This file is indexed.

/usr/share/pyshared/cogent/util/table.py is in python-cogent 1.5.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
#!/usr/bin/env python
"""
A light-weight Table class for manipulating 2D data and representing it as text, or writing to file for import into other packages.

Current output formats include pickle (pythons serialisation format), restructured text (keyed by 'rest'), latex, html, delimited columns, and a simple text format.

Table can read pickled and delimited formats.

"""
from __future__ import division
import cPickle, csv
from gzip import GzipFile

import numpy
from cogent.format import table as table_format

from cogent.util.dict_array import DictArray

__author__ = "Gavin Huttley"
__copyright__ = "Copyright 2007-2011, The Cogent Project"
__credits__ = ["Gavin Huttley", "Felix Schill"]
__license__ = "GPL"
__version__ = "1.5.1"
__maintainer__ = "Gavin Huttley"
__email__ = "gavin.huttley@anu.edu.au"
__status__ = "Production"

# making reversed characters for use in reverse order sorting
_all_chrs = [chr(i) for i in range(256)]
_all_chrs.reverse()
_reversed_chrs = ''.join(_all_chrs)

def convert2DDict(twoDdict, header = None, row_order = None):
    """Returns a 2 dimensional list.
    
    Arguments:
        - twoDdict: a 2 dimensional dict with top level keys corresponding to
          column headings, lower level keys correspond to row headings but are
          not preserved.
        - header: series with column headings. If not provided, the sorted top
          level dict keys are used.
        - row_order: a specified order to generate the rows.
    """
    if not header:
        header = twoDdict.keys()
        header.sort()
    
    if not row_order: # we assume rows consistent across dict
        row_order = twoDdict[header[0]].keys()
        row_order.sort()
    
    # make twoD list
    table = []
    for row in row_order:
        string_row = []
        for column in header:
            string_row.append(twoDdict[column][row])
        table.append(string_row)
    return table

class _Header(list):
    """a convenience class for storing the Header"""
    def __new__(cls, arg):
        n = list.__new__(cls, list(arg))
        return n
    
    def __setslice__(self, *args):
        """disallowed"""
        raise RuntimeError("Table Header is immutable, use withNewHeader")
    
    def __setitem__(self, *args):
        """disallowed"""
        raise RuntimeError("Table Header is immutable, use withNewHeader")
    

class Table(DictArray):
    def __init__(self, header = None, rows = None, row_order = None, digits = 4,
                space = 4, title = '', missing_data = '', max_width = 1e100,
                row_ids = False, legend = '', column_templates = None,
                dtype = None):
        """
        Arguments:
        - header: column headings
        - rows: a 2D dict, list or tuple. If a dict, it must have column
          headings as top level keys, and common row labels as keys in each
          column.
        - row_order: the order in which rows will be pulled from the twoDdict
        - digits: floating point resolution
        - space: number of spaces between columns or a string
        - title: as implied
        - missing_data: character assigned if a row has no entry for a column
        - max_width: maximum column width for printing
        - row_ids: if True, the 0'th column is used as row identifiers and keys
          for slicing.
        - legend: table legend
        - column_templates: dict of column headings: string format templates
          or a function that will handle the formatting.
        - dtype: optional numpy array typecode.
        """
        try:
            num_cols = len(header)
            assert num_cols > 0
            if type(rows) == numpy.ndarray:
                assert num_cols == rows.shape[1]
            elif type(rows) == dict:
                assert num_cols == len(rows)
            else:
                assert num_cols == len(rows[0])
        except (IndexError, TypeError, AssertionError):
            raise RuntimeError("header and rows must be provided to Table")
        
        header = [str(head) for head in header]
        if isinstance(rows, dict):
            rows = convert2DDict(rows, header = header,
                                row_order = row_order)
        
        # if row_ids, we select that column as the row identifiers
        if row_ids:
            identifiers = [row[0] for row in rows]
        else:
            identifiers = len(rows)
        
        if not dtype:
            dtype = "O"
        DictArray.__init__(self, rows, identifiers, header, dtype = dtype)
        
