This file is indexed.

/usr/share/pyshared/matplotlib/colorbar.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
'''
Colorbar toolkit with two classes and a function:

    :class:`ColorbarBase`
        the base class with full colorbar drawing functionality.
        It can be used as-is to make a colorbar for a given colormap;
        a mappable object (e.g., image) is not needed.

    :class:`Colorbar`
        the derived class for use with images or contour plots.

    :func:`make_axes`
        a function for resizing an axes and adding a second axes
        suitable for a colorbar

The :meth:`~matplotlib.figure.Figure.colorbar` method uses :func:`make_axes`
and :class:`Colorbar`; the :func:`~matplotlib.pyplot.colorbar` function
is a thin wrapper over :meth:`~matplotlib.figure.Figure.colorbar`.

'''
import warnings

import numpy as np
import matplotlib as mpl
import matplotlib.colors as colors
import matplotlib.cm as cm
from matplotlib import docstring
import matplotlib.ticker as ticker
import matplotlib.cbook as cbook
import matplotlib.lines as lines
import matplotlib.patches as patches
import matplotlib.collections as collections
import matplotlib.contour as contour
import matplotlib.artist as martist

import matplotlib.gridspec as gridspec


make_axes_kw_doc = '''

    ============= ====================================================
    Property      Description
    ============= ====================================================
    *orientation* vertical or horizontal
    *fraction*    0.15; fraction of original axes to use for colorbar
    *pad*         0.05 if vertical, 0.15 if horizontal; fraction
                  of original axes between colorbar and new image axes
    *shrink*      1.0; fraction by which to shrink the colorbar
    *aspect*      20; ratio of long to short dimensions
    *anchor*      (0.0, 0.5) if vertical; (0.5, 1.0) if horizontal;
                  the anchor point of the colorbar axes
    *panchor*     (1.0, 0.5) if vertical; (0.5, 0.0) if horizontal;
                  the anchor point of the colorbar parent axes
    ============= ====================================================

'''

colormap_kw_doc = '''

    ===========   ====================================================
    Property      Description
    ===========   ====================================================
    *extend*      [ 'neither' | 'both' | 'min' | 'max' ]
                  If not 'neither', make pointed end(s) for out-of-
                  range values.  These are set for a given colormap
                  using the colormap set_under and set_over methods.
    *spacing*     [ 'uniform' | 'proportional' ]
                  Uniform spacing gives each discrete color the same
                  space; proportional makes the space proportional to
                  the data interval.
    *ticks*       [ None | list of ticks | Locator object ]
                  If None, ticks are determined automatically from the
                  input.
    *format*      [ None | format string | Formatter object ]
                  If None, the
                  :class:`~matplotlib.ticker.ScalarFormatter` is used.
                  If a format string is given, e.g. '%.3f', that is
                  used. An alternative
                  :class:`~matplotlib.ticker.Formatter` object may be
                  given instead.
    *drawedges*   [ False | True ] If true, draw lines at color
                  boundaries.
    ===========   ====================================================

    The following will probably be useful only in the context of
    indexed colors (that is, when the mappable has norm=NoNorm()),
    or other unusual circumstances.

    ============   ===================================================
    Property       Description
    ============   ===================================================
    *boundaries*   None or a sequence
    *values*       None or a sequence which must be of length 1 less
                   than the sequence of *boundaries*. For each region
                   delimited by adjacent entries in *boundaries*, the
                   color mapped to the corresponding value in values
                   will be used.
    ============   ===================================================

'''

colorbar_doc = '''

Add a colorbar to a plot.

