This file is indexed.

/usr/share/pyshared/matplotlib/colors.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
"""
A module for converting numbers or color arguments to *RGB* or *RGBA*

*RGB* and *RGBA* are sequences of, respectively, 3 or 4 floats in the
range 0-1.

This module includes functions and classes for color specification
conversions, and for mapping numbers to colors in a 1-D array of
colors called a colormap. Colormapping typically involves two steps:
a data array is first mapped onto the range 0-1 using an instance
of :class:`Normalize` or of a subclass; then this number in the 0-1
range is mapped to a color using an instance of a subclass of
:class:`Colormap`.  Two are provided here:
:class:`LinearSegmentedColormap`, which is used to generate all
the built-in colormap instances, but is also useful for making
custom colormaps, and :class:`ListedColormap`, which is used for
generating a custom colormap from a list of color specifications.

The module also provides a single instance, *colorConverter*, of the
:class:`ColorConverter` class providing methods for converting single
color specifications or sequences of them to *RGB* or *RGBA*.

Commands which take color arguments can use several formats to specify
the colors.  For the basic builtin colors, you can use a single letter

    - b  : blue
    - g  : green
    - r  : red
    - c  : cyan
    - m  : magenta
    - y  : yellow
    - k  : black
    - w  : white

Gray shades can be given as a string encoding a float in the 0-1
range, e.g.::

    color = '0.75'

For a greater range of colors, you have two options.  You can specify
the color using an html hex string, as in::

      color = '#eeefff'

or you can pass an *R* , *G* , *B* tuple, where each of *R* , *G* , *B*
are in the range [0,1].

Finally, legal html names for colors, like 'red', 'burlywood' and
'chartreuse' are supported.
"""
import re
import numpy as np
from numpy import ma
import matplotlib.cbook as cbook

parts = np.__version__.split('.')
NP_MAJOR, NP_MINOR = map(int, parts[:2])
# true if clip supports the out kwarg
NP_CLIP_OUT = NP_MAJOR>=1 and NP_MINOR>=2

cnames = {
    'aliceblue'            : '#F0F8FF',
    'antiquewhite'         : '#FAEBD7',
    'aqua'                 : '#00FFFF',
    'aquamarine'           : '#7FFFD4',
    'azure'                : '#F0FFFF',
    'beige'                : '#F5F5DC',
    'bisque'               : '#FFE4C4',
    'black'                : '#000000',
    'blanchedalmond'       : '#FFEBCD',
    'blue'                 : '#0000FF',
    'blueviolet'           : '#8A2BE2',
    'brown'                : '#A52A2A',
    'burlywood'            : '#DEB887',
    'cadetblue'            : '#5F9EA0',
    'chartreuse'           : '#7FFF00',
    'chocolate'            : '#D2691E',
    'coral'                : '#FF7F50',
    'cornflowerblue'       : '#6495ED',
    'cornsilk'             : '#FFF8DC',
    'crimson'              : '#DC143C',
    'cyan'                 : '#00FFFF',
    'darkblue'             : '#00008B',
    'darkcyan'             : '#008B8B',
    'darkgoldenrod'        : '#B8860B',
    'darkgray'             : '#A9A9A9',
    'darkgreen'            : '#006400',
    'darkkhaki'            : '#BDB76B',
    'darkmagenta'          : '#8B008B',
    'darkolivegreen'       : '#556B2F',
    'darkorange'           : '#FF8C00',
    'darkorchid'           : '#9932CC',
    'darkred'              : '#8B0000',
    'darksalmon'           : '#E9967A',
    'darkseagreen'         : '#8FBC8F',
    'darkslateblue'        : '#483D8B',
    'darkslategray'        : '#2F4F4F',
    'darkturquoise'        : '#00CED1',
    'darkviolet'           : '#9400D3',
    'deeppink'             : '#FF1493',
    'deepskyblue'          : '#00BFFF',
    'dimgray'              : '#696969',
    'dodgerblue'           : '#1E90FF',
    'firebrick'            : '#B22222',
    'floralwhite'          : '#FFFAF0',
    'forestgreen'          : '#228B22',
    'fuchsia'              : '#FF00FF',
    'gainsboro'            : '#DCDCDC',
    'ghostwhite'           : '#F8F8FF',
    'gold'                 : '#FFD700',
    'goldenrod'            : '#DAA520',
    'gray'                 : '#808080',
    'green'                : '#008000',
    'greenyellow'          : '#ADFF2F',
    'honeydew'             : '#F0FFF0',
    'hotpink'              : '#FF69B4',
    'indianred'            : '#CD5C5C',
    'indigo'               : '#4B0082',
    'ivory'                : '#FFFFF0',
    'khaki'                : '#F0E68C',
    'lavender'             : '#E6E6FA',
    'lavenderblush'        : '#FFF0F5',
    'lawngreen'            : '#7CFC00',
    'lemonchiffon'         : '#FFFACD',
    'lightblue'            : '#ADD8E6',
    'lightcoral'           : '#F08080',
    'lightcyan'            : '#E0FFFF',
    'lightgoldenrodyellow' : '#FAFAD2',
    'lightgreen'           : '#90EE90',
    'lightgray'            : '#D3D3D3',
    'lightpink'            : '#FFB6C1',
    'lightsalmon'          : '#FFA07A',
    'lightseagreen'        : '#20B2AA',
    'lightskyblue'         : '#87CEFA',
    'lightslategray'       : '#778899',
    'lightsteelblue'       : '#B0C4DE',
    'lightyellow'          : '#FFFFE0',
    'lime'                 : '#00FF00',
    'limegreen'            : '#32CD32',
    'linen'                : '#FAF0E6',
    'magenta'              : '#FF00FF',
    'maroon'               : '#800000',
    'mediumaquamarine'     : '#66CDAA',
    'mediumblue'           : '#0000CD',
    'mediumorchid'         : '#BA55D3',
    'mediumpurple'         : '#9370DB',
    'mediumseagreen'       : '#3CB371',
    'mediumslateblue'      : '#7B68EE',
    'mediumspringgreen'    : '#00FA9A',
    'mediumturquoise'      : '#48D1CC',
    'mediumvioletred'      : '#C71585',
    'midnightblue'         : '#191970',
    'mintcream'            : '#F5FFFA',
    'mistyrose'            : '#FFE4E1',
    'moccasin'             : '#FFE4B5',
    'navajowhite'          : '#FFDEAD',
    'navy'                 : '#000080',
    'oldlace'              : '#FDF5E6',
    'olive'                : '#808000',
    'olivedrab'            : '#6B8E23',
    'orange'               : '#FFA500',
    'orangered'            : '#FF4500',
    'orchid'               : '#DA70D6',
    'palegoldenrod'        : '#EEE8AA',
    'palegreen'            : '#98FB98',
    'palevioletred'        : '#AFEEEE',
    'papayawhip'           : '#FFEFD5',
    'peachpuff'            : '#FFDAB9',
    'peru'                 : '#CD853F',
    'pink'                 : '#FFC0CB',
    'plum'                 : '#DDA0DD',
    'powderblue'           : '#B0E0E6',
    'purple'               : '#800080',
    'red'                  : '#FF0000',
    'rosybrown'            : '#BC8F8F',
    'royalblue'            : '#4169E1',
    'saddlebrown'          : '#8B4513',
    'salmon'               : '#FA8072',
    'sandybrown'           : '#FAA460',
    'seagreen'             : '#2E8B57',
    'seashell'             : '#FFF5EE',
    'sienna'               : '#A0522D',
    'silver'               : '#C0C0C0',
    'skyblue'              : '#87CEEB',
    'slateblue'            : '#6A5ACD',
    'slategray'            : '#708090',
    'snow'                 : '#FFFAFA',
    'springgreen'          : '#00FF7F',
    'steelblue'            : '#4682B4',
    'tan'                  : '#D2B48C',
    'teal'                 : '#008080',
    'thistle'              : '#D8BFD8',
    'tomato'               : '#FF6347',
    'turquoise'            : '#40E0D0',
    'violet'               : '#EE82EE',
    'wheat'                : '#F5DEB3',
    'white'                : '#FFFFFF',
    'whitesmoke'           : '#F5F5F5',
    'yellow'               : '#FFFF00',
    'yellowgreen'          : '#9ACD32',
    }


