/usr/share/pyshared/ipalib/dn.py is in python-freeipa 2.1.4-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 | # Authors:
# John Dennis <jdennis@redhat.com>
#
# Copyright (C) 2011 Red Hat
# see file 'COPYING' for use and warranty information
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from ldap.dn import str2dn, dn2str
from ldap import DECODING_ERROR
import codecs
import sys
utf8_codec = codecs.lookup('utf-8')
__all__ = ['AVA', 'RDN', 'DN']
'''
Goal
----
To allow a Python programmer the ability to operate on DN's
(Distinguished Names) in a simple intuitive manner supporting all the
Pythonic mechanisms for manipulating objects such that the simple
majority case remains simple with simple code, yet the corner cases
are fully supported. With the result both simple and complex cases are
100% correct.
This is achieved with a fair of amount of syntax sugar which is best
described as "Do What I Mean" (i.e. DWIM). The class implementations
take simple expressions and internally convert them to their more
complex full definitions hiding much of the complexity from the
programmer.
Anatomy of a DN
---------------
Some definitions:
AVA
An AVA is an Attribute Value Assertion. In more simple terms it's
an attribute value pair typically expressed as attr=value
(e.g. cn=Bob). Both the attr and value in an AVA when expressed in
a string representation are subject to encoding rules.
RDN
A RDN is a Relative Distinguished Name. A RDN is a non-empty set of
AVA's. In the common case a RDN is single valued consisting of 1
AVA (e.g. cn=Bob). But a RDN may be multi-valued consisting of
more than one AVA. Because the RDN is a set of AVA's the AVA's are
unordered when they appear in a multi-valued RDN. In the string
representation of a RDN AVA's are separated by the plus sign (+).
DN
A DN is a ordered sequence of 1 or more RDN's. In the string
representation of a DN each RDN is separated by a comma (,)
Thus a DN is:
Sequence of set of <encoded attr, encoded value> pairs
The following are valid DN's
# 1 RDN with 1 AVA (e.g. cn=Bob)
RDN(AVA)
# 2 RDN's each with 1 AVA (e.g. cn=Bob,dc=redhat.com)
RDN(AVA),RDN(AVA)
# 2 RDN's the first RDN is multi-valued with 2 AVA's
# the second RDN is singled valued with 1 AVA
# (e.g. cn=Bob+ou=people,dc=redhat.com
RDN({AVA,AVA}),RDN(AVA)
Common programming mistakes
---------------------------
DN's present a pernicious problem for programmers. They appear to have
a very simple string format in the majority case, a sequence of
attr=value pairs separated by commas. For example:
dn='cn=Bob,ou=people,dc=redhat,dc=com'
As such there is a tendency to believe you can form DN's by simple
string manipulations such as:
dn='%s=%s' % ('cn','Bob') + ',ou=people,dc=redhat,dc=com'
Or to extract a attr & value by searching the string, for example:
attr=dn[0 : dn.find('=')]
value=dn[dn.find('=')+1 : dn.find(',')]
Or compare a value returned by an LDAP query to a known value:
if value == 'Bob'
All of these simple coding assumptions are WRONG and will FAIL when a
DN is not one of the simple DN's (simple DN's are probably the 95% of
all DN's). This is what makes DN handling pernicious. What works in
95% of the cases and is simple, fails for the 5% of DN's which are not
simple.
Examples of where the simple assumptions fail are:
* A RDN may be multi-valued
* A multi-valued RDN has no ordering on it's components
* Attr's and values must be UTF-8 encoded
* String representations of AVA's, RDN's and DN's must be completely UTF-8
* An attr or value may have reserved characters which must be escaped.
* Whitespace needs special handling
To complicate matters a bit more the RFC for the string representation
of DN's (RFC 4514) permits a variety of different syntax's each of
which can evaluate to exactly the same DN but have different string
representations. For example, the attr "r,w" which contains a reserved
character (the comma) can be encoded as a string in these different
ways:
'r\,w' # backslash escape
'r\2cw' # hexadecimal ascii escape
'#722C77' # binary encoded
It should be clear a DN string may NOT be a simple string, rather a DN
string is ENCODED. For simple strings the encoding of the DN is
identical to the simple string value (this common case leads to
erroneous assumptions and bugs because it does not account for
encodings).
The openldap library we use at the client level uses the backslash
escape form. The LDAP server we use uses the hexadecimal ascii escape
form. Thus 'r,w' appears as 'r\,w' when sent from the client to the
LDAP server as part of a DN. But when it's returned as a DN from the
server in an LDAP search it's returned as 'r\2cw'. Any attempt to
compare 'r\,w' to 'r\2cw' for equality will fail despite the fact they
are indeed equal once decoded. Such a test fails because you're
comparing two different encodings of the same value. In MIME you
wouldn't expect the base64 encoding of a string to be equal to the
same string encoded as quoted-printable would you?
When you are comparing attrs or values which are part of a DN and
other string you MUST:
* Know if either of the strings have been encoded and make sure you're
comparing only decoded components component-wise.
* Extract the component from the DN and decode it. You CANNOT decode
the entire DN as a string and operate on it. Why? Consider a value
with a comma embedded in it. For example:
cn=r\2cw,cn=privilege
Is a DN with 2 RDN components: cn=r,w followed by "cn=privilege"
But if you decode the entire DN string as a whole you would get:
cn=r,w,cn=privilege
Which is a malformed DN with 3 RDN's, the 2nd RDN is invalid.