Function signatures for the :mod:`~matplotlib.pyplot` interface; all
but the first are also method signatures for the
:meth:`~matplotlib.figure.Figure.colorbar` method::

  colorbar(**kwargs)
  colorbar(mappable, **kwargs)
  colorbar(mappable, cax=cax, **kwargs)
  colorbar(mappable, ax=ax, **kwargs)

arguments:

  *mappable*
    the :class:`~matplotlib.image.Image`,
    :class:`~matplotlib.contour.ContourSet`, etc. to
    which the colorbar applies; this argument is mandatory for the
    :meth:`~matplotlib.figure.Figure.colorbar` method but optional for the
    :func:`~matplotlib.pyplot.colorbar` function, which sets the
    default to the current image.

keyword arguments:

  *cax*
    None | axes object into which the colorbar will be drawn
  *ax*
    None | parent axes object from which space for a new
    colorbar axes will be stolen
  *use_gridspec*
    False | If *cax* is None, a new *cax* is created as an instance of
    Axes. If *ax* is an instance of Subplot and *use_gridspec* is True,
    *cax* is created as an instance of Subplot using the
    grid_spec module. 


Additional keyword arguments are of two kinds:

  axes properties:
%s
  colorbar properties:
%s

If *mappable* is a :class:`~matplotlib.contours.ContourSet`, its *extend*
kwarg is included automatically.

Note that the *shrink* kwarg provides a simple way to keep a vertical
colorbar, for example, from being taller than the axes of the mappable
to which the colorbar is attached; but it is a manual method requiring
some trial and error. If the colorbar is too tall (or a horizontal
colorbar is too wide) use a smaller value of *shrink*.

For more precise control, you can manually specify the positions of
the axes objects in which the mappable and the colorbar are drawn.  In
this case, do not use any of the axes properties kwargs.

returns:
    :class:`~matplotlib.colorbar.Colorbar` instance; see also its base class,
    :class:`~matplotlib.colorbar.ColorbarBase`.  Call the
    :meth:`~matplotlib.colorbar.ColorbarBase.set_label` method
    to label the colorbar.

''' % (make_axes_kw_doc, colormap_kw_doc)

docstring.interpd.update(colorbar_doc=colorbar_doc)


class ColorbarBase(cm.ScalarMappable):
    '''
    Draw a colorbar in an existing axes.

    This is a base class for the :class:`Colorbar` class, which is the
    basis for the :func:`~matplotlib.pyplot.colorbar` function and the
    :meth:`~matplotlib.figure.Figure.colorbar` method, which are the
    usual ways of creating a colorbar.

    It is also useful by itself for showing a colormap.  If the *cmap*
    kwarg is given but *boundaries* and *values* are left as None,
    then the colormap will be displayed on a 0-1 scale. To show the
    under- and over-value colors, specify the *norm* as::

        colors.Normalize(clip=False)

    To show the colors versus index instead of on the 0-1 scale,
    use::

        norm=colors.NoNorm.

    Useful attributes:

        :attr:`ax`
            the Axes instance in which the colorbar is drawn

        :attr:`lines`
            a LineCollection if lines were drawn, otherwise None

        :attr:`dividers`
            a LineCollection if *drawedges* is True, otherwise None

    Useful public methods are :meth:`set_label` and :meth:`add_lines`.

    '''
    _slice_dict = {'neither': slice(0,1000000),
                   'both': slice(1,-1),
                   'min': slice(1,1000000),
                   'max': slice(0,-1)}

    def __init__(self, ax, cmap=None,
                           norm=None,
                           alpha=None,
                           values=None,
                           boundaries=None,
                           orientation='vertical',
                           extend='neither',
                           spacing='uniform',  # uniform or proportional
                           ticks=None,
                           format=None,
                           drawedges=False,
                           filled=True,
                           ):
        self.ax = ax
        self._patch_ax()
        if cmap is None: cmap = cm.get_cmap()
        if norm is None: norm = colors.Normalize()
        self.alpha = alpha
        cm.ScalarMappable.__init__(self, cmap=cmap, norm=norm)
        self.values = values
        self.boundaries = boundaries
        self.extend = extend
        self._inside = self._slice_dict[extend]
        self.spacing = spacing
        self.orientation = orientation
        self.drawedges = drawedges
        self.filled = filled
        self.solids = None
        self.lines = None
        self.outline = None
        self.patch = None
        self.dividers = None
        self.set_label('')
        if cbook.iterable(ticks):
            self.locator = ticker.FixedLocator(ticks, nbins=len(ticks))
        else:
            self.locator = ticks    # Handle default in _ticker()
        if format is None:
            if isinstance(self.norm, colors.LogNorm):
                self.formatter = ticker.LogFormatterMathtext()
            else:
                self.formatter = ticker.ScalarFormatter()
        elif cbook.is_string_like(format):
            self.formatter = ticker.FormatStrFormatter(format)
        else:
            self.formatter = format  # Assume it is a Formatter
        # The rest is in a method so we can recalculate when clim changes.
        self.config_axis()
        self.draw_all()

    def _patch_ax(self):
        def _warn(*args, **kw):
            warnings.warn("Use the colorbar set_ticks() method instead.")

