent code mostly
uses map() with functions defined in local scopes, which are unpicklable,
so that is hacked around and pools are only ever used for one map() call"""
def __init__(self, size=None):
if size is None:
size = multiprocessing.cpu_count()
self.size = size
def getCommunicator(self):
return FAKE_MPI_COMM
def _subContext(self, size):
if size == 1:
return NONE
elif size == self.size:
return self
else:
return type(self)(size)
def split(self, jobs):
assert jobs > 0
group_count = min(self.size, jobs)
remaining = self.size // group_count
next = self._subContext(group_count)
sub = self._subContext(remaining)
return (next, sub)
def _initWorkerProcess(self):
from cogent.util import progress_display
progress_display.CURRENT.context = progress_display.NULL_CONTEXT
def imap(self, f, s, chunksize=1):
key = id(f)
_FUNCTIONS[key] = f
f = PicklableAndCallable(id(f))
pool = multiprocessing.Pool(self.size, self._initWorkerProcess)
for result in pool.imap(f, s, chunksize=chunksize):
yield result
del _FUNCTIONS[key]
pool.close()
class ContextStack(threading.local):
"""This singleton object holds the current and enclosing parallel contexts."""
def __init__(self):
# Because this is a thread.local, any secondary threads will see this
# default and so not attempt to use MPI/multiprocessing:
self.stack = []
self.top = NONE
def setInitial(self, context):
"""The real initialiser. Should be called once from the main thread."""
assert self.stack == [] and self.top is NONE
self.top = context
@contextmanager
def pushed(self, context):
"""Temporarily enter a pre-existing parallel context"""
self.stack.append(self.top)
try:
self.top = context
yield
finally:
self.top = self.stack.pop()
@contextmanager
def split(self, jobs=None):
"""Divide the available CPUs up into groups to handle 'jobs' independent
tasks. If jobs << CPUs so that there are multiple CPUS per job, leave
that reduced number of CPUs available to any nested parallelism
opportunities within each job"""
if jobs is None:
jobs = self.top.size
(next, sub) = self.top.split(jobs)
with self.pushed(sub):
yield next
def imap(self, f, s, chunksize=1):
"""Like itertools.imap(f,s) only parallel."""
chunks = (len(s)-1) // chunksize + 1
with self.split(chunks) as next:
for element in next.imap(f, s, chunksize=chunksize):
yield element
def map(self, f, s):
return list(self.imap(f, s))
def getCommunicator(self):
"""For code needing an MPI communicator interface. If not
using MPI this will be a dummy communicator of 1 CPU."""
return self.top.getCommunicator()
def getContext(self):
return self.top
CONTEXT = ContextStack()
if os.environ.get('COGENT_CPUS', False):
try:
cpus = int(os.environ['COGENT_CPUS'])
except ValueError:
cpus = None
else:
assert cpus > 0
else:
cpus = 1
if USING_MPI:
CONTEXT.setInitial(MPIParallelContext())
elif cpus > 1:
CONTEXT.setInitial(MultiprocessingParallelContext(cpus))
getContext = CONTEXT.getContext
getCommunicator = CONTEXT.getCommunicator
parallel_context = CONTEXT.pushed
split = CONTEXT.split
imap = CONTEXT.imap
map = CONTEXT.map
def use_multiprocessing(cpus=None):
CONTEXT.setInitial(MultiprocessingParallelContext(cpus))
def sync_random(r):
# Only matters with MPI
comm = getCommunicator()
state = comm.bcast(r.getstate(), 0)
r.setstate(state)
|