        # forcing all column headings to be strings
        self._header = _Header([str(head) for head in header])
        self._missing_data = missing_data
        
        self.Title = str(title)
        self.Legend = str(legend)
        try:
            self.Space = ' ' * space
        except TypeError:
            self.Space = space
        self._digits = digits
        self._row_ids = row_ids
        self._max_width = max_width
        
        # some attributes are not preserved in any file format, so always based
        # on args
        self._column_templates = column_templates or {}
    
    def __str__(self):
        return self.tostring()
    
    def __getitem__(self, names):
        (index, remaining) = self.template.interpretIndex(names)
        # if we have two integers, return a single value
        ints = [isinstance(idx, int) for idx in index]
        if len(ints) == 2 and min(ints):
            return self.array[index]
        new_index = list(index)
        for i, idx in enumerate(new_index):
            if isinstance(idx, int):
                new_index[i] = slice(idx, idx+1, None)
            
        index = tuple(new_index)
        rows = self.array[index]
        result = None
        if len(index) > 1:
            header = numpy.asarray(self.Header, dtype="O")[index[1:]]
        else:
            header = self.Header
        if remaining is not None:
            kwargs = self._get_persistent_attrs()
            result = self.__class__(header, rows, **kwargs)
        return result
    
    def __getstate__(self):
        data = self._get_persistent_attrs()
        del(data['column_templates'])
        data.update(dict(header = self.Header, rows = self.getRawData()))
        return data
    
    def __setstate__(self, data):
        limit_ids = data.pop('limit_ids', None)
        if limit_ids is not None:
            data['row_ids'] = limit_ids or False
        new = Table(**data)
        self.__dict__.update(new.__dict__)
        return self
    
    def _get_header(self):
        """returns Header value"""
        return self._header
    
    def _set_header(self, data):
        """disallowed"""
        raise RuntimeError("not allowed to set the Header")
    
    Header = property(_get_header, _set_header)
    
    def withNewHeader(self, old, new, **kwargs):
        """returns a new Table with old header labels replaced by new
        
        Arguments:
            - old: the old column header(s). Can be a string or series of
              them.
            - new: the new column header(s). Can be a string or series of
              them.
        """
        if type(old) == str:
            old = [old]
            new = [new]
        
        assert len(old) == len(new), 'Mismatched number of old/new labels'
        indices = map(self.Header.index, old)
        new_header = list(self.Header)
        for i in range(len(old)):
            new_header[indices[i]] = new[i]
        
        kw = self._get_persistent_attrs()
        kw.update(kwargs)
        return Table(header = new_header, rows = self.getRawData(), **kw)
    
    def _get_persistent_attrs(self):
        kws = dict(row_ids = self._row_ids, title = self.Title,
                   legend = self.Legend, digits = self._digits,
                   space = self.Space, max_width = self._max_width,
                   missing_data = self._missing_data,
                   column_templates = self._column_templates or None)
        return kws
    
    def setColumnFormat(self, column_head, format_template):
        """Provide a formatting template for a named column.
        
        Arguments:
            - column_head: the column label.
            - format_template: string formatting template or a function that
              will handle the formatting.
        """
        assert column_head in self.Header, \
               "Unknown column heading %s" % column_head
        
        self._column_templates[column_head] = format_template
    
    def tostring(self, borders = True, sep = None, format = '', **kwargs):
        """Return the table as a formatted string.
        