        self.ax.set_xticks = _warn
        self.ax.set_yticks = _warn

    def draw_all(self):
        '''
        Calculate any free parameters based on the current cmap and norm,
        and do all the drawing.
        '''
        self._process_values()
        self._find_range()
        X, Y = self._mesh()
        C = self._values[:,np.newaxis]
        self._config_axes(X, Y)
        if self.filled:
            self._add_solids(X, Y, C)

    def config_axis(self):
        ax = self.ax
        if self.orientation == 'vertical':
            ax.xaxis.set_ticks([])
            ax.yaxis.set_label_position('right')
            ax.yaxis.set_ticks_position('right')
        else:
            ax.yaxis.set_ticks([])
            ax.xaxis.set_label_position('bottom')

        self._set_label()

    def update_ticks(self):
        """
        Force the update of the ticks and ticklabels. This must be
        called whenever the tick locator and/or tick formatter changes.
        """
        ax = self.ax
        ticks, ticklabels, offset_string = self._ticker()
        if self.orientation == 'vertical':
            ax.yaxis.set_ticks(ticks)
            ax.set_yticklabels(ticklabels)
            ax.yaxis.get_major_formatter().set_offset_string(offset_string)

        else:
            ax.xaxis.set_ticks(ticks)
            ax.set_xticklabels(ticklabels)
            ax.xaxis.get_major_formatter().set_offset_string(offset_string)

    def set_ticks(self, ticks, update_ticks=True):
        """
        set tick locations. Tick locations are updated immediately unless update_ticks is
        *False*. To manually update the ticks, call *update_ticks* method explicitly.
        """
        if cbook.iterable(ticks):
            self.locator = ticker.FixedLocator(ticks, nbins=len(ticks))
        else:
            self.locator = ticks

        if update_ticks:
            self.update_ticks()

    def set_ticklabels(self, ticklabels, update_ticks=True):
        """
        set tick labels. Tick labels are updated immediately unless update_ticks is
        *False*. To manually update the ticks, call *update_ticks* method explicitly.
        """
        if isinstance(self.locator, ticker.FixedLocator):
            self.formatter = ticker.FixedFormatter(ticklabels)
            if update_ticks:
                self.update_ticks()
        else:
            warnings.warn("set_ticks() must have been called.")


    def _config_axes(self, X, Y):
        '''
        Make an axes patch and outline.
        '''
        ax = self.ax
        ax.set_frame_on(False)
        ax.set_navigate(False)
        xy = self._outline(X, Y)
        ax.update_datalim(xy)
        ax.set_xlim(*ax.dataLim.intervalx)
        ax.set_ylim(*ax.dataLim.intervaly)
        if self.outline is not None:
            self.outline.remove()
        self.outline = lines.Line2D(xy[:, 0], xy[:, 1], color=mpl.rcParams['axes.edgecolor'],
                                    linewidth=mpl.rcParams['axes.linewidth'])
        ax.add_artist(self.outline)
        self.outline.set_clip_box(None)
        self.outline.set_clip_path(None)
        c = mpl.rcParams['axes.facecolor']
        if self.patch is not None:
            self.patch.remove()
        self.patch = patches.Polygon(xy, edgecolor=c,
                 facecolor=c,
                 linewidth=0.01,
                 zorder=-1)
        ax.add_artist(self.patch)

        self.update_ticks()


    def _set_label(self):
        if self.orientation == 'vertical':
            self.ax.set_ylabel(self._label, **self._labelkw)
        else:
            self.ax.set_xlabel(self._label, **self._labelkw)