# add british equivs
for k, v in cnames.items():
    if k.find('gray')>=0:
        k = k.replace('gray', 'grey')
        cnames[k] = v

def is_color_like(c):
    'Return *True* if *c* can be converted to *RGB*'
    try:
        colorConverter.to_rgb(c)
        return True
    except ValueError:
        return False


def rgb2hex(rgb):
    'Given an rgb or rgba sequence of 0-1 floats, return the hex string'
    return '#%02x%02x%02x' % tuple([round(val*255) for val in rgb[:3]])

hexColorPattern = re.compile("\A#[a-fA-F0-9]{6}\Z")

def hex2color(s):
    """
    Take a hex string *s* and return the corresponding rgb 3-tuple
    Example: #efefef -> (0.93725, 0.93725, 0.93725)
    """
    if not isinstance(s, basestring):
        raise TypeError('hex2color requires a string argument')
    if hexColorPattern.match(s) is None:
        raise ValueError('invalid hex color string "%s"' % s)
    return tuple([int(n, 16)/255.0 for n in (s[1:3], s[3:5], s[5:7])])

class ColorConverter:
    """
    Provides methods for converting color specifications to *RGB* or *RGBA*

    Caching is used for more efficient conversion upon repeated calls
    with the same argument.

    Ordinarily only the single instance instantiated in this module,
    *colorConverter*, is needed.
    """
    colors = {
        'b' : (0.0, 0.0, 1.0),
        'g' : (0.0, 0.5, 0.0),
        'r' : (1.0, 0.0, 0.0),
        'c' : (0.0, 0.75, 0.75),
        'm' : (0.75, 0, 0.75),
        'y' : (0.75, 0.75, 0),
        'k' : (0.0, 0.0, 0.0),
        'w' : (1.0, 1.0, 1.0),
        }

    cache = {}
    def to_rgb(self, arg):
        """
        Returns an *RGB* tuple of three floats from 0-1.