        Arguments:
            - format: possible formats are 'rest', 'latex', 'html', 'phylip', or
              simple text (default)
            - sep: A string separator for delineating columns, e.g. ',' or '\t'.
              Overrides format.
        """
        if format.lower() == 'phylip':
            missing_data = "%.4f" % 0.0
        else:
            missing_data = self._missing_data
        
        # convert self to a 2D list
        formatted_table = self.array.tolist()
        header, formatted_table = table_format.formattedCells(formatted_table,
                                    self.Header,
                                    digits = self._digits,
                                    column_templates = self._column_templates,
                                    missing_data = missing_data)
        args = (header, formatted_table, self.Title, self.Legend)
        if sep:
            return table_format.separatorFormat(*args + (sep,))
        elif format == 'rest':
            return table_format.gridTableFormat(*args)
        elif format.endswith('tex'):
            caption = None
            if self.Title or self.Legend:
                caption = " ".join([self.Title or "", self.Legend or ""])
            return table_format.latex(formatted_table, header,
                                caption = caption, **kwargs)
        elif format == 'html':
            rest = table_format.gridTableFormat(*args)
            return table_format.html(rest)
        elif format == 'phylip':
            # need to eliminate row identifiers
            formatted_table = [row[self._row_ids:] for row in formatted_table]
            header = header[self._row_ids:]
            return table_format.phylipMatrix(formatted_table, header)
        else:
            return table_format.simpleFormat(*args + (self._max_width,
                                self._row_ids, borders, self.Space))
    
    def toRichHtmlTable(self, row_cell_func=None, header_cell_func=None,
                element_formatters={}, merge_identical=True, compact=True):
        """returns just the table html code.
        Arguments:
            - row_cell_func: callback function that formats the row values. Must
              take the row value and coordinates (row index, column index).
            - header_cell_func: callback function that formats the column headings
              must take the header label value and coordinate
            - element_formatters: a dictionary of specific callback funcs for
              formatting individual html table elements.
              e.g. {'table': lambda x: '<table border="1" class="docutils">'}
            - merge_identical: cells within a row are merged to one span.
        """
        formatted_table = self.array.tolist()
        header, formatted_table = table_format.formattedCells(formatted_table,
                                    self.Header,
                                    digits = self._digits,
                                    column_templates = self._column_templates,
                                    missing_data = self._missing_data)
        # but we strip the cell spacing
        header = [v.strip() for v in header]
        rows = [[c.strip() for c in r] for r in formatted_table]
        return table_format.rich_html(rows, row_cell_func=row_cell_func,
                                      header=header,
                                      header_cell_func=header_cell_func,
                                      element_formatters=element_formatters,
                                      compact=compact)
    
    def writeToFile(self, filename, mode = 'w', writer = None, format = None,
                 sep = None, compress=None, **kwargs):
        """Write table to filename in the specified format. If a format is not
        specified, it attempts to use a filename suffix. Note if a sep argument
        is provided, unformatted values are written to file in order to preserve
        numerical accuracy.
        
        Arguments:
            - mode: file opening mode
            - format: Valid formats are those of the tostring method plus
              pickle.
            - writer: a function for formatting the data for output.
            - sep: a character delimiter for fields.
            - compress: if True, gzips the file and appends .gz to the
              filename (if not already added).
        """
        compress = compress or filename.endswith('.gz')
        
        if compress:
            if not filename.endswith('.gz'):
                filename = '%s.gz' % filename
            mode = ['wb', mode][mode == 'w']
            outfile = GzipFile(filename, mode)
        else:
            outfile = file(filename, mode)
        
        if format is None:
            # try guessing from filename suffix
            if compress:
                index = -2
            else:
                index = -1
            suffix = filename.split('.')
            if len(suffix) > 1:
                format = suffix[index]
        
        if writer:
            rows = self.getRawData()
            rows.insert(0, self.Header[:])
            rows = writer(rows, has_header=True)
            outfile.writelines("\n".join(rows))
        elif format == 'pickle':
            data = self.__getstate__()
            cPickle.dump(data, outfile)
        elif sep is not None:
            writer = csv.writer(outfile, delimiter = sep)
            if self.Title:
                writer.writerow([self.Title])
            writer.writerow(self.Header)
            writer.writerows(self.array)
            if self.Legend:
                writer.writerow([self.Legend])
        else:
            table = self.tostring(format = format, **kwargs)
            outfile.writelines(table + '\n')
        outfile.close()
    
    def appended(self, new_column, *tables, **kwargs):
        """Append an arbitrary number of tables to the end of this one.
        Returns a new table object. Optional keyword arguments to the new
        tables constructor may be passed.
        