    def set_label(self, label, **kw):
        '''
        Label the long axis of the colorbar
        '''
        self._label = label
        self._labelkw = kw
        self._set_label()


    def _outline(self, X, Y):
        '''
        Return *x*, *y* arrays of colorbar bounding polygon,
        taking orientation into account.
        '''
        N = X.shape[0]
        ii = [0, 1, N-2, N-1, 2*N-1, 2*N-2, N+1, N, 0]
        x = np.take(np.ravel(np.transpose(X)), ii)
        y = np.take(np.ravel(np.transpose(Y)), ii)
        x = x.reshape((len(x), 1))
        y = y.reshape((len(y), 1))
        if self.orientation == 'horizontal':
            return np.hstack((y, x))
        return np.hstack((x, y))

    def _edges(self, X, Y):
        '''
        Return the separator line segments; helper for _add_solids.
        '''
        N = X.shape[0]
        # Using the non-array form of these line segments is much
        # simpler than making them into arrays.
        if self.orientation == 'vertical':
            return [zip(X[i], Y[i]) for i in range(1, N-1)]
        else:
            return [zip(Y[i], X[i]) for i in range(1, N-1)]

    def _add_solids(self, X, Y, C):
        '''
        Draw the colors using :meth:`~matplotlib.axes.Axes.pcolor`;
        optionally add separators.
        '''
        if self.orientation == 'vertical':
            args = (X, Y, C)
        else:
            args = (np.transpose(Y), np.transpose(X), np.transpose(C))
        kw = {'cmap':self.cmap, 'norm':self.norm,
                    'alpha':self.alpha,}
        # Save, set, and restore hold state to keep pcolor from
        # clearing the axes. Ordinarily this will not be needed,
        # since the axes object should already have hold set.
        _hold = self.ax.ishold()
        self.ax.hold(True)
        col = self.ax.pcolormesh(*args, **kw)
        self.ax.hold(_hold)
        #self.add_observer(col) # We should observe, not be observed...

        if self.solids is not None:
            self.solids.remove()
        self.solids = col
        if self.dividers is not None:
            self.dividers.remove()
            self.dividers = None
        if self.drawedges:
            self.dividers = collections.LineCollection(self._edges(X,Y),
                              colors=(mpl.rcParams['axes.edgecolor'],),
                              linewidths=(0.5*mpl.rcParams['axes.linewidth'],)
                              )
            self.ax.add_collection(self.dividers)

    def add_lines(self, levels, colors, linewidths):
        '''
        Draw lines on the colorbar.
        '''
        N = len(levels)
        dummy, y = self._locate(levels)
        if len(y) <> N:
            raise ValueError("levels are outside colorbar range")
        x = np.array([0.0, 1.0])
        X, Y = np.meshgrid(x,y)
        if self.orientation == 'vertical':
            xy = [zip(X[i], Y[i]) for i in range(N)]
        else:
            xy = [zip(Y[i], X[i]) for i in range(N)]
        col = collections.LineCollection(xy, linewidths=linewidths)

        if self.lines:
            self.lines.remove()
        self.lines = col
        col.set_color(colors)
        self.ax.add_collection(col)


    def _ticker(self):
        '''
        Return two sequences: ticks (colorbar data locations)
        and ticklabels (strings).
        '''
        locator = self.locator
        formatter = self.formatter
        if locator is None:
            if self.boundaries is None:
                if isinstance(self.norm, colors.NoNorm):
                    nv = len(self._values)
                    base = 1 + int(nv/10)
                    locator = ticker.IndexLocator(base=base, offset=0)
                elif isinstance(self.norm, colors.BoundaryNorm):
                    b = self.norm.boundaries
                    locator = ticker.FixedLocator(b, nbins=10)
                elif isinstance(self.norm, colors.LogNorm):
                    locator = ticker.LogLocator()
                else:
                    locator = ticker.MaxNLocator()
            else:
                b = self._boundaries[self._inside]
                locator = ticker.FixedLocator(b, nbins=10)
        if isinstance(self.norm, colors.NoNorm):
            intv = self._values[0], self._values[-1]
        else:
            intv = self.vmin, self.vmax
        locator.create_dummy_axis()
        formatter.create_dummy_axis()
        locator.set_view_interval(*intv)
        locator.set_data_interval(*intv)
        formatter.set_view_interval(*intv)
        formatter.set_data_interval(*intv)