        *arg* can be an *RGB* or *RGBA* sequence or a string in any of
        several forms:

            1) a letter from the set 'rgbcmykw'
            2) a hex color string, like '#00FFFF'
            3) a standard name, like 'aqua'
            4) a float, like '0.4', indicating gray on a 0-1 scale

        if *arg* is *RGBA*, the *A* will simply be discarded.
        """
        try: return self.cache[arg]
        except KeyError: pass
        except TypeError: # could be unhashable rgb seq
            arg = tuple(arg)
            try: return self.cache[arg]
            except KeyError: pass
            except TypeError:
                raise ValueError(
                      'to_rgb: arg "%s" is unhashable even inside a tuple'
                                    % (str(arg),))

        try:
            if cbook.is_string_like(arg):
                argl = arg.lower()
                color = self.colors.get(argl, None)
                if color is None:
                    str1 = cnames.get(argl, argl)
                    if str1.startswith('#'):
                        color = hex2color(str1)
                    else:
                        fl = float(argl)
                        if fl < 0 or fl > 1:
                            raise ValueError(
                                   'gray (string) must be in range 0-1')
                        color = tuple([fl]*3)
            elif cbook.iterable(arg):
                if len(arg) > 4 or len(arg) < 3:
                    raise ValueError(
                           'sequence length is %d; must be 3 or 4'%len(arg))
                color = tuple(arg[:3])
                if [x for x in color if (float(x) < 0) or  (x > 1)]:
                    # This will raise TypeError if x is not a number.
                    raise ValueError('number in rbg sequence outside 0-1 range')
            else:
                raise ValueError('cannot convert argument to rgb sequence')

            self.cache[arg] = color

        except (KeyError, ValueError, TypeError), exc:
            raise ValueError('to_rgb: Invalid rgb arg "%s"\n%s' % (str(arg), exc))
            # Error messages could be improved by handling TypeError
            # separately; but this should be rare and not too hard
            # for the user to figure out as-is.
        return color

    def to_rgba(self, arg, alpha=None):
        """
        Returns an *RGBA* tuple of four floats from 0-1.

        For acceptable values of *arg*, see :meth:`to_rgb`.
        In addition, if *arg* is "none" (case-insensitive),
        then (0,0,0,0) will be returned.
        If *arg* is an *RGBA* sequence and *alpha* is not *None*,
        *alpha* will replace the original *A*.
        """
        try:
            if arg.lower() == 'none':
                return (0.0, 0.0, 0.0, 0.0)
        except AttributeError:
            pass

        try:
            if not cbook.is_string_like(arg) and cbook.iterable(arg):
                if len(arg) == 4:
                    if [x for x in arg if (float(x) < 0) or  (x > 1)]:
                        # This will raise TypeError if x is not a number.
                        raise ValueError('number in rbga sequence outside 0-1 range')
                    if alpha is None:
                        return tuple(arg)
                    if alpha < 0.0 or alpha > 1.0:
                        raise ValueError("alpha must be in range 0-1")
                    return arg[0], arg[1], arg[2], alpha
                r,g,b = arg[:3]
                if [x for x in (r,g,b) if (float(x) < 0) or  (x > 1)]:
                    raise ValueError('number in rbg sequence outside 0-1 range')
            else:
                r,g,b = self.to_rgb(arg)
            if alpha is None:
                alpha = 1.0
            return r,g,b,alpha
        except (TypeError, ValueError), exc:
            raise ValueError('to_rgba: Invalid rgba arg "%s"\n%s' % (str(arg), exc))

    def to_rgba_array(self, c, alpha=None):
        """
        Returns a numpy array of *RGBA* tuples.

        Accepts a single mpl color spec or a sequence of specs.

        Special case to handle "no color": if *c* is "none" (case-insensitive),
        then an empty array will be returned.  Same for an empty list.
        """
        try:
            nc = len(c)
        except TypeError:
            raise ValueError(
                "Cannot convert argument type %s to rgba array" % type(c))
        try:
            if nc == 0 or c.lower() == 'none':
                return np.zeros((0,4), dtype=np.float)
        except AttributeError:
            pass
        try:
            # Single value? Put it in an array with a single row.
            return np.array([self.to_rgba(c, alpha)], dtype=np.float)
        except ValueError:
            if isinstance(c, np.ndarray):
                if c.ndim != 2 and c.dtype.kind not in 'SU':
                    raise ValueError("Color array must be two-dimensional")
                if (c.ndim == 2 and c.shape[1] == 4 and c.dtype.kind == 'f'):
                    if (c.ravel() > 1).any() or (c.ravel() < 0).any():
                        raise ValueError(
                            "number in rgba sequence is outside 0-1 range")
                    result = np.asarray(c, np.float)
                    if alpha is not None:
                        if alpha > 1 or alpha < 0:
                            raise ValueError("alpha must be in 0-1 range")
                        result[:,3] = alpha
                    return result
                    # This alpha operation above is new, and depends
                    # on higher levels to refrain from setting alpha
                    # to values other than None unless there is
                    # intent to override any existing alpha values.

            # It must be some other sequence of color specs.
            result = np.zeros((nc, 4), dtype=np.float)
            for i, cc in enumerate(c):
                result[i] = self.to_rgba(cc, alpha)
            return result

colorConverter = ColorConverter()

def makeMappingArray(N, data, gamma=1.0):
    """Create an *N* -element 1-d lookup table

    *data* represented by a list of x,y0,y1 mapping correspondences.
    Each element in this list represents how a value between 0 and 1
    (inclusive) represented by x is mapped to a corresponding value
    between 0 and 1 (inclusive). The two values of y are to allow
    for discontinuous mapping functions (say as might be found in a
    sawtooth) where y0 represents the value of y for values of x
    <= to that given, and y1 is the value to be used for x > than
    that given). The list must start with x=0, end with x=1, and
    all values of x must be in increasing order. Values between
    the given mapping points are determined by simple linear interpolation.