* Determine if a RDN is multi-valued, if so you must account
for the fact each AVA component in the multi-valued RDN can appear
in any order and still be equivalent. For example the following two
RDN's are equal:
cn=Bob+ou=people
ou=people+cn=Bob
In addition each AVA (cn=Bob & ou=people) needs to be
INDEPENDENTLY decoded prior to comparing the unordered set of AVA's
in the multi-valued RDN.
If you are trying to form a new DN or RDN from a raw string you cannot
simply do string concatenation or string formatting unless you ESCAPE
the components independently prior to concatenation, for example:
base = 'dc=redhat,dc=com'
value = 'r,w'
dn = 'cn=%s,%s' % (value, base)
Will result in the malformed DN 'cn=r,w,dc=redhat,dc=com'
Syntax Sugar
------------
The majority of DN's have a simple string form:
attr=value,attr=value
We want the programmer to be able to create DN's, compare them, and
operate on their components as simply and concisely as possible so
the classes are implemented to provide a lot of syntax sugar.
The classes automatically handle UTF-8 <-> Unicode conversions. Every
attr and value which is returned from a class will be Unicode. Every
attr and value assigned into an object will be promoted to
Unicode. All string representations in RFC 4514 format will be UTF-8
and properly escaped. Thus at the "user" or "API" level every string
is Unicode with the single exception that the str() method returns RFC
compliant escaped UTF-8.
RDN's are assumed to be single-valued. If you need a multi-valued RDN
(an exception) you must explicitly create a multi-valued RDN.
Thus DN's are assumed to be a sequence of attr, value pairs, which is
equivalent to a sequence of RDN's. The attr and value in the pair MUST
be strings.
The DN and RDN constructors take a sequence, the constructor parses
the sequence to find items it knows about.
The DN constructor will accept in it's sequence:
* tuple of 2 strings, converting it to an RDN
* list of 2 strings, converting it to an RDN
* a RDN object
* a DN syntax string (e.g. 'cn=Bob,dc=redhat.com')
Note DN syntax strings should be avoided if possible when passing to a
constructor because they run afoul of the problems outlined above
which the DN, RDN & AVA classes are meant to overcome. But sometimes a
DN syntax string is all you have to work with. DN strings which come
from a LDAP library or server will be properly formed and it's safe to
use those. However DN strings provided via user input should be
treated suspiciously as they may be improperly formed. You can test
for this by passing the string to the DN constructor and see if it
throws an exception.
The sequence passed to the DN constructor takes each item in order,
produces one or more RDN's from it and appends those RDN in order to
its internal RDN sequence.
For example:
DN(('cn', 'Bob'), ('dc', 'redhat.com'))
This is equivalent to the DN string:
cn=Bob,dc=redhat.com
And is exactly equal to:
DN(RDN(AVA('cn','Bob')),RDN(AVA('dc','redhat.com')))
The following are alternative syntax's which are all exactly
equivalent to the above example.
DN(['cn', 'Bob'], ['dc', 'redhat.com'])
DN(RDN('cn', 'Bob'), RDN('dc', 'redhat.com'))
You can provide a properly escaped string representation.
DN('cn=Bob,dc=redhat.com')
You can mix and match any of the forms in the constructor parameter
list.
DN(('cn', 'Bob'), 'dc=redhat.com')
DN(('cn', 'Bob'), RDN('dc', 'redhat.com'))
AVA's have an attr and value property, thus if you have an AVA
# Get the attr and value
ava.attr -> u'cn'
ava.value -> u'Bob'
# Set the attr and value
ava.attr = 'cn'
ava.value = 'Bob'
Since RDN's are assumed to be single valued, exactly the same
behavior applies to an RDN. If the RDN is multi-valued then the attr
property returns the attr of the first AVA, likewise for the value.
# Get the attr and value
rdn.attr -> u'cn'
rdn.value -> u'Bob'
# Set the attr and value
rdn.attr = 'cn'
rdn.value = 'Bob'
Also RDN's can be indexed by name or position (see the RDN class doc
for details).
rdn['cn'] -> u'Bob'
rdn[0] -> AVA('cn', 'Bob')
A DN is a sequence of RDN's, as such any of Python's container
operators can be applied to a DN in a intuitive way.
# How many RDN's in a DN?
len(dn)
# WARNING, this a count of RDN's not how characters there are in the
# string representation the dn, instead that would be:
len(str(dn))
# Iterate over each RDN in a DN
for rdn in dn:
# Get the first RDN in a DN
dn[0] -> RDN('cn', 'Bob')
# Get the value of the first RDN in a DN
dn[0].value -> u'Bob'
# Get the value of the first RDN by indexing by attr name
dn['cn'] -> u'Bob'
