/usr/share/pyshared/dolfin/fem/solving.py is in python-dolfin 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 | """This module provides a small Python layer on top of the C++
VariationalProblem/Solver classes as well as the solve function."""
# Copyright (C) 2011 Anders Logg
#
# This file is part of DOLFIN.
#
# DOLFIN is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# DOLFIN is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with DOLFIN. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Marie E. Rognes, 2011.
# Modified by Johan Hake, 2011.
#
# First added: 2011-06-22
# Last changed: 2011-11-10
__all__ = ["LinearVariationalProblem",
"LinearVariationalSolver",
"NonlinearVariationalProblem",
"NonlinearVariationalSolver",
"solve"]
# Import SWIG-generated extension module (DOLFIN C++)
import dolfin.cpp as cpp
# Import UFL
import ufl
# Local imports
from dolfin.fem.form import Form
from dolfin.fem.formmanipulations import derivative
# Problem classes need special handling since they involve JIT compilation
class LinearVariationalProblem(cpp.LinearVariationalProblem):
# Reuse C++ doc-string
__doc__ = cpp.LinearVariationalProblem.__doc__
def __init__(self, a, L, u, bcs=None,
form_compiler_parameters=None):
"""
Create linear variational problem a(u, v) = L(v).
An optional argument bcs may be passed to specify boundary
conditions.
Another optional argument form_compiler_parameters may be
specified to pass parameters to the form compiler.
"""
# Extract and check arguments
u = _extract_u(u)
bcs = _extract_bcs(bcs)
# Store input UFL forms and solution Function
self.a_ufl = a
self.L_ufl = L
self.u_ufl = u
# Store form compiler parameters
form_compiler_parameters = form_compiler_parameters or {}
self.form_compiler_parameters = form_compiler_parameters
# Wrap forms (and check if linear form L is empty)
if L.integrals() == ():
L = cpp.Form(1, 0)
else:
L = Form(L, form_compiler_parameters=form_compiler_parameters)
a = Form(a, form_compiler_parameters=form_compiler_parameters)
# Initialize C++ base class
cpp.LinearVariationalProblem.__init__(self, a, L, u, bcs)
class NonlinearVariationalProblem(cpp.NonlinearVariationalProblem):
# Reuse C++ doc-string
__doc__ = cpp.NonlinearVariationalProblem.__doc__
def __init__(self, F, u, bcs=None, J=None,
form_compiler_parameters=None):
"""
Create nonlinear variational problem F(u; v) = 0.
Optional arguments bcs and J may be passed to specify boundary
conditions and the Jacobian J = dF/du.
Another optional argument form_compiler_parameters may be
specified to pass parameters to the form compiler.
"""
# Extract and check arguments
u = _extract_u(u)
bcs = _extract_bcs(bcs)
# Store input UFL forms and solution Function
self.F_ufl = F
self.J_ufl = J
self.u_ufl = u
# Store form compiler parameters
form_compiler_parameters = form_compiler_parameters or {}
self.form_compiler_parameters = form_compiler_parameters
# Wrap forms
F = Form(F, form_compiler_parameters=form_compiler_parameters)
if J is not None:
J = Form(J, form_compiler_parameters=form_compiler_parameters)
# Initialize C++ base class
if J is None:
cpp.NonlinearVariationalProblem.__init__(self, F, u, bcs)
else:
cpp.NonlinearVariationalProblem.__init__(self, F, u, bcs, J)
# Solver classes are imported directly
from dolfin.cpp import LinearVariationalSolver, NonlinearVariationalSolver
from dolfin.fem.adaptivesolving import AdaptiveLinearVariationalSolver
from dolfin.fem.adaptivesolving import AdaptiveNonlinearVariationalSolver
# Solve function handles both linear systems and variational problems
def solve(*args, **kwargs):
"""Solve linear system Ax = b or variational problem a == L or F == 0.
The DOLFIN solve() function can be used to solve either linear
systems or variational problems. The following list explains the
various ways in which the solve() function can be used.
*1. Solving linear systems*
A linear system Ax = b may be solved by calling solve(A, x, b),
where A is a matrix and x and b are vectors. Optional arguments
may be passed to specify the solver method and preconditioner.