        # the dummy axis is expecting a minpos
        locator.axis.get_minpos = lambda : intv[0]
        formatter.axis.get_minpos = lambda : intv[0]
        b = np.array(locator())
        b, ticks = self._locate(b)
        formatter.set_locs(b)
        ticklabels = [formatter(t, i) for i, t in enumerate(b)]
        offset_string = formatter.get_offset()
        return ticks, ticklabels, offset_string

    def _process_values(self, b=None):
        '''
        Set the :attr:`_boundaries` and :attr:`_values` attributes
        based on the input boundaries and values.  Input boundaries
        can be *self.boundaries* or the argument *b*.
        '''
        if b is None:
            b = self.boundaries
        if b is not None:
            self._boundaries = np.asarray(b, dtype=float)
            if self.values is None:
                self._values = 0.5*(self._boundaries[:-1]
                                        + self._boundaries[1:])
                if isinstance(self.norm, colors.NoNorm):
                    self._values = (self._values + 0.00001).astype(np.int16)
                return
            self._values = np.array(self.values)
            return
        if self.values is not None:
            self._values = np.array(self.values)
            if self.boundaries is None:
                b = np.zeros(len(self.values)+1, 'd')
                b[1:-1] = 0.5*(self._values[:-1] - self._values[1:])
                b[0] = 2.0*b[1] - b[2]
                b[-1] = 2.0*b[-2] - b[-3]
                self._boundaries = b
                return
            self._boundaries = np.array(self.boundaries)
            return
        # Neither boundaries nor values are specified;
        # make reasonable ones based on cmap and norm.
        if isinstance(self.norm, colors.NoNorm):
            b = self._uniform_y(self.cmap.N+1) * self.cmap.N - 0.5
            v = np.zeros((len(b)-1,), dtype=np.int16)
            v[self._inside] = np.arange(self.cmap.N, dtype=np.int16)
            if self.extend in ('both', 'min'):
                v[0] = -1
            if self.extend in ('both', 'max'):
                v[-1] = self.cmap.N
            self._boundaries = b
            self._values = v
            return
        elif isinstance(self.norm, colors.BoundaryNorm):
            b = list(self.norm.boundaries)
            if self.extend in ('both', 'min'):
                b = [b[0]-1] + b
            if self.extend in ('both', 'max'):
                b = b + [b[-1] + 1]
            b = np.array(b)
            v = np.zeros((len(b)-1,), dtype=float)
            bi = self.norm.boundaries
            v[self._inside] = 0.5*(bi[:-1] + bi[1:])
            if self.extend in ('both', 'min'):
                v[0] = b[0] - 1
            if self.extend in ('both', 'max'):
                v[-1] = b[-1] + 1
            self._boundaries = b
            self._values = v
            return
        else:
            if not self.norm.scaled():
                self.norm.vmin = 0
                self.norm.vmax = 1
            b = self.norm.inverse(self._uniform_y(self.cmap.N+1))
            if self.extend in ('both', 'min'):
                b[0] = b[0] - 1
            if self.extend in ('both', 'max'):
                b[-1] = b[-1] + 1
        self._process_values(b)

    def _find_range(self):
        '''
        Set :attr:`vmin` and :attr:`vmax` attributes to the first and
        last boundary excluding extended end boundaries.
        '''
        b = self._boundaries[self._inside]
        self.vmin = b[0]
        self.vmax = b[-1]

    def _central_N(self):
        '''number of boundaries **before** extension of ends'''
        nb = len(self._boundaries)
        if self.extend == 'both':
            nb -= 2
        elif self.extend in ('min', 'max'):
            nb -= 1
        return nb

    def _extended_N(self):
        '''
        Based on the colormap and extend variable, return the
        number of boundaries.
        '''
        N = self.cmap.N + 1
        if self.extend == 'both':
            N += 2
        elif self.extend in ('min', 'max'):
            N += 1
        return N