# WARNING, when a string is used as an index key the FIRST RDN's value
# in the sequence whose attr matches the key is returned. Thus if you
# have a DN like this "cn=foo,cn=bar" then dn['cn'] will always return
# 'foo' even though there is another attr with the name 'cn'. This is
# almost always what the programmer wants. See the class doc for how
# you can override this default behavior and get a list of every value
# whose attr matches the key.
# Set the first RDN in the DN (all are equivalent)
dn[0] = ('cn', 'Bob')
dn[0] = ['cn', 'Bob']
dn[0] = RDN('cn', 'Bob')
dn[0].attr = 'cn'
dn[0].value = 'Bob'
# Get the first two RDN's using slices
dn[0:2]
# Get the last two RDN's using slices
dn[-2:]
# Get a list of all RDN's using slices
dn[:]
# Set the 2nd and 3rd RDN using slices (all are equivalent)
dn[1:3] = ('cn', 'Bob), ('dc', 'redhat.com')
dn[1:3] = RDN('cn', 'Bob), RDN('dc', 'redhat.com')
String representations and escapes:
# To get an RFC compliant string representation of a DN, RDN or AVA
# simply call str() on it or evaluate it in a string context.
str(dn) -> 'cn=Bob,dc=redhat.com'
# When working with attr's and values you do not have to worry about
# escapes, simply use the raw unescaped string in a natural fashion.
rdn = RDN('cn', 'r,w')
# Thus:
rdn.value == 'r,w' -> True
# But:
str(rdn) == 'cn=r,w' -> False
# Because:
str(rdn) -> 'cn=r\2cw' or 'cn='r\,w' # depending on the underlying LDAP library
Equality and Comparing:
# All DN's, RDN's and AVA's support equality testing in an intuitive
# manner.
dn1 = DN(('cn', 'Bob'))
dn2 = DN(RDN('cn', 'Bob'))
dn1 == dn2 -> True
dn1[0] == dn2[0] -> True
dn1[0].value = 'Bobby'
dn1 == dn2 -> False
DN objects implement startswith(), endswith() and the "in" membership
operator. You may pass a DN or RDN object to these. Examples:
if dn.endswith(base_dn):
if dn.startswith(rdn1):
if container_dn in dn:
# See the class doc for how DN's, RDN's and AVA's compare
# (e.g. cmp()). The general rule is for objects supporting multiple
# values first their lengths are compared, then if the lengths match
# the respective components of each are pair-wise compared until one
# is discovered to be non-equal. The comparision is case insensitive.
Concatenation and In-Place Addition:
# DN's and RDN's can be concatenated.
# Return a new DN by appending the RDN's of dn2 to dn1
dn3 = dn1 + dn2
# Append a RDN to DN's RDN sequence (all are equivalent)
dn += ('cn', 'Bob')
dn += RDN('cn', 'Bob')
# Append a DN to an existing DN
dn1 += dn2
Finally see the unittest for a more complete set of ways you can
manipulate these objects.
'''
def _adjust_indices(start, end, length):
'helper to fixup start/end slice values'
if end > length:
end = length
elif end < 0:
end += length
if end < 0:
end = 0
if start < 0:
start += length
if start < 0:
start = 0
return start, end
class AVA(object):
'''
AVA(arg0, ...)
An AVA is an LDAP Attribute Value Assertion. It is convenient to think of
AVA's as a <attr,value> pair. AVA's are members of RDN's (Relative
Distinguished Name).
The AVA constructor is passed a sequence of args and a set of
keyword parameters used for configuration.
The arg sequence may be:
1) With 2 string (or unicode) arguments, the first argument will be the
attr, the 2nd the value.
2) With a sigle list or tuple argument containing exactly 2 string (or unicode
members), the first member is the attr and the second is the value.
3) With a single string (or unicode) argument, in this case the string will
be interpretted using the DN syntax described in RFC 4514 to yield a AVA
<attr,value> pair. The parsing recognizes the DN syntax escaping rules.
For example:
ava = AVA('cn', 'Bob') # case 1: two strings
ava = AVA(('cn', 'Bob')) # case 2: 2-valued tuple
ava = AVA(['cn', 'Bob']) # case 2: 2-valued list
ava = AVA('cn=Bob') # case 3: DN syntax
AVA object have two properties for accessing their data:
attr: the attribute name, cn in our exmaple
value: the attribute's value, Bob in our example
When attr and value are returned they will always be unicode. When
attr or value are set they will be promoted to unicode.
AVA objects support indexing by name, e.g.
ava['cn']
returns the value (Bob in our example). If the index does key does not match
the attr then a KeyError will be raised.
AVA objects support equality testing and comparsion (e.g. cmp()). When they
are compared the attr is compared first, if the 2 attr's are equal then the
values are compared. The comparision is case insensitive (because attr's map
to numeric OID's and their values derive from from the 'name' atribute type
(OID 2.5.4.41) whose EQUALITY MATCH RULE is caseIgnoreMatch.
The str method of an AVA returns the string representation in RFC 4514 DN
syntax with proper escaping.