    Alternatively, data can be a function mapping values between 0 - 1
    to 0 - 1.

    The function returns an array "result" where ``result[x*(N-1)]``
    gives the closest value for values of x between 0 and 1.
    """

    if callable(data):
        xind = np.linspace(0, 1, N)**gamma
        lut = np.clip(np.array(data(xind), dtype=np.float), 0, 1)
        return lut

    try:
        adata = np.array(data)
    except:
        raise TypeError("data must be convertable to an array")
    shape = adata.shape
    if len(shape) != 2 and shape[1] != 3:
        raise ValueError("data must be nx3 format")

    x  = adata[:,0]
    y0 = adata[:,1]
    y1 = adata[:,2]

    if x[0] != 0. or x[-1] != 1.0:
        raise ValueError(
           "data mapping points must start with x=0. and end with x=1")
    if np.sometrue(np.sort(x)-x):
        raise ValueError(
           "data mapping points must have x in increasing order")
    # begin generation of lookup table
    x = x * (N-1)
    lut = np.zeros((N,), np.float)
    xind = (N - 1) * np.linspace(0, 1, N)**gamma
    ind = np.searchsorted(x, xind)[1:-1]

    lut[1:-1] = ( ((xind[1:-1] - x[ind-1]) / (x[ind] - x[ind-1]))
                  * (y0[ind] - y1[ind-1]) + y1[ind-1])
    lut[0] = y1[0]
    lut[-1] = y0[-1]
    # ensure that the lut is confined to values between 0 and 1 by clipping it
    np.clip(lut, 0.0, 1.0)
    #lut = where(lut > 1., 1., lut)
    #lut = where(lut < 0., 0., lut)
    return lut


class Colormap:
    """Base class for all scalar to rgb mappings

        Important methods:

            * :meth:`set_bad`
            * :meth:`set_under`
            * :meth:`set_over`
    """
    def __init__(self, name, N=256):
        """
        Public class attributes:
            :attr:`N` : number of rgb quantization levels
            :attr:`name` : name of colormap

        """
        self.name = name
        self.N = N
        self._rgba_bad = (0.0, 0.0, 0.0, 0.0) # If bad, don't paint anything.
        self._rgba_under = None
        self._rgba_over = None
        self._i_under = N
        self._i_over = N+1
        self._i_bad = N+2
        self._isinit = False


    def __call__(self, X, alpha=None, bytes=False):
        """
        *X* is either a scalar or an array (of any dimension).
        If scalar, a tuple of rgba values is returned, otherwise
        an array with the new shape = oldshape+(4,). If the X-values
        are integers, then they are used as indices into the array.
        If they are floating point, then they must be in the
        interval (0.0, 1.0).
        Alpha must be a scalar between 0 and 1, or None.
        If bytes is False, the rgba values will be floats on a
        0-1 scale; if True, they will be uint8, 0-255.
        """

        if not self._isinit: self._init()
        mask_bad = None
        if not cbook.iterable(X):
            vtype = 'scalar'
            xa = np.array([X])
        else:
            vtype = 'array'
            xma = ma.array(X, copy=False)
            mask_bad = xma.mask
            xa = xma.data.copy()   # Copy here to avoid side effects.
            del xma
            # masked values are substituted below; no need to fill them here

        if xa.dtype.char in np.typecodes['Float']:
            # Treat 1.0 as slightly less than 1.
            cbook._putmask(xa, xa==1.0, np.nextafter(xa.dtype.type(1),
                                                     xa.dtype.type(0)))
            # The following clip is fast, and prevents possible
            # conversion of large positive values to negative integers.

            xa *= self.N
            if NP_CLIP_OUT:
                np.clip(xa, -1, self.N, out=xa)
            else:
                xa = np.clip(xa, -1, self.N)

            # ensure that all 'under' values will still have negative
            # value after casting to int
            cbook._putmask(xa, xa<0.0, -1)
            xa = xa.astype(int)
        # Set the over-range indices before the under-range;
        # otherwise the under-range values get converted to over-range.
        cbook._putmask(xa, xa>self.N-1, self._i_over)
        cbook._putmask(xa, xa<0, self._i_under)
        if mask_bad is not None:
            if mask_bad.shape == xa.shape:
                cbook._putmask(xa, mask_bad, self._i_bad)
            elif mask_bad:
                xa.fill(self._i_bad)
        if bytes:
            lut = (self._lut * 255).astype(np.uint8)
        else:
            lut = self._lut.copy() # Don't let alpha modify original _lut.

        if alpha is not None:
            alpha = min(alpha, 1.0) # alpha must be between 0 and 1
            alpha = max(alpha, 0.0)
            if bytes:
                alpha = int(alpha * 255)
            if (lut[-1] == 0).all():
                lut[:-1, -1] = alpha
                # All zeros is taken as a flag for the default bad
                # color, which is no color--fully transparent.  We
                # don't want to override this.
            else:
                lut[:,-1] = alpha
                # If the bad value is set to have a color, then we
                # override its alpha just as for any other value.