    def _uniform_y(self, N):
        '''
        Return colorbar data coordinates for *N* uniformly
        spaced boundaries, plus ends if required.
        '''
        if self.extend == 'neither':
            y = np.linspace(0, 1, N)
        else:
            if self.extend == 'both':
                y = np.zeros(N + 2, 'd')
                y[0] = -0.05
                y[-1] = 1.05
            elif self.extend == 'min':
                y = np.zeros(N + 1, 'd')
                y[0] = -0.05
            else:
                y = np.zeros(N + 1, 'd')
                y[-1] = 1.05
            y[self._inside] = np.linspace(0, 1, N)
        return y

    def _proportional_y(self):
        '''
        Return colorbar data coordinates for the boundaries of
        a proportional colorbar.
        '''
        if isinstance(self.norm, colors.BoundaryNorm):
            b = self._boundaries[self._inside]
            y = (self._boundaries - self._boundaries[0])
            y = y / (self._boundaries[-1] - self._boundaries[0])
        else:
            y = self.norm(self._boundaries.copy())
        if self.extend in ('both', 'min'):
            y[0] = -0.05
        if self.extend in ('both', 'max'):
            y[-1] = 1.05
        yi = y[self._inside]
        norm = colors.Normalize(yi[0], yi[-1])
        y[self._inside] = norm(yi)
        return y

    def _mesh(self):
        '''
        Return X,Y, the coordinate arrays for the colorbar pcolormesh.
        These are suitable for a vertical colorbar; swapping and
        transposition for a horizontal colorbar are done outside
        this function.
        '''
        x = np.array([0.0, 1.0])
        if self.spacing == 'uniform':
            y = self._uniform_y(self._central_N())
        else:
            y = self._proportional_y()
        self._y = y
        X, Y = np.meshgrid(x,y)
        if self.extend in ('min', 'both'):
            X[0,:] = 0.5
        if self.extend in ('max', 'both'):
            X[-1,:] = 0.5
        return X, Y

    def _locate(self, x):
        '''
        Given a possible set of color data values, return the ones
        within range, together with their corresponding colorbar
        data coordinates.
        '''
        if isinstance(self.norm, (colors.NoNorm, colors.BoundaryNorm)):
            b = self._boundaries
            xn = x
            xout = x
        else:
            # Do calculations using normalized coordinates so
            # as to make the interpolation more accurate.
            b = self.norm(self._boundaries, clip=False).filled()
            # We do our own clipping so that we can allow a tiny
            # bit of slop in the end point ticks to allow for
            # floating point errors.
            xn = self.norm(x, clip=False).filled()
            in_cond = (xn > -0.001) & (xn < 1.001)
            xn = np.compress(in_cond, xn)
            xout = np.compress(in_cond, x)
        # The rest is linear interpolation with clipping.
        y = self._y
        N = len(b)
        ii = np.minimum(np.searchsorted(b, xn), N-1)
        i0 = np.maximum(ii - 1, 0)
        #db = b[ii] - b[i0]
        db = np.take(b, ii) - np.take(b, i0)
        db = np.where(i0==ii, 1.0, db)
        #dy = y[ii] - y[i0]
        dy = np.take(y, ii) - np.take(y, i0)
        z = np.take(y, i0) + (xn-np.take(b,i0))*dy/db
        return xout, z

    def set_alpha(self, alpha):
        self.alpha = alpha

class Colorbar(ColorbarBase):
    """
    This class connects a :class:`ColorbarBase` to a
    :class:`~matplotlib.cm.ScalarMappable` such as a
    :class:`~matplotlib.image.AxesImage` generated via
    :meth:`~matplotlib.axes.Axes.imshow`.

    It is not intended to be instantiated directly; instead,
    use :meth:`~matplotlib.figure.Figure.colorbar` or
    :func:`~matplotlib.pyplot.colorbar` to make your colorbar.