'''
flags = 0
def __init__(self, *args, **kwds):
if len(args) == 1:
arg = args[0]
if isinstance(arg, basestring):
try:
rdns = str2dn(arg.encode('utf-8'))
except DECODING_ERROR:
raise ValueError("malformed AVA string = \"%s\"" % arg)
if len(rdns) != 1:
raise ValueError("multiple RDN's specified by \"%s\"" % (arg))
rdn = rdns[0]
if len(rdn) != 1:
raise ValueError("multiple AVA's specified by \"%s\"" % (arg))
ava = rdn[0]
elif isinstance(arg, (tuple, list)):
ava = arg
if len(ava) != 2:
raise ValueError("tuple or list must be 2-valued, not \"%s\"" % (ava))
else:
raise TypeError("with 1 argument, argument must be str,unicode,tuple or list, got %s instead" % \
arg.__class__.__name__)
attr = ava[0]
value = ava[1]
elif len(args) == 2:
attr = args[0]
value = args[1]
else:
raise TypeError("takes 1 or 2 arguments (%d given)" % (len(args)))
if not isinstance(attr, basestring):
raise TypeError("attr must be basestring, got %s instead" % attr.__class__.__name__)
if not isinstance(value, basestring):
raise TypeError("value must be basestring, got %s instead" % value.__class__.__name__)
self.attr = attr
self.value = value
def _get_attr(self):
return self._attr_unicode
def _set_attr(self, new_attr):
if not isinstance(new_attr, basestring):
raise TypeError("attr must be basestring, got %s instead" % new_attr.__class__.__name__)
if isinstance(new_attr, unicode):
self._attr_unicode = new_attr
else:
self._attr_unicode = utf8_codec.decode(new_attr)[0]
attr = property(_get_attr, _set_attr)
def _get_value(self):
return self._value_unicode
def _set_value(self, new_value):
if not isinstance(new_value, basestring):
raise TypeError("value must be basestring, got %s instead" % new_value.__class__.__name__)
if isinstance(new_value, unicode):
self._value_unicode = new_value
else:
self._value_unicode = utf8_codec.decode(new_value)[0]
value = property(_get_value, _set_value)
def _to_openldap(self):
return [[(self._attr_unicode.encode('utf-8'), self._value_unicode.encode('utf-8'), self.flags)]]
def __str__(self):
return dn2str(self._to_openldap())
def __getitem__(self, key):
if isinstance(key, basestring):
if key == self._attr_unicode:
return self._value_unicode
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
raise TypeError("unsupported type for AVA indexing, must be basestring; not %s" % \
(key.__class__.__name__))
def __eq__(self, other):
'''
The attr comparison is case insensitive because attr is
really an LDAP attribute type which means it's specified with
an OID (dotted number) and not a string. Since OID's are
numeric the human readable name which maps to the OID is not
significant in case.
The value comparison is also case insensitive because the all
attribute types used in a DN are derived from the 'name'
atribute type (OID 2.5.4.41) whose EQUALITY MATCH RULE is
caseIgnoreMatch.
'''
if not isinstance(other, self.__class__):
raise TypeError("expected AVA but got %s" % (other.__class__.__name__))
return self._attr_unicode.lower() == other.attr.lower() and \
self._value_unicode.lower() == other.value.lower()
def __cmp__(self, other):
'comparision is case insensitive, see __eq__ doc for explanation'
if not isinstance(other, self.__class__):
raise TypeError("expected AVA but got %s" % (other.__class__.__name__))
result = cmp(self._attr_unicode.lower(), other.attr.lower())
if result != 0:
return result
result = cmp(self._value_unicode.lower(), other.value.lower())
return result
class RDN(object):
'''
RDN(arg0, ..., first_key_match=True)
An RDN is a LDAP Relative Distinguished Name. RDN's are members of DN's
(Distinguished Name). An RDN contains 1 or more AVA's. If the RDN contains
more than one AVA it is said to be a multi-valued RDN. When an RDN is
multi-valued the AVA's are unorderd comprising a set. However this
implementation orders the AVA's according to the AVA comparison function to
make equality and comparison testing easier. Think of this a canonical
normalization (however LDAP does not impose any ordering on multiple AVA's
within an RDN). Single valued RDN's are the norm and thus the RDN
constructor has simple syntax for them.
The RDN constructor is passed a sequence of args and a set of
keyword parameters used for configuration.
The constructor iterates though the sequence and adds AVA's to the RDN.
The arg sequence may be:
* A 2-valued tuple or list denotes the <attr,value> pair of an AVA. The
first member is the attr and the second member is the value, both members
must be strings (or unicode). The tuple or list is passed to the AVA
constructor and the resulting AVA is added to the RDN. Multiple tuples or
lists may appear in the argument list, each adds one additional AVA to the
RDN.
* A single string (or unicode) argument, in this case the string will
be interpretted using the DN syntax described in RFC 4514 to yield one or
more AVA <attr,value> pairs. The parsing recognizes the DN syntax escaping
rules.
* A AVA object, the AVA will be copied into the new RDN respecting
the constructors keyword configuration parameters.
* A RDN object, the AVA's in the RDN are copied into the new RDN
respecting the constructors keyword configuration parameters.
Single AVA Examples:
RDN(('cn', 'Bob')) # tuple yields 1 AVA
RDN('cn=Bob') # DN syntax with 1 AVA
RDN(AVA('cn', 'Bob')) # AVA object adds 1 AVA
Multiple AVA Examples:
RDN(('cn', 'Bob'),('ou', 'people')) # 2 tuples yields 2 AVA's
RDN('cn=Bob+ou=people') # DN syntax with 2 AVA's
RDN(AVA('cn', 'Bob'),AVA('ou', 'people')) # 2 AVA objects adds 2 AVA's
RDN(('cn', 'Bob'), 'ou=people') # 2 args, 1st tuple forms 1 AVA,
# 2nd DN syntax string adds 1 AVA,
# 2 AVA's in total
Note: The RHS of a slice assignment is interpreted exactly in the
same manner as the constructor argument list (see above examples).