        Arguments:
            - new_column: provide a heading for the new column, each tables
            title will be placed in it. If value is false, the result is no
            additional column."""
        
        # convert series of tables
        if isinstance(tables[0], tuple) or isinstance(tables[0], list):
            tables = tuple(tables[0])
        # for each table, determine it's number of rows and create an equivalent
        # length vector of its title
        if new_column:
            header = [new_column] + self.Header
        else:
            header = self.Header
        
        big_twoD = ()
        table_series = (self,) + tables
        for table in table_series:
            # check compatible tables
            assert self.Header == table.Header, \
                   "Inconsistent tables -- column headings are not the same."
            new_twoD = []
            for row in table:
                if new_column:
                    new_twoD.append([table.Title] + row.asarray().tolist())
                else:
                    new_twoD.append(row.asarray().tolist())
            new_twoD = tuple(new_twoD)
            big_twoD += new_twoD
        kw = self._get_persistent_attrs()
        kw.update(kwargs)
        return Table(header, big_twoD, **kw)
    
    def getRawData(self, columns = None):
        """Returns raw data as a 1D or 2D list of rows from columns. If one
        column, its a 1D list.
        
        Arguments:
            - columns: if None, all data are returned"""
        
        if columns is None:
            return self.array.tolist()
        
        if isinstance(columns, str):
            # assumes all column headings are strings.
            columns = (columns,)
        
        column_indices = map(self.Header.index, columns)
        result = self.array.take(column_indices, axis=1)
        
        if len(columns) == 1:
            result = result.flatten()
        
        return result.tolist()
    
    def _callback(self, callback, row, columns=None, num_columns=None):
        if callable(callback):
            row_segment = row.take(columns)
            if num_columns == 1:
                row_segment = row_segment[0]
            return callback(row_segment)
        else:
            return eval(callback, {}, row)
    
    def filtered(self, callback, columns=None, **kwargs):
        """Returns a sub-table of rows for which the provided callback
        function returns True when passed row data from columns. Row data
        is a 1D list if more than one column, raw row[col] value otherwise.
        
        Arguments:
            - columns: the columns whose values determine whether a row is to
            be included.
            - callback: Can be a function, which takes the sub-row delimited
            by columns and returns True/False, or a string representing valid
            python code to be evaluated."""
        
        if isinstance(columns, str):
            columns = (columns,)
        
        if columns:
            num_columns = len(columns)
        else:
            num_columns = None
        
        row_indexes = []
        if not callable(callback):
            data = self
            cols = columns
        else:
            data = self.array
            cols = map(self.Header.index, columns)
        
        for rdex, row in enumerate(data):
            if self._callback(callback, row, cols, num_columns):
                row_indexes.append(rdex)
            
        sub_set = numpy.take(self, row_indexes, 0)
        
        kw = self._get_persistent_attrs()
        kw.update(kwargs)
        return Table(header = self.Header, rows = sub_set, **kw)
    
    def filteredByColumn(self, callback, **kwargs):
        """Returns a table with columns identified by callback
        
        Arguments:
            - callback: A function which takes the columns delimited
            by columns and returns True/False, or a string representing valid
            python code to be evaluated."""
        data = self.array.transpose()
        column_indices = []
        append = column_indices.append
        for index, row in enumerate(data):
            if callback(row):
                append(index)
        columns = numpy.take(self.Header, column_indices)
        return self.getColumns(columns, **kwargs)
    
    def count(self, callback, columns=None, **kwargs):
        """Returns number of rows for which the provided callback
        function returns True when passed row data from columns. Row data
        is a 1D list if more than one column, raw row[col] value otherwise.
        