    """
    def __init__(self, ax, mappable, **kw):
        mappable.autoscale_None() # Ensure mappable.norm.vmin, vmax
                             # are set when colorbar is called,
                             # even if mappable.draw has not yet
                             # been called.  This will not change
                             # vmin, vmax if they are already set.
        self.mappable = mappable
        kw['cmap'] = mappable.cmap
        kw['norm'] = mappable.norm

        if isinstance(mappable, contour.ContourSet):
            CS = mappable
            kw['alpha'] = mappable.get_alpha()
            kw['boundaries'] = CS._levels
            kw['values'] = CS.cvalues
            kw['extend'] = CS.extend
            #kw['ticks'] = CS._levels
            kw.setdefault('ticks', ticker.FixedLocator(CS.levels, nbins=10))
            kw['filled'] = CS.filled
            ColorbarBase.__init__(self, ax, **kw)
            if not CS.filled:
                self.add_lines(CS)
        else:
            if isinstance(mappable, martist.Artist):
                kw['alpha'] = mappable.get_alpha()

            ColorbarBase.__init__(self, ax, **kw)


    def add_lines(self, CS):
        '''
        Add the lines from a non-filled
        :class:`~matplotlib.contour.ContourSet` to the colorbar.
        '''
        if not isinstance(CS, contour.ContourSet) or CS.filled:
            raise ValueError('add_lines is only for a ContourSet of lines')
        tcolors = [c[0] for c in CS.tcolors]
        tlinewidths = [t[0] for t in CS.tlinewidths]
        # The following was an attempt to get the colorbar lines
        # to follow subsequent changes in the contour lines,
        # but more work is needed: specifically, a careful
        # look at event sequences, and at how
        # to make one object track another automatically.
        #tcolors = [col.get_colors()[0] for col in CS.collections]
        #tlinewidths = [col.get_linewidth()[0] for lw in CS.collections]
        #print 'tlinewidths:', tlinewidths
        ColorbarBase.add_lines(self, CS.levels, tcolors, tlinewidths)

    def update_normal(self, mappable):
        '''
        update solid, lines, etc. Unlike update_bruteforce, it does
        not clear the axes.  This is meant to be called when the image
        or contour plot to which this colorbar belongs is changed.
        '''
        self.draw_all()
        if isinstance(self.mappable, contour.ContourSet):
            CS = self.mappable
            if not CS.filled:
                self.add_lines(CS)


    def update_bruteforce(self, mappable):
        '''
        Destroy and rebuild the colorbar.  This is
        intended to become obsolete, and will probably be
        deprecated and then removed.  It is not called when
        the pyplot.colorbar function or the Figure.colorbar
        method are used to create the colorbar.

        '''
        # We are using an ugly brute-force method: clearing and
        # redrawing the whole thing.  The problem is that if any
        # properties have been changed by methods other than the
        # colorbar methods, those changes will be lost.
        self.ax.cla()
        # clearing the axes will delete outline, patch, solids, and lines:
        self.outline = None
        self.patch = None
        self.solids = None
        self.lines = None
        self.dividers = None
        self.set_alpha(mappable.get_alpha())
        self.cmap = mappable.cmap
        self.norm = mappable.norm
        self.config_axis()
        self.draw_all()
        if isinstance(self.mappable, contour.ContourSet):
            CS = self.mappable
            if not CS.filled:
                self.add_lines(CS)
            #if self.lines is not None:
            #    tcolors = [c[0] for c in CS.tcolors]
            #    self.lines.set_color(tcolors)
        #Fixme? Recalculate boundaries, ticks if vmin, vmax have changed.
        #Fixme: Some refactoring may be needed; we should not
        # be recalculating everything if there was a simple alpha
        # change.

@docstring.Substitution(make_axes_kw_doc)
def make_axes(parent, **kw):
    '''
    Resize and reposition a parent axes, and return a child
    axes suitable for a colorbar::

        cax, kw = make_axes(parent, **kw)

    Keyword arguments may include the following (with defaults):

        *orientation*
            'vertical'  or 'horizontal'

    %s

    All but the first of these are stripped from the input kw set.