RDN objects support iteration over their AVA members. You can iterate all
AVA members via any Python iteration syntax. RDN objects support full Python
indexing using bracket [] notation. Examples:
len(rdn) # return the number of AVA's
rdn[0] # indexing the first AVA
rdn['cn'] # index by AVA attr, returns AVA value
for ava in rdn: # iterate over each AVA
rdn[:] # a slice, in this case a copy of each AVA
WARNING: When indexing by attr (e.g. rdn['cn']) there is a possibility more
than one AVA has the same attr name as the index key. The default behavior
is to return the value of the first AVA whose attr matches the index
key. This behavior can be modified by setting the first_key_match property
to false in the RDN object. If first_key_match is False a list of all values
will be returned instead. The first_key_match behavior is the default and is
useful because duplicate attr names in multi-valued RDN's are rare. We seek
the most useful common case for programmer friendliness, but you should be
aware of the caveat.
RDN objects support the AVA attr and value properties as another programmer
convenience because the vast majority of RDN's are single valued. The attr
and value properties return the attr and value properties of the first AVA
in the RDN, for example:
rdn = RDN(('cn', 'Bob')) # rdn has 1 AVA whose attr == 'cn' and value == 'Bob'
len(rdn) -> 1
rdn.attr -> u'cn' # exactly equivalent to rdn[0].attr
rdn.value -> u'Bob' # exactly equivalent to rdn[0].value
When attr and value are returned they will always be unicode. When
attr or value are set they will be promoted to unicode.
If an RDN is multi-valued the attr and value properties still return only
the first AVA's properties, programmer beware! Recall the AVA's in the RDN
are sorted according the to AVA collating semantics.
RDN objects support equality testing and comparision. See AVA for the
definition of the comparision method.
RDN objects support concatenation and addition with other RDN's or AVA's
rdn1 + rdn2 # yields a new RDN object with the contents of each RDN.
rdn1 + ava1 # yields a new RDN object with the contents of rdn1 and ava1
RDN objects can add AVA's objects via in-place addition.
rdn1 += rdn2 # rdn1 now contains the sum of rdn1 and rdn2
rdn1 += ava1 # rdn1 has ava1 added to it.
The str method of an RDN returns the string representation in RFC 4514 DN
syntax with proper escaping.
'''
flags = 0
def __init__(self, *args, **kwds):
self.first_key_match = kwds.get('first_key_match', True)
self.avas = self._avas_from_sequence(args)
self.avas.sort()
def _ava_from_value(self, value):
if isinstance(value, AVA):
return AVA(value.attr, value.value)
elif isinstance(value, RDN):
avas = []
for ava in value.avas:
avas.append(AVA(ava.attr, ava.value))
if len(avas) == 1:
return avas[0]
else:
return avas
elif isinstance(value, basestring):
try:
rdns = str2dn(value.encode('utf-8'))
if len(rdns) != 1:
raise ValueError("multiple RDN's specified by \"%s\"" % (value))
rdn = rdns[0]
if len(rdn) == 1:
return AVA(rdn[0][0], rdn[0][1])
else:
avas = []
for ava_tuple in rdn:
avas.append(AVA(ava_tuple[0], ava_tuple[1]))
return avas
except DECODING_ERROR:
raise ValueError("malformed RDN string = \"%s\"" % value)
elif isinstance(value, (tuple, list)):
if len(value) != 2:
raise ValueError("tuple or list must be 2-valued, not \"%s\"" % (value))
return AVA(value)
else:
raise TypeError("must be str,unicode,tuple, or AVA, got %s instead" % \
value.__class__.__name__)
def _avas_from_sequence(self, seq):
avas = []
for item in seq:
ava = self._ava_from_value(item)
if isinstance(ava, list):
avas.extend(ava)
else:
avas.append(ava)
return avas
def _to_openldap(self):
return [[(ava.attr.encode('utf-8'), ava.value.encode('utf-8'), self.flags) for ava in self.avas]]
def __str__(self):
return dn2str(self._to_openldap())
def _next(self):
for ava in self.avas:
yield ava
def __iter__(self):
return self._next()
def __len__(self):
return len(self.avas)
def __getitem__(self, key):
if isinstance(key, (int, long, slice)):
return self.avas[key]
elif isinstance(key, basestring):
if self.first_key_match:
for ava in self.avas:
if key == ava.attr:
return ava.value
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
avas = []
for ava in self.avas:
if key == ava.attr:
avas.append(ava.value)
if len(avas) > 0:
return avas
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
raise TypeError("unsupported type for RDN indexing, must be int, basestring or slice; not %s" % \
(key.__class__.__name__))
def __setitem__(self, key, value):
if isinstance(key, (int, long)):
new_ava = self._ava_from_value(value)
if isinstance(new_ava, list):
raise TypeError("cannot assign multiple AVA's to single entry")
self.avas[key] = new_ava
elif isinstance(key, slice):
avas = self._avas_from_sequence(value)
self.avas[key] = avas
elif isinstance(key, basestring):
new_ava = self._ava_from_value(value)