        rgba = np.empty(shape=xa.shape+(4,), dtype=lut.dtype)
        lut.take(xa, axis=0, mode='clip', out=rgba)
                    #  twice as fast as lut[xa];
                    #  using the clip or wrap mode and providing an
                    #  output array speeds it up a little more.
        if vtype == 'scalar':
            rgba = tuple(rgba[0,:])
        return rgba

    def set_bad(self, color = 'k', alpha = None):
        '''Set color to be used for masked values.
        '''
        self._rgba_bad = colorConverter.to_rgba(color, alpha)
        if self._isinit: self._set_extremes()

    def set_under(self, color = 'k', alpha = None):
        '''Set color to be used for low out-of-range values.
           Requires norm.clip = False
        '''
        self._rgba_under = colorConverter.to_rgba(color, alpha)
        if self._isinit: self._set_extremes()

    def set_over(self, color = 'k', alpha = None):
        '''Set color to be used for high out-of-range values.
           Requires norm.clip = False
        '''
        self._rgba_over = colorConverter.to_rgba(color, alpha)
        if self._isinit: self._set_extremes()

    def _set_extremes(self):
        if self._rgba_under:
            self._lut[self._i_under] = self._rgba_under
        else:
            self._lut[self._i_under] = self._lut[0]
        if self._rgba_over:
            self._lut[self._i_over] = self._rgba_over
        else:
            self._lut[self._i_over] = self._lut[self.N-1]
        self._lut[self._i_bad] = self._rgba_bad

    def _init(self):
        '''Generate the lookup table, self._lut'''
        raise NotImplementedError("Abstract class only")

    def is_gray(self):
        if not self._isinit: self._init()
        return (np.alltrue(self._lut[:,0] == self._lut[:,1])
                    and np.alltrue(self._lut[:,0] == self._lut[:,2]))


class LinearSegmentedColormap(Colormap):
    """Colormap objects based on lookup tables using linear segments.

    The lookup table is generated using linear interpolation for each
    primary color, with the 0-1 domain divided into any number of
    segments.
    """
    def __init__(self, name, segmentdata, N=256, gamma=1.0):
        """Create color map from linear mapping segments

        segmentdata argument is a dictionary with a red, green and blue
        entries. Each entry should be a list of *x*, *y0*, *y1* tuples,
        forming rows in a table.

        Example: suppose you want red to increase from 0 to 1 over
        the bottom half, green to do the same over the middle half,
        and blue over the top half.  Then you would use::

            cdict = {'red':   [(0.0,  0.0, 0.0),
                               (0.5,  1.0, 1.0),
                               (1.0,  1.0, 1.0)],

                     'green': [(0.0,  0.0, 0.0),
                               (0.25, 0.0, 0.0),
                               (0.75, 1.0, 1.0),
                               (1.0,  1.0, 1.0)],

                     'blue':  [(0.0,  0.0, 0.0),
                               (0.5,  0.0, 0.0),
                               (1.0,  1.0, 1.0)]}

        Each row in the table for a given color is a sequence of
        *x*, *y0*, *y1* tuples.  In each sequence, *x* must increase
        monotonically from 0 to 1.  For any input value *z* falling
        between *x[i]* and *x[i+1]*, the output value of a given color
        will be linearly interpolated between *y1[i]* and *y0[i+1]*::

            row i:   x  y0  y1
                           /
                          /
            row i+1: x  y0  y1

        Hence y0 in the first row and y1 in the last row are never used.


        .. seealso::

            :meth:`LinearSegmentedColormap.from_list`
               Static method; factory function for generating a
               smoothly-varying LinearSegmentedColormap.

            :func:`makeMappingArray`
               For information about making a mapping array.
        """
        self.monochrome = False  # True only if all colors in map are identical;
                                 # needed for contouring.
        Colormap.__init__(self, name, N)
        self._segmentdata = segmentdata
        self._gamma = gamma

    def _init(self):
        self._lut = np.ones((self.N + 3, 4), np.float)
        self._lut[:-3, 0] = makeMappingArray(self.N,
                self._segmentdata['red'], self._gamma)
        self._lut[:-3, 1] = makeMappingArray(self.N,
                self._segmentdata['green'], self._gamma)
        self._lut[:-3, 2] = makeMappingArray(self.N,
                self._segmentdata['blue'], self._gamma)
        self._isinit = True
        self._set_extremes()

    def set_gamma(self, gamma):
        """
        Set a new gamma value and regenerate color map.
        """
        self._gamma = gamma
        self._init()

    @staticmethod
    def from_list(name, colors, N=256, gamma=1.0):
        """
        Make a linear segmented colormap with *name* from a sequence
        of *colors* which evenly transitions from colors[0] at val=0
        to colors[-1] at val=1.  *N* is the number of rgb quantization
        levels.
        Alternatively, a list of (value, color) tuples can be given
        to divide the range unevenly.
        """

        if not cbook.iterable(colors):
            raise ValueError('colors must be iterable')

        if cbook.iterable(colors[0]) and len(colors[0]) == 2 and \
                not cbook.is_string_like(colors[0]):
            # List of value, color pairs
            vals, colors = zip(*colors)
        else:
            vals = np.linspace(0., 1., len(colors))

        cdict = dict(red=[], green=[], blue=[])
        for val, color in zip(vals, colors):
            r,g,b = colorConverter.to_rgb(color)
            cdict['red'].append((val, r, r))
            cdict['green'].append((val, g, g))
            cdict['blue'].append((val, b, b))

        return LinearSegmentedColormap(name, cdict, N, gamma)

class ListedColormap(Colormap):
    """Colormap object generated from a list of colors.

    This may be most useful when indexing directly into a colormap,
    but it can also be used to generate special colormaps for ordinary
    mapping.
    """
    def __init__(self, colors, name = 'from_list', N = None):
        """
        Make a colormap from a list of colors.