Some examples are given below:
.. code-block:: python
solve(A, x, b)
solve(A, x, b, "lu")
solve(A, x, b, "gmres", "ilu")
solve(A, x, b, "cg", "hypre_amg")
Possible values for the solver method and preconditioner depend
on which linear algebra backend is used and how that has been
configured.
To list all available LU methods, run the following command:
.. code-block:: python
list_lu_methods()
To list all available Krylov methods, run the following command:
.. code-block:: python
list_krylov_methods()
To list all available preconditioners, run the following command:
.. code-block:: python
list_preconditioners()
To list all available solver methods, including LU methods, Krylov
methods and, possibly, other methods, run the following command:
.. code-block:: python
list_solver_methods()
*2. Solving linear variational problems*
A linear variational problem a(u, v) = L(v) for all v may be
solved by calling solve(a == L, u, ...), where a is a bilinear
form, L is a linear form, u is a Function (the solution). Optional
arguments may be supplied to specify boundary conditions or solver
parameters. Some examples are given below:
.. code-block:: python
solve(a == L, u)
solve(a == L, u, bcs=bc)
solve(a == L, u, bcs=[bc1, bc2])
solve(a == L, u, bcs=bcs,
solver_parameters={"linear_solver": "lu"},
form_compiler_parameters={"optimize": True})
For available choices for the 'solver_parameters' kwarg, look at:
.. code-block:: python
info(LinearVariationalSolver.default_parameters(), 1)
*3. Solving nonlinear variational problems*
A nonlinear variational problem F(u; v) = 0 for all v may be
solved by calling solve(F == 0, u, ...), where the residual F is a
linear form (linear in the test function v but possibly nonlinear
in the unknown u) and u is a Function (the solution). Optional
arguments may be supplied to specify boundary conditions, the
Jacobian form or solver parameters. If the Jacobian is not
supplied, it will be computed by automatic differentiation of the
residual form. Some examples are given below:
.. code-block:: python
solve(F == 0, u)
solve(F == 0, u, bcs=bc)
solve(F == 0, u, bcs=[bc1, bc2])
solve(F == 0, u, bcs, J=J,
solver_parameters={"linear_solver": "lu"},
form_compiler_parameters={"optimize": True})
For available choices for the 'solver_parameters' kwarg, look at:
.. code-block:: python
info(NonlinearVariationalSolver.default_parameters(), 1)
*4. Solving linear/nonlinear variational problems adaptively
FIXME: Missing documentation for adaptive solve, add here.
"""
assert(len(args) > 0)
# Call adaptive solve if we get a tolerance
if "tol" in kwargs:
_solve_varproblem_adaptive(*args, **kwargs)
# Call variational problem solver if we get an equation (but not a tolerance)
elif isinstance(args[0], ufl.classes.Equation):
_solve_varproblem(*args, **kwargs)
# Default case, just call the wrapped C++ solve function
else:
return cpp.solve(*args)
def _solve_varproblem(*args, **kwargs):
"Solve variational problem a == L or F == 0"
# Extract arguments
eq, u, bcs, J, tol, M, form_compiler_parameters, solver_parameters \
= _extract_args(*args, **kwargs)
# Solve linear variational problem
if isinstance(eq.lhs, ufl.Form) and isinstance(eq.rhs, ufl.Form):
# Create problem
problem = LinearVariationalProblem(eq.lhs, eq.rhs, u, bcs,
form_compiler_parameters=form_compiler_parameters)
# Create solver and call solve
solver = LinearVariationalSolver(problem)
solver.parameters.update(solver_parameters)
solver.solve()
# Solve nonlinear variational problem
else:
# Create Jacobian if missing
if J is None:
cpp.info("No Jacobian form specified for nonlinear variational problem.")
cpp.info("Differentiating residual form F to obtain Jacobian J = F'.")