if isinstance(new_ava, list):
raise TypeError("cannot assign multiple AVA's to single entry")
found = False
i = 0
while i < len(self.avas):
if key == self.avas[i].attr:
found = True
self.avas[i] = new_ava
if self.first_key_match:
break
i += 1
if not found:
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
raise TypeError("unsupported type for RDN indexing, must be int, basestring or slice; not %s" % \
(key.__class__.__name__))
self.avas.sort()
def _get_attr(self):
if len(self.avas) == 0:
raise IndexError("No AVA's in this RDN")
return self.avas[0].attr
def _set_attr(self, new_attr):
if len(self.avas) == 0:
raise IndexError("No AVA's in this RDN")
if not isinstance(new_attr, basestring):
raise TypeError("attr must be basestring, got %s instead" % new_attr.__class__.__name__)
self.avas[0].attr = new_attr
attr = property(_get_attr, _set_attr)
def _get_value(self):
if len(self.avas) == 0:
raise IndexError("No AVA's in this RDN")
return self.avas[0].value
def _set_value(self, new_value):
if len(self.avas) == 0:
raise IndexError("No AVA's in this RDN")
if not isinstance(new_value, basestring):
raise TypeError("value must be basestring, got %s instead" % new_value.__class__.__name__)
self.avas[0].value = new_value
value = property(_get_value, _set_value)
def __eq__(self, other):
if not isinstance(other, self.__class__):
raise TypeError("expected RDN but got %s" % (other.__class__.__name__))
return self.avas == other.avas
def __cmp__(self, other):
if not isinstance(other, self.__class__):
raise TypeError("expected RDN but got %s" % (other.__class__.__name__))
result = cmp(len(self), len(other))
if result != 0:
return result
i = 0
while i < len(self):
result = cmp(self[i], other[i])
if result != 0:
return result
i += 1
return 0
def __add__(self, other):
result = RDN(self, first_key_match=self.first_key_match)
if isinstance(other, RDN):
for ava in other.avas:
result.avas.append(AVA(ava.attr, ava.value))
elif isinstance(other, AVA):
result.avas.append(AVA(other.attr, other.value))
elif isinstance(other, basestring):
rdn = RDN(other)
for ava in rdn.avas:
result.avas.append(AVA(ava.attr, ava.value))
else:
raise TypeError("expected RDN, AVA or basestring but got %s" % (other.__class__.__name__))
result.avas.sort()
return result
def __iadd__(self, other):
if isinstance(other, RDN):
for ava in other.avas:
self.avas.append(AVA(ava.attr, ava.value))
elif isinstance(other, AVA):
self.avas.append(AVA(other.attr, other.value))
elif isinstance(other, basestring):
rdn = RDN(other)
for ava in rdn.avas:
self.avas.append(AVA(ava.attr, ava.value))
else:
raise TypeError("expected RDN, AVA or basestring but got %s" % (other.__class__.__name__))
self.avas.sort()
return self
class DN(object):
'''
DN(arg0, ..., first_key_match=True)
A DN is a LDAP Distinguished Name. A DN is an ordered sequence of RDN's.
The DN constructor is passed a sequence of args and a set of
keyword parameters used for configuration. normalize means the
attr and value will be converted to lower case.
The constructor iterates through the sequence and adds the RDN's
it finds in order to the DN object. Each item in the sequence may
be:
* A 2-valued tuple or list. The first member is the attr and the
second member is the value of an RDN, both members must be
strings (or unicode). The tuple or list is passed to the RDN
constructor and the resulting RDN is appended to the
DN. Multiple tuples or lists may appear in the argument list,
each adds one additional RDN to the DN.
* A single string (or unicode) argument, in this case the string
will be interpretted using the DN syntax described in RFC 4514
to yield one or more RDN's which will be appended in order to
the DN. The parsing recognizes the DN syntax escaping rules.
* A RDN object, the RDN will copied respecting the constructors
keyword configuration parameters and appended in order.
* A DN object, the RDN's in the DN are copied respecting the
constructors keyword configuration parameters and appended in
order.
Single DN Examples:
DN(('cn', 'Bob')) # tuple yields 1 RDN
DN(['cn', 'Bob']) # list yields 1 RDN
DN('cn=Bob') # DN syntax with 1 RDN
DN(RDN('cn', 'Bob')) # RDN object adds 1 RDN
Multiple RDN Examples:
DN(('cn', 'Bob'),('ou', 'people')) # 2 tuples yields 2 RDN's
# 2 RDN's total
DN('cn=Bob,ou=people') # DN syntax with 2 RDN's
# 2 RDN's total
DN(RDN('cn', 'Bob'),RDN('ou', 'people')) # 2 RDN objects
# 2 RDN's total
DN(('cn', 'Bob'), "ou=people') # 1st tuple adds 1 RDN
# 2nd DN syntax string adds 1 RDN
# 2 RDN's total
base_dn = DN('dc=redhat,dc=com')
container_dn = DN('cn=sudorules,cn=sudo')
DN(('cn', 'Bob'), container_dn, base_dn)
# 1st arg adds 1 RDN, cn=Bob
# 2nd arg adds 2 RDN's, cn=sudorules,cn=sudo
# 3rd arg adds 2 RDN's, dc=redhat,dc=com
# 5 RDN's total
Note: The RHS of a slice assignment is interpreted exactly in the
same manner as the constructor argument list (see above examples).