        Arguments:
            - columns: the columns whose values determine whether a row is to
            be included.
            - callback: Can be a function, which takes the sub-row delimited
            by columns and returns True/False, or a string representing valid
            python code to be evaluated."""
        
        if isinstance(columns, str):
            columns = (columns,)
        
        if columns:
            num_columns = len(columns)
        else:
            num_columns = None
        
        count = 0
        if not callable(callback):
            data = self
            cols = columns
        else:
            data = self.array
            cols = map(self.Header.index, columns)
        
        for row in data:
            if self._callback(callback, row, cols, num_columns):
                count += 1
        return count
    
    def sorted(self, columns = None, reverse = None, **kwargs):
        """Returns a new table sorted according to columns order.
        
        Arguments:
            - columns: column headings, their order determines the sort order.
            - reverse: column headings, these columns will be reverse sorted.
            
            Either can be provided as just a single string, or a series of
            strings.
        """
        
        if columns is None:
            columns = self.Header
        elif isinstance(columns, str):
            columns = [columns]
        
        indices = [self.Header.index(col) for col in columns]
        
        if not reverse:
            is_reversed = [False] * len(columns)
            reverse_indices = []
        else:
            if type(reverse) == str:
                reverse = [reverse]
            reverse_indices = []
            for index, header_index in enumerate(indices):
                col = self.Header[header_index]
                if col in reverse:
                    reverse_indices += [index]
            
            is_reversed = [col in reverse for col in columns]
        
        reverse_indices = numpy.array(reverse_indices)
        
        dtypes = [(self.Header[i], self.array.dtype) for i in indices]
        
        # applying the decorate-sort-undecorate approach
        aux_list = self.array.take(indices, axis=1)
        
        # we figure out the casting funcs for any reversed elements
        cast = []
        for index in reverse_indices:
            val = aux_list[0, index]
            try:
                val = val.translate(_reversed_chrs)
                func = lambda x: x.translate(_reversed_chrs)
            except AttributeError:
                func = lambda x: x * -1
            func = numpy.vectorize(func)
            aux_list[:, index] = func(aux_list[:, index])
        
        aux_list = numpy.rec.fromarrays(aux_list.copy().T, dtype=dtypes)
        indices = aux_list.argsort()
        new_twoD = self.array.take(indices, axis=0)
        
        kw = self._get_persistent_attrs()
        kw.update(kwargs)
        return Table(header = self.Header, rows = new_twoD, **kw)
    
    def getColumns(self, columns, **kwargs):
        """Return a slice of columns"""
        # check whether we have integer columns
        
        if isinstance(columns, str):
            columns = [columns]
        
        is_int = min([isinstance(val, int) for val in columns])
        indexes = []
        if is_int:
            indexes = columns
        else:
            indexes = [self.Header.index(head) for head in columns]
        
        if self._row_ids:
            # we disallow reordering of identifiers, and ensure they are only
            # presented once
            for val in range(self._row_ids):
                try:
                    indexes.remove(val)
                except ValueError:
                    pass
            indexes = range(self._row_ids) + indexes
        
        columns = numpy.take(numpy.asarray(self.Header, dtype="O"),
                               indexes)
        new = numpy.take(self.array, indexes, axis=1)
        
        kw = self._get_persistent_attrs()
        kw.update(kwargs)
        return Table(header = columns, rows = new, **kw)
    
    def getDisjointRows(self, rows, **kwargs):
        """Return the nominated disjoint rows."""
        if isinstance(rows, str):
            rows = [rows]
        
        indexes = []
        for row in rows:
            idx, drop = self.template.interpretIndex(row)
            indexes.append(idx[0])
        
        new = self.array.take(indexes, axis=0)
        
        kw = self._get_persistent_attrs()
        kw.update(kwargs)
        return Table(header = self.Header, rows = new, **kw)
    
    def withNewColumn(self, new_column, callback, columns = None, **kwargs):
        """Returns a new table with an additional column, computed using
        callback.
        