        *colors*
            a list of matplotlib color specifications,
            or an equivalent Nx3 floating point array (*N* rgb values)
        *name*
            a string to identify the colormap
        *N*
            the number of entries in the map.  The default is *None*,
            in which case there is one colormap entry for each
            element in the list of colors.  If::

                N < len(colors)

            the list will be truncated at *N*.  If::

                N > len(colors)

            the list will be extended by repetition.
        """
        self.colors = colors
        self.monochrome = False  # True only if all colors in map are identical;
                                 # needed for contouring.
        if N is None:
            N = len(self.colors)
        else:
            if cbook.is_string_like(self.colors):
                self.colors = [self.colors] * N
                self.monochrome = True
            elif cbook.iterable(self.colors):
                self.colors = list(self.colors) # in case it was a tuple
                if len(self.colors) == 1:
                    self.monochrome = True
                if len(self.colors) < N:
                    self.colors = list(self.colors) * N
                del(self.colors[N:])
            else:
                try: gray = float(self.colors)
                except TypeError: pass
                else:  self.colors = [gray] * N
                self.monochrome = True
        Colormap.__init__(self, name, N)


    def _init(self):
        rgb = np.array([colorConverter.to_rgb(c)
                    for c in self.colors], np.float)
        self._lut = np.zeros((self.N + 3, 4), np.float)
        self._lut[:-3, :-1] = rgb
        self._lut[:-3, -1] = 1
        self._isinit = True
        self._set_extremes()


class Normalize:
    """
    Normalize a given value to the 0-1 range
    """
    def __init__(self, vmin=None, vmax=None, clip=False):
        """
        If *vmin* or *vmax* is not given, they are taken from the input's
        minimum and maximum value respectively.  If *clip* is *True* and
        the given value falls outside the range, the returned value
        will be 0 or 1, whichever is closer. Returns 0 if::

            vmin==vmax

        Works with scalars or arrays, including masked arrays.  If
        *clip* is *True*, masked values are set to 1; otherwise they
        remain masked.  Clipping silently defeats the purpose of setting
        the over, under, and masked colors in the colormap, so it is
        likely to lead to surprises; therefore the default is
        *clip* = *False*.
        """
        self.vmin = vmin
        self.vmax = vmax
        self.clip = clip

    @staticmethod
    def process_value(value):
        """
        Homogenize the input *value* for easy and efficient normalization.

        *value* can be a scalar or sequence.

        Returns *result*, *is_scalar*, where *result* is a
        masked array matching *value*.  Float dtypes are preserved;
        integer types with two bytes or smaller are converted to
        np.float32, and larger types are converted to np.float.
        Preserving float32 when possible, and using in-place operations,
        can greatly improve speed for large arrays.

        Experimental; we may want to add an option to force the
        use of float32.
        """
        if cbook.iterable(value):
            is_scalar = False
            result = ma.asarray(value)
            if result.dtype.kind == 'f':
                if isinstance(value, np.ndarray):
                    result = result.copy()
            elif result.dtype.itemsize > 2:
                result = result.astype(np.float)
            else:
                result = result.astype(np.float32)
        else:
            is_scalar = True
            result = ma.array([value]).astype(np.float)
        return result, is_scalar

    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        result, is_scalar = self.process_value(value)

        self.autoscale_None(result)
        vmin, vmax = self.vmin, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin == vmax:
            result.fill(0)   # Or should it be all masked?  Or 0.5?
        else:
            vmin = float(vmin)
            vmax = float(vmax)
            if clip:
                mask = ma.getmask(result)
                result = ma.array(np.clip(result.filled(vmax), vmin, vmax),
                                  mask=mask)
            # ma division is very slow; we can take a shortcut
            resdat = result.data
            resdat -= vmin
            resdat /= (vmax - vmin)
            result = np.ma.array(resdat, mask=result.mask, copy=False)
        if is_scalar:
            result = result[0]
        return result

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        vmin = float(self.vmin)
        vmax = float(self.vmax)

        if cbook.iterable(value):
            val = ma.asarray(value)
            return vmin + val * (vmax - vmin)
        else:
            return vmin + value * (vmax - vmin)

    def autoscale(self, A):
        '''
        Set *vmin*, *vmax* to min, max of *A*.
        '''
        self.vmin = ma.min(A)
        self.vmax = ma.max(A)

    def autoscale_None(self, A):
        ' autoscale only None-valued vmin or vmax'
        if self.vmin is None:
            self.vmin = ma.min(A)
        if self.vmax is None:
            self.vmax = ma.max(A)

    def scaled(self):
        'return true if vmin and vmax set'
        return (self.vmin is not None and self.vmax is not None)

class LogNorm(Normalize):
    """
    Normalize a given value to the 0-1 range on a log scale
    """
    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        result, is_scalar = self.process_value(value)

        result = ma.masked_less_equal(result, 0, copy=False)

        self.autoscale_None(result)
        vmin, vmax = self.vmin, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin<=0:
            raise ValueError("values must all be positive")
        elif vmin==vmax:
            result.fill(0)
        else:
            if clip:
                mask = ma.getmask(result)
                val = ma.array(np.clip(result.filled(vmax), vmin, vmax),
                                mask=mask)
            #result = (ma.log(result)-np.log(vmin))/(np.log(vmax)-np.log(vmin))
            # in-place equivalent of above can be much faster
            resdat = result.data
            mask = result.mask
            if mask is np.ma.nomask:
                mask = (resdat <= 0)
            else:
                mask |= resdat <= 0
            cbook._putmask(resdat, mask, 1)
            np.log(resdat, resdat)
            resdat -= np.log(vmin)
            resdat /= (np.log(vmax) - np.log(vmin))
            result = np.ma.array(resdat, mask=mask, copy=False)
        if is_scalar:
            result = result[0]
        return result