DN objects support iteration over their RDN members. You can iterate all
RDN members via any Python iteration syntax. DN objects support full Python
indexing using bracket [] notation. Examples:
len(rdn) # return the number of RDN's
rdn[0] # indexing the first RDN
rdn['cn'] # index by RDN attr, returns RDN value
for ava in rdn: # iterate over each RDN
rdn[:] # a slice, in this case a copy of each RDN
WARNING: When indexing by attr (e.g. rdn['cn']) there is a possibility more
than one RDN has the same attr name as the index key. The default behavior
is to return the value of the first RDN whose attr matches the index
key. This behavior can be modified by setting the first_key_match property
to false in the RDN object. If first_key_match is False a list of all values
will be returned instead. The first_key_match behavior is the default and is
useful because typical usage is to seek the first matching RDN. We seek
the most useful common case for programmer friendliness, but you should be
aware of the caveat.
DN object support slices.
# Get the first two RDN's using slices
dn[0:2]
# Get the last two RDN's using slices
dn[-2:]
# Get a list of all RDN's using slices
dn[:]
# Set the 2nd and 3rd RDN using slices (all are equivalent)
dn[1:3] = ('cn', 'Bob'), ('dc', 'redhat.com')
dn[1:3] = [['cn', 'Bob'], ['dc', 'redhat.com']]
dn[1:3] = RDN('cn', 'Bob'), RDN('dc', 'redhat.com')
DN objects support the insert operation.
dn.insert(i,x) is exactly equivalent to dn[i:i] = [x], thus the following
are all equivalent:
dn.insert(i, ('cn','Bob'))
dn.insert(i, ['cn','Bob'])
dn.insert(i, RDN(('cn','Bob')))
dn[i:i] = [('cn','Bob')]
DN objects support equality testing and comparision. See RDN for the
definition of the comparision method.
DN objects implement startswith(), endswith() and the "in" membership
operator. You may pass a DN or RDN object to these. Examples:
# Test if dn ends with the contents of base_dn
if dn.endswith(base_dn):
# Test if dn starts with a rdn
if dn.startswith(rdn1):
# Test if a container is present in a dn
if container_dn in dn:
DN objects support concatenation and addition with other DN's or RDN's
or strings (interpreted as RFC 4514 DN syntax).
# yields a new DN object with the RDN's of dn2 appended to the RDN's of dn1
dn1 + dn2
# yields a new DN object with the rdn1 appended to the RDN's of dn1
dn1 + rdn1
DN objects can add RDN's objects via in-place addition.
dn1 += dn2 # dn2 RDN's are appended to the dn1's RDN's
dn1 += rdn1 # dn1 has rdn appended to its RDN's
dn1 += "dc=redhat.com" # string is converted to DN, then appended
The str method of an DN returns the string representation in RFC 4514 DN
syntax with proper escaping.
'''
flags = 0
def __init__(self, *args, **kwds):
self.first_key_match = kwds.get('first_key_match', True)
self.first_key_match = True
self.rdns = self._rdns_from_sequence(args)
def _rdn_from_value(self, value):
if isinstance(value, RDN):
return RDN(value, first_key_match=self.first_key_match)
elif isinstance(value, DN):
rdns = []
for rdn in value.rdns:
rdns.append(RDN(rdn, first_key_match=self.first_key_match))
if len(rdns) == 1:
return rdns[0]
else:
return rdns
elif isinstance(value, basestring):
rdns = []
try:
dn_list = str2dn(value.encode('utf-8'))
for rdn_list in dn_list:
avas = []
for ava_tuple in rdn_list:
avas.append(AVA(ava_tuple[0], ava_tuple[1]))
rdn = RDN(*avas, first_key_match=self.first_key_match)
rdns.append(rdn)
except DECODING_ERROR:
raise ValueError("malformed RDN string = \"%s\"" % value)
if len(rdns) == 1:
return rdns[0]
else:
return rdns
elif isinstance(value, (tuple, list)):
if len(value) != 2:
raise ValueError("tuple or list must be 2-valued, not \"%s\"" % (rdn))
rdn = RDN(value, first_key_match=self.first_key_match)
return rdn
else:
raise TypeError("must be str,unicode,tuple, or RDN, got %s instead" % \
value.__class__.__name__)
def _rdns_from_sequence(self, seq):
rdns = []
for item in seq:
rdn = self._rdn_from_value(item)
if isinstance(rdn, list):
rdns.extend(rdn)
else:
rdns.append(rdn)
return rdns
def _to_openldap(self):
return [[(ava.attr.encode('utf-8'), ava.value.encode('utf-8'), self.flags) for ava in rdn] for rdn in self.rdns]
def __str__(self):
return dn2str(self._to_openldap())
def _next(self):
for rdn in self.rdns:
yield rdn
def __iter__(self):
return self._next()
def __len__(self):
return len(self.rdns)
def __getitem__(self, key):
if isinstance(key, (int, long, slice)):
return self.rdns[key]
elif isinstance(key, basestring):
if self.first_key_match:
for rdn in self.rdns:
if key == rdn.attr:
return rdn.value
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
rdns = []
for rdn in self.rdns:
if key == rdn.attr:
rdns.append(rdn.value)
if len(rdns) > 0:
return rdns
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
raise TypeError("unsupported type for DN indexing, must be int, basestring or slice; not %s" % \
(key.__class__.__name__))
def __setitem__(self, key, value):
if isinstance(key, (int, long)):
new_rdn = self._rdn_from_value(value)
if isinstance(new_rdn, list):
raise TypeError("cannot assign multiple RDN's to single entry")