        Arguments:
            - new_column: new column heading
            - columns: the columns whose values determine whether a row is to
            be included.
            - callback: Can be a function, which takes the sub-row delimited
            by columns and returns True/False, or a string representing valid
            python code to be evaluated."""
        
        if isinstance(columns, str):
            columns = (columns,)
        
        if columns is not None:
            num_columns = len(columns)
        else:
            num_columns = None
        
        if not callable(callback):
            data = self
            cols = columns
        else:
            data = self.array
            cols = map(self.Header.index, columns)
        
        twoD = [list(row) + [self._callback(callback, row, cols,
                num_columns)] for row in data]
        
        kw = self._get_persistent_attrs()
        kw.update(kwargs)
        return Table(header = self.Header + [new_column], rows = twoD, **kw)
    
    def getDistinctValues(self, column):
        """returns the set of distinct values for the named column(s)"""
        columns = [column, [column]][type(column) == str]
        data = self.getRawData(column)
        
        if len(columns) > 1:
            data = [tuple(row) for row in data]
        
        return set(data)
    
    def joined(self, other_table, columns_self=None, columns_other=None,
                inner_join=True, **kwargs):
        """returns a new table containing the join of this table and
        other_table. Default behaviour is the natural inner join. Checks for
        equality in the specified columns (if provided) or all columns; a
        combined row is included in the output if all indices match exactly. A
        combined row contains first the row of this table, and then columns
        from the other_table that are not key columns (i.e. not specified in
        columns_other). The order (of self, then other)
        is preserved. The column headers of the output are made unique by
        replacing the headers of other_table with
        <other_table.Title>_<other_table.Header>.
        
        Arguments:
            - other_table: A table object which will be joined with this
              table. other_table must have a title.
            - columns_self, columns_other: indices of key columns that will
              be compared in the join operation. Can be either column index,
              or a string matching the column header. The order matters, and
              the dimensions of columns_self and columns_other have to match.
              A row will be included in the output iff
              self[row][columns_self[i]]==other_table[row][columns_other[i]]
              for all i
            - inner_join: if False, the outer join of the two tables is
              returned.
        """
        
        if other_table.Title is None:
            raise RuntimeError, "Cannot join if a other_table.Title is None"
        elif self.Title == other_table.Title:
            raise RuntimeError, "Cannot join if a table.Title's are equal"
        
        columns_self = [columns_self,[columns_self]][type(columns_self)==str]
        columns_other = [columns_other,
                            [columns_other]][type(columns_other)==str]
        if not inner_join:
            assert columns_self is None and columns_other is None, "Cannot "\
                                "specify column indices for an outer join"
            columns_self = []
            columns_other = []
        
        if columns_self is None and columns_other is None:
            # we do the natural inner join
            columns_self=[]
            columns_other=[]
            for col_head in self.Header:
                if col_head in other_table.Header:
                    columns_self.append(self.Header.index(col_head))
                    columns_other.append(other_table.Header.index(col_head))
        elif columns_self is None or columns_other is None:
            # the same column labels will be used for both tables
            columns_self = columns_self or columns_other
            columns_other = columns_self or columns_other
        elif len(columns_self)!=len(columns_other):
            raise RuntimeError("Error during table join: key columns have "\
                  "different dimensions!")
        
        # create new 2d list for the output
        joined_table=[]
        
        #resolve column indices from Header, if necessary
        columns_self_indices=[]
        columns_other_indices=[]
        for col in columns_self:
            if type(col)==int:
                columns_self_indices.append(col)
            else:
                columns_self_indices.append(self.Header.index(col))
        
        for col in columns_other:
            if type(col)==int:
                columns_other_indices.append(col)
            else:
                columns_other_indices.append(other_table.Header.index(col))
        # create a mask of which columns of the other_table will end up in the
        # output
        output_mask_other=[]
        for col in range(0,len(other_table.Header)):
            if not (col in columns_other_indices):
                output_mask_other.append(col)
        # use a dictionary for the key lookup
        # key dictionary for other_table.
        # key is a tuple made from specified columns; data is the row index
        # for lookup...
        key_lookup={}
        row_index=0
        for row in other_table:
            #insert new entry for each row
            key=tuple([row[col] for col in columns_other_indices])
            if key in key_lookup:
                key_lookup[key].append(row_index)
            else:
                key_lookup[key]=[row_index]
            row_index=row_index+1
            