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        vmin, vmax = self.vmin, self.vmax

        if cbook.iterable(value):
            val = ma.asarray(value)
            return vmin * ma.power((vmax/vmin), val)
        else:
            return vmin * pow((vmax/vmin), value)

    def autoscale(self, A):
        '''
        Set *vmin*, *vmax* to min, max of *A*.
        '''
        A = ma.masked_less_equal(A, 0, copy=False)
        self.vmin = ma.min(A)
        self.vmax = ma.max(A)

    def autoscale_None(self, A):
        ' autoscale only None-valued vmin or vmax'
        if self.vmin is not None and self.vmax is not None:
            return
        A = ma.masked_less_equal(A, 0, copy=False)
        if self.vmin is None:
            self.vmin = ma.min(A)
        if self.vmax is None:
            self.vmax = ma.max(A)

class BoundaryNorm(Normalize):
    '''
    Generate a colormap index based on discrete intervals.

    Unlike :class:`Normalize` or :class:`LogNorm`,
    :class:`BoundaryNorm` maps values to integers instead of to the
    interval 0-1.

    Mapping to the 0-1 interval could have been done via
    piece-wise linear interpolation, but using integers seems
    simpler, and reduces the number of conversions back and forth
    between integer and floating point.
    '''
    def __init__(self, boundaries, ncolors, clip=False):
        '''
        *boundaries*
            a monotonically increasing sequence
        *ncolors*
            number of colors in the colormap to be used

        If::

            b[i] <= v < b[i+1]

        then v is mapped to color j;
        as i varies from 0 to len(boundaries)-2,
        j goes from 0 to ncolors-1.

        Out-of-range values are mapped to -1 if low and ncolors
        if high; these are converted to valid indices by
        :meth:`Colormap.__call__` .
        '''
        self.clip = clip
        self.vmin = boundaries[0]
        self.vmax = boundaries[-1]
        self.boundaries = np.asarray(boundaries)
        self.N = len(self.boundaries)
        self.Ncmap = ncolors
        if self.N-1 == self.Ncmap:
            self._interp = False
        else:
            self._interp = True

    def __call__(self, x, clip=None):
        if clip is None:
            clip = self.clip
        x = ma.asarray(x)
        mask = ma.getmaskarray(x)
        xx = x.filled(self.vmax+1)
        if clip:
            np.clip(xx, self.vmin, self.vmax)
        iret = np.zeros(x.shape, dtype=np.int16)
        for i, b in enumerate(self.boundaries):
            iret[xx>=b] = i
        if self._interp:
            iret = (iret * (float(self.Ncmap-1)/(self.N-2))).astype(np.int16)
        iret[xx<self.vmin] = -1
        iret[xx>=self.vmax] = self.Ncmap
        ret = ma.array(iret, mask=mask)
        if ret.shape == () and not mask:
            ret = int(ret)  # assume python scalar
        return ret

    def inverse(self, value):
        return ValueError("BoundaryNorm is not invertible")


class NoNorm(Normalize):
    '''
    Dummy replacement for Normalize, for the case where we
    want to use indices directly in a
    :class:`~matplotlib.cm.ScalarMappable` .
    '''
    def __call__(self, value, clip=None):
        return value

    def inverse(self, value):
        return value

# compatibility with earlier class names that violated convention:
normalize = Normalize
no_norm = NoNorm

def rgb_to_hsv(arr):
    """
    convert rgb values in a numpy array to hsv values
    input and output arrays should have shape (M,N,3)
    """
    out = np.zeros_like(arr)
    arr_max = arr.max(-1)
    ipos = arr_max > 0
    delta = arr.ptp(-1)
    s = np.zeros_like(delta)
    s[ipos] = delta[ipos] / arr_max[ipos]
    ipos = delta > 0
    # red is max
    idx = (arr[:,:,0] == arr_max) & ipos
    out[idx, 0] = (arr[idx, 1] - arr[idx, 2]) / delta[idx]
    # green is max
    idx = (arr[:,:,1] == arr_max) & ipos
    out[idx, 0] = 2. + (arr[idx, 2] - arr[idx, 0] ) / delta[idx]
    # blue is max
    idx = (arr[:,:,2] == arr_max) & ipos
    out[idx, 0] = 4. + (arr[idx, 0] - arr[idx, 1] ) / delta[idx]
    out[:,:,0] = (out[:,:,0]/6.0) % 1.0
    out[:,:,1] = s
    out[:,:,2] = arr_max
    return out