self.rdns[key] = new_rdn
elif isinstance(key, slice):
rdns = self._rdns_from_sequence(value)
self.rdns[key] = rdns
elif isinstance(key, basestring):
new_rdn = self._rdn_from_value(value)
if isinstance(new_rdn, list):
raise TypeError("cannot assign multiple values to single entry")
found = False
i = 0
while i < len(self.rdns):
if key == self.rdns[i].attr:
found = True
self.rdns[i] = new_rdn
if self.first_key_match: break
i += 1
if not found:
raise KeyError("\"%s\" not found in %s" % (key, self.__str__()))
else:
raise TypeError("unsupported type for DN indexing, must be int, basestring or slice; not %s" % \
(key.__class__.__name__))
def __eq__(self, other):
if not isinstance(other, self.__class__):
raise TypeError("expected DN but got %s" % (other.__class__.__name__))
return self.rdns == other.rdns
def __cmp__(self, other):
if not isinstance(other, self.__class__):
raise TypeError("expected DN but got %s" % (other.__class__.__name__))
result = cmp(len(self), len(other))
if result != 0:
return result
return self._cmp_sequence(other, 0, len(self))
def _cmp_sequence(self, pattern, self_start, pat_len):
self_idx = self_start
pat_idx = 0
while pat_idx < pat_len:
result = cmp(self[self_idx], pattern[pat_idx])
if result != 0:
return result
self_idx += 1
pat_idx += 1
return 0
def __add__(self, other):
result = DN(self, first_key_match=self.first_key_match)
if isinstance(other, self.__class__):
for rdn in other.rdns:
result.rdns.append(RDN(rdn, first_key_match=self.first_key_match))
elif isinstance(other, RDN):
result.rdns.append(RDN(other, first_key_match=self.first_key_match))
elif isinstance(other, basestring):
dn = DN(other, first_key_match=self.first_key_match)
for rdn in dn.rdns:
result.rdns.append(rdn)
else:
raise TypeError("expected DN, RDN or basestring but got %s" % (other.__class__.__name__))
return result
def __iadd__(self, other):
if isinstance(other, DN):
for rdn in other.rdns:
self.rdns.append(RDN(rdn, first_key_match=self.first_key_match))
elif isinstance(other, RDN):
self.rdns.append(RDN(other, first_key_match=self.first_key_match))
elif isinstance(other, basestring):
dn = DN(other, first_key_match=self.first_key_match)
self.__iadd__(dn)
else:
raise TypeError("expected DN, RDN or basestring but got %s" % (other.__class__.__name__))
return self
def insert(self, i, x):
'''
x must be a 2-value tuple or list promotable to an RDN object,
or a RDN object.
dn.insert(i, x) is the same as s[i:i] = [x]
When a negative index is passed as the first parameter to the
insert() method, the list length is added, as for slice
indices. If it is still negative, it is truncated to zero, as
for slice indices.
'''
self.rdns.insert(i, self._rdn_from_value(x))
# The implementation of startswith, endswith, tailmatch, adjust_indices
# was based on the Python's stringobject.c implementation
def startswith(self, prefix, start=0, end=sys.maxsize):
'''
Return True if the dn starts with the specified prefix (either a DN or
RDN object), False otherwise. With optional start, test dn beginning at
that position. With optional end, stop comparing dn at that position.
prefix can also be a tuple of dn's or rdn's to try.
'''
if isinstance(prefix, tuple):
for pat in prefix:
if self._tailmatch(pat, start, end, -1):
return True
return False
return self._tailmatch(prefix, start, end, -1)
def endswith(self, suffix, start=0, end=sys.maxsize):
'''
Return True if dn ends with the specified suffix (either a DN or RDN
object), False otherwise. With optional start, test dn beginning at
that position. With optional end, stop comparing dn at that position.
suffix can also be a tuple of dn's or rdn's to try.
'''
if isinstance(suffix, tuple):
for pat in suffix:
if self._tailmatch(pat, start, end, +1):
return True
return False
return self._tailmatch(suffix, start, end, +1)
def _tailmatch(self, pattern, start, end, direction):
'''
Matches the end (direction >= 0) or start (direction < 0) of self
against pattern (either a DN or RDN), using the start and end
arguments. Returns 0 if not found and 1 if found.
'''
if isinstance(pattern, DN):
pat_len = len(pattern)
elif isinstance(pattern, RDN):
pat_len = 1
else:
raise TypeError("expected DN or RDN but got %s" % (pattern.__class__.__name__))
self_len = len(self)
start, end = _adjust_indices(start, end, self_len)
if direction < 0: # starswith
if start+pat_len > self_len:
return 0
else: # endswith
if end-start < pat_len or start > self_len:
return 0
if end-pat_len >= start:
start = end - pat_len
if isinstance(pattern, DN):
if end-start >= pat_len:
return not self._cmp_sequence(pattern, start, pat_len)
return 0
else:
return self.rdns[start] == pattern
def __contains__(self, other):
'Return the outcome of the test other in self. Note the reversed operands.'
if isinstance(other, DN):
other_len = len(other)
end = len(self) - other_len
i = 0
while i <= end:
result = self._cmp_sequence(other, i, other_len)
if result == 0:
return True
i += 1
return False
elif isinstance(other, RDN):
return other in self.rdns
else:
raise TypeError("expected DN or RDN but got %s" % (other.__class__.__name__))
|