        for this_row in self:
            # assemble key for query of other_table
            key=tuple([this_row[col] for col in columns_self_indices])
            if key in key_lookup:
                for output_row_index in key_lookup[key]:
                    other_row=[other_table[output_row_index,c] \
                                                  for c in output_mask_other]
                    joined_table.append(list(this_row) + other_row)
        
        new_header=self.Header+[other_table.Title+"_"+other_table.Header[c] \
                                                  for c in output_mask_other]
        if not joined_table:
            # YUK, this is to stop dimension check in DictArray causing
            # failures
            joined_table = numpy.empty((0,len(new_header)))
        
        return Table(header=new_header, rows=joined_table, **kwargs)
    
    def summed(self, indices=None, col_sum=True, strict=True, **kwargs):
        """returns the sum of numerical values for column(s)/row(s)
        
        Arguments:
            - indices: column name(s) or indices or row indices
            - col_sum: sums values in the indicated column, the default. If
              False, returns the row sum.
            - strict: if False, ignores cells with non-numeric data in the
              column/row."""
        
        all = indices is None
        
        if type(indices) == str:
            assert col_sum, "Must use row integer indices"
            indices = self.Header.index(indices)
        elif type(indices) == int: # a single index
            indices = [indices]
        elif not all:
            raise RuntimeError("unknown indices type: %s" % indices)
        
        if not all:
            vals = self.array.take([indices], axis=[0,1][col_sum]).flatten()
            if strict:
                result = vals.sum()
            else:
                result = sum(v for v in vals if type(v)!=str)
        else:
            # a multi-rowed result
            if col_sum:
                vals = self.array
            else:
                vals = self.array.transpose() 
            
            if strict:
                result = vals.sum(axis=0).tolist()
            else:
                result = []
                append = result.append
                # we need to iterate over the elements to be summed, so we
                # have to transpose
                for row in vals.transpose():
                    try:
                        num = row.sum()
                    except TypeError:
                        num = sum(r for r in row if type(r) != str)
                    append(num)
            
        
        return result
    
    def normalized(self, by_row=True, denominator_func=None, **kwargs):
        """returns a table with elements expressed as a fraction according
        to the results from func
        
        Arguments:
            - by_row: normalisation done by row
            - denominator_func: a callback function that takes an array and
              returns a value to be used as the denominator. Default is sum."""
        
        if denominator_func:
            data = self.array
            if not by_row:
                data = data.transpose()
            denominators = [denominator_func(row) for row in data]
        else:
            denominators = self.summed(col_sum=not by_row)
        
        if by_row:
            values = self.array
        else:
            values = self.array.transpose()
        
        rows = [values[i]/denom for i, denom in enumerate(denominators)]
        rows = numpy.array(rows)
        
        if not by_row:
            rows = rows.transpose()
        
        return Table(header=self.Header, rows=rows, **kwargs)
    
    def transposed(self, new_column_name, select_as_header=None, **kwargs):
        """returns the transposed table.
        
        Arguments:
            - new_column_name: the existing header will become a column with
              this name
            - select_as_header: current column name containing data to be used
              as the header. Defaults to the first column.
        """
        select_as_header = select_as_header or self.Header[0]
        assert select_as_header in self.Header, \
                    '"%s" not in table Header' % select_as_header
        
        raw_data = self.getRawData()
        raw_data.insert(0, self.Header)
        transposed = numpy.array(raw_data, dtype='O')
        transposed = transposed.transpose()
        
        # indices for the header and non header rows
        header_index = self.Header.index(select_as_header)
        
        data_indices = range(0, header_index)+range(header_index+1,
                                                    len(transposed))
        
        header = list(numpy.take(transposed, [header_index], axis=0)[0])
        header = [new_column_name]+header[1:] # [1:] slice excludes old name
        rows = numpy.take(transposed, data_indices, axis=0)
        return Table(header=header, rows=rows, **kwargs)