    Returns (cax, kw), the child axes and the reduced kw dictionary.
    '''
    orientation = kw.setdefault('orientation', 'vertical')
    fraction = kw.pop('fraction', 0.15)
    shrink = kw.pop('shrink', 1.0)
    aspect = kw.pop('aspect', 20)
    #pb = transforms.PBox(parent.get_position())
    pb = parent.get_position(original=True).frozen()
    if orientation == 'vertical':
        pad = kw.pop('pad', 0.05)
        x1 = 1.0-fraction
        pb1, pbx, pbcb = pb.splitx(x1-pad, x1)
        pbcb = pbcb.shrunk(1.0, shrink).anchored('C', pbcb)
        anchor = kw.pop('anchor', (0.0, 0.5))
        panchor = kw.pop('panchor', (1.0, 0.5))
    else:
        pad = kw.pop('pad', 0.15)
        pbcb, pbx, pb1 = pb.splity(fraction, fraction+pad)
        pbcb = pbcb.shrunk(shrink, 1.0).anchored('C', pbcb)
        aspect = 1.0/aspect
        anchor = kw.pop('anchor', (0.5, 1.0))
        panchor = kw.pop('panchor', (0.5, 0.0))
    parent.set_position(pb1)
    parent.set_anchor(panchor)
    fig = parent.get_figure()
    cax = fig.add_axes(pbcb)
    cax.set_aspect(aspect, anchor=anchor, adjustable='box')
    return cax, kw


@docstring.Substitution(make_axes_kw_doc)
def make_axes_gridspec(parent, **kw):
    '''
    Resize and reposition a parent axes, and return a child axes
    suitable for a colorbar. This function is similar to
    make_axes. Prmary differences are

     * *make_axes_gridspec* should only be used with a subplot parent.

     * *make_axes* creates an instance of Axes. *make_axes_gridspec*
        creates an instance of Subplot.
       
     * *make_axes* updates the position of the
        parent. *make_axes_gridspec* replaces the grid_spec attribute
        of the parent with a new one.

    While this function is meant to be compatible with *make_axes*,
    there could be some minor differences.::

        cax, kw = make_axes_gridspec(parent, **kw)

    Keyword arguments may include the following (with defaults):

        *orientation*
            'vertical'  or 'horizontal'

    %s

    All but the first of these are stripped from the input kw set.

    Returns (cax, kw), the child axes and the reduced kw dictionary.
    '''

    orientation = kw.setdefault('orientation', 'vertical')
    fraction = kw.pop('fraction', 0.15)
    shrink = kw.pop('shrink', 1.0)
    aspect = kw.pop('aspect', 20)

    x1 = 1.0-fraction

    # for shrinking
    pad_s = (1.-shrink)*0.5
    wh_ratios = [pad_s, shrink, pad_s]

    gs_from_subplotspec = gridspec.GridSpecFromSubplotSpec
    if orientation == 'vertical':
        pad = kw.pop('pad', 0.05)
        wh_space = 2*pad/(1-pad)

        gs = gs_from_subplotspec(1, 2,
                                 subplot_spec=parent.get_subplotspec(),
                                 wspace=wh_space,
                                 width_ratios=[x1-pad, fraction]
                                 )

        gs2 = gs_from_subplotspec(3, 1,
                                  subplot_spec=gs[1],
                                  hspace=0.,
                                  height_ratios=wh_ratios,
                                  )

        anchor = (0.0, 0.5)
        panchor = (1.0, 0.5)
    else:
        pad = kw.pop('pad', 0.15)
        wh_space = 2*pad/(1-pad)

        gs = gs_from_subplotspec(2, 1,
                                 subplot_spec=parent.get_subplotspec(),
                                 hspace=wh_space,
                                 height_ratios=[x1-pad, fraction]
                                 )

        gs2 = gs_from_subplotspec(1, 3,
                                  subplot_spec=gs[1],
                                  wspace=0.,
                                  width_ratios=wh_ratios,
                                  )

        aspect = 1.0/aspect
        anchor = (0.5, 1.0)
        panchor = (0.5, 0.0)

    parent.set_subplotspec(gs[0])
    parent.update_params()
    parent.set_position(parent.figbox)
    parent.set_anchor(panchor)

    fig = parent.get_figure()
    cax = fig.add_subplot(gs2[1])
    cax.set_aspect(aspect, anchor=anchor, adjustable='box')
    return cax, kw