F = eq.lhs
J = derivative(F, u)
# Create problem
problem = NonlinearVariationalProblem(eq.lhs, u, bcs, J,
form_compiler_parameters=form_compiler_parameters)
# Create solver and call solve
solver = NonlinearVariationalSolver(problem)
solver.parameters.update(solver_parameters)
solver.solve()
def _solve_varproblem_adaptive(*args, **kwargs):
"Solve variational problem a == L or F == 0 adaptively"
# Extract arguments
eq, u, bcs, J, tol, M, form_compiler_parameters, solver_parameters \
= _extract_args(*args, **kwargs)
# Check that we received the goal functional
if M is None:
cpp.dolfin_error("solving.py",
"solve variational problem adaptively",
"Missing goal functional")
# Solve linear variational problem
if isinstance(eq.lhs, ufl.Form) and isinstance(eq.rhs, ufl.Form):
# Create problem
problem = LinearVariationalProblem(eq.lhs, eq.rhs, u, bcs,
form_compiler_parameters=form_compiler_parameters)
# Create solver and call solve
solver = AdaptiveLinearVariationalSolver(problem)
solver.parameters.update(solver_parameters)
solver.solve(tol, M)
# Solve nonlinear variational problem
else:
# Create Jacobian if missing
if J is None:
cpp.info("No Jacobian form specified for nonlinear variational problem.")
cpp.info("Differentiating residual form F to obtain Jacobian J = F'.")
F = eq.lhs
J = derivative(F, u)
# Create problem
problem = NonlinearVariationalProblem(eq.lhs, u, bcs, J,
form_compiler_parameters=form_compiler_parameters)
# Create solver and call solve
solver = AdaptiveNonlinearVariationalSolver(problem)
solver.parameters.update(solver_parameters)
solver.solve(tol, M)
def _extract_args(*args, **kwargs):
"Common extraction of arguments for _solve_varproblem[_adaptive]"
# Check for use of valid kwargs
valid_kwargs = ["bcs", "J", "tol", "M",
"form_compiler_parameters", "solver_parameters"]
for kwarg in kwargs.iterkeys():
if not kwarg in valid_kwargs:
cpp.dolfin_error("solving.py",
"solve variational problem",
"Illegal keyword argument \"%s\"; valid keywords are %s" % \
(kwarg,
", ".join("\"%s\"" % kwarg for kwarg in valid_kwargs)))
# Extract equation
if not len(args) >= 2:
cpp.dolfin_error("solving.py",
"solve variational problem",
"Missing arguments, expecting solve(lhs == rhs, "\
"u, bcs=bcs), where bcs is optional")
if len(args) > 3:
cpp.dolfin_error("solving.py",
"solve variational problem",
"Too many arguments, expecting solve(lhs == rhs, "\
"u, bcs=bcs), where bcs is optional")
# Extract equation
eq = _extract_eq(args[0])
# Extract solution function
u = _extract_u(args[1])
# Extract boundary conditions
if len(args) > 2:
bcs = _extract_bcs(args[2])
elif "bcs" in kwargs:
bcs = _extract_bcs(kwargs["bcs"])
else:
bcs = []
# Extract Jacobian
J = kwargs.get("J", None)
if J is not None and not isinstance(J, ufl.Form):
cpp.dolfin_error("solving.py",
"solve variational problem",
"Expecting Jacobian J to be a UFL Form")
# Extract tolerance
tol = kwargs.get("tol", None)
if tol is not None and not (isinstance(tol, (float, int)) and tol >= 0.0):
cpp.dolfin_error("solving.py",
"solve variational problem",
"Expecting tolerance tol to be a non-negative number")
# Extract functional
M = kwargs.get("M", None)
if M is not None and not isinstance(M, ufl.Form):
cpp.dolfin_error("solving.py",
"solve variational problem",
"Expecting goal functional M to be a UFL Form")
# Extract parameters
form_compiler_parameters = kwargs.get("form_compiler_parameters", {})
solver_parameters = kwargs.get("solver_parameters", {})
return eq, u, bcs, J, tol, M, form_compiler_parameters, solver_parameters
def _extract_eq(eq):
"Extract and check argument eq"
if not isinstance(eq, ufl.classes.Equation):
cpp.dolfin_error("solving.py",
"solve variational problem",
"Expecting first argument to be an Equation")
return eq
def _extract_u(u):
"Extract and check argument u"
if not isinstance(u, cpp.Function):
cpp.dolfin_error("solving.py",
"solve variational problem",
"Expecting second argument to be a Function")
return u
def _extract_bcs(bcs):
"Extract and check argument bcs"
if bcs is None:
bcs = []
elif not isinstance(bcs, (list, tuple)):
bcs = [bcs]
for bc in bcs:
if not isinstance(bc, cpp.BoundaryCondition):
cpp.dolfin_error("solving.py",
"solve variational problem",
"Unable to extract boundary condition arguments")
return bcs
|