def hsv_to_rgb(hsv):
    """
    convert hsv values in a numpy array to rgb values
    both input and output arrays have shape (M,N,3)
    """
    h = hsv[:,:,0]; s = hsv[:,:,1]; v = hsv[:,:,2]
    r = np.empty_like(h); g = np.empty_like(h); b = np.empty_like(h)
    i = (h*6.0).astype(np.int)
    f = (h*6.0) - i
    p = v*(1.0 - s)
    q = v*(1.0 - s*f)
    t = v*(1.0 - s*(1.0-f))
    idx = i%6 == 0
    r[idx] = v[idx]; g[idx] = t[idx]; b[idx] = p[idx]
    idx = i == 1
    r[idx] = q[idx]; g[idx] = v[idx]; b[idx] = p[idx]
    idx = i == 2
    r[idx] = p[idx]; g[idx] = v[idx]; b[idx] = t[idx]
    idx = i == 3
    r[idx] = p[idx]; g[idx] = q[idx]; b[idx] = v[idx]
    idx = i == 4
    r[idx] = t[idx]; g[idx] = p[idx]; b[idx] = v[idx]
    idx = i == 5
    r[idx] = v[idx]; g[idx] = p[idx]; b[idx] = q[idx]
    idx = s == 0
    r[idx] = v[idx]; g[idx] = v[idx]; b[idx] = v[idx]
    rgb = np.empty_like(hsv)
    rgb[:,:,0]=r; rgb[:,:,1]=g; rgb[:,:,2]=b
    return rgb

class LightSource(object):
    """
    Create a light source coming from the specified azimuth and elevation.
    Angles are in degrees, with the azimuth measured
    clockwise from north and elevation up from the zero plane of the surface.
    The :meth:`shade` is used to produce rgb values for a shaded relief image
    given a data array.
    """
    def __init__(self,azdeg=315,altdeg=45,\
                 hsv_min_val=0,hsv_max_val=1,hsv_min_sat=1,hsv_max_sat=0):
       """
       Specify the azimuth (measured clockwise from south) and altitude
       (measured up from the plane of the surface) of the light source
       in degrees.

       The color of the resulting image will be darkened
       by moving the (s,v) values (in hsv colorspace) toward
       (hsv_min_sat, hsv_min_val) in the shaded regions, or
       lightened by sliding (s,v) toward
       (hsv_max_sat hsv_max_val) in regions that are illuminated.
       The default extremes are chose so that completely shaded points
       are nearly black (s = 1, v = 0) and completely illuminated points
       are nearly white (s = 0, v = 1).
       """
       self.azdeg = azdeg
       self.altdeg = altdeg
       self.hsv_min_val = hsv_min_val
       self.hsv_max_val = hsv_max_val
       self.hsv_min_sat = hsv_min_sat
       self.hsv_max_sat = hsv_max_sat

    def shade(self,data,cmap):
        """
        Take the input data array, convert to HSV values in the
        given colormap, then adjust those color values
        to given the impression of a shaded relief map with a
        specified light source.
        RGBA values are returned, which can then be used to
        plot the shaded image with imshow.
        """

        rgb0 = cmap((data-data.min())/(data.max()-data.min()))
        rgb1 = self.shade_rgb(rgb0, elevation=data)
        rgb0[:,:,0:3] = rgb1
        return rgb0

    def shade_rgb(self,rgb, elevation, fraction=1.):
        """
        Take the input RGB array (ny*nx*3) adjust their color values
        to given the impression of a shaded relief map with a
        specified light source using the elevation (ny*nx).
        A new RGB array ((ny*nx*3)) is returned.
        """
        # imagine an artificial sun placed at infinity in
        # some azimuth and elevation position illuminating our surface. The parts of
        # the surface that slope toward the sun should brighten while those sides
        # facing away should become darker.
        # convert alt, az to radians
        az = self.azdeg*np.pi/180.0
        alt = self.altdeg*np.pi/180.0
        # gradient in x and y directions
        dx, dy = np.gradient(elevation)
        slope = 0.5*np.pi - np.arctan(np.hypot(dx, dy))
        aspect = np.arctan2(dx, dy)
        intensity = np.sin(alt)*np.sin(slope) + np.cos(alt)*np.cos(slope)*np.cos(-az -\
                aspect - 0.5*np.pi)
        # rescale to interval -1,1
        # +1 means maximum sun exposure and -1 means complete shade.
        intensity = (intensity - intensity.min())/(intensity.max() - intensity.min())
        intensity = (2.*intensity - 1.)*fraction
        # convert to rgb, then rgb to hsv
        #rgb = cmap((data-data.min())/(data.max()-data.min()))
        hsv = rgb_to_hsv(rgb[:,:,0:3])
        # modify hsv values to simulate illumination.
        hsv[:,:,1] = np.where(np.logical_and(np.abs(hsv[:,:,1])>1.e-10,intensity>0),\
                (1.-intensity)*hsv[:,:,1]+intensity*self.hsv_max_sat, hsv[:,:,1])
        hsv[:,:,2] = np.where(intensity > 0, (1.-intensity)*hsv[:,:,2] +\
                intensity*self.hsv_max_val, hsv[:,:,2])
        hsv[:,:,1] = np.where(np.logical_and(np.abs(hsv[:,:,1])>1.e-10,intensity<0),\
                (1.+intensity)*hsv[:,:,1]-intensity*self.hsv_min_sat, hsv[:,:,1])
        hsv[:,:,2] = np.where(intensity < 0, (1.+intensity)*hsv[:,:,2] -\
                intensity*self.hsv_min_val, hsv[:,:,2])
        hsv[:,:,1:] = np.where(hsv[:,:,1:]<0.,0,hsv[:,:,1:])
        hsv[:,:,1:] = np.where(hsv[:,:,1:]>1.,1,hsv[:,:,1:])
        # convert modified hsv back to rgb.
        return hsv_to_rgb(hsv)