This file is indexed.

/usr/share/pyshared/matplotlib/finance.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
"""
A collection of modules for collecting, analyzing and plotting
financial data.   User contributions welcome!

"""
#from __future__ import division
import os, warnings
from urllib2 import urlopen

try:
    from hashlib import md5
except ImportError:
    from md5 import md5 #Deprecated in 2.5
import datetime

import numpy as np

from matplotlib import verbose, get_configdir
from matplotlib.dates import date2num
from matplotlib.cbook import iterable
from matplotlib.collections import LineCollection, PolyCollection
from matplotlib.colors import colorConverter
from matplotlib.lines import Line2D, TICKLEFT, TICKRIGHT
from matplotlib.patches import Rectangle
from matplotlib.transforms import Affine2D


configdir = get_configdir()
cachedir = os.path.join(configdir, 'finance.cache')


stock_dt = np.dtype([('date', object),
                     ('year', np.int16),
                     ('month', np.int8),
                     ('day', np.int8),
                     ('d', np.float),     # mpl datenum
                     ('open', np.float),
                     ('close', np.float),
                     ('high', np.float),
                     ('low', np.float),
                     ('volume', np.float),
                     ('aclose', np.float)])


def parse_yahoo_historical(fh, adjusted=True, asobject=False):
    """
    Parse the historical data in file handle fh from yahoo finance.

    *adjusted*
      If True (default) replace open, close, high, and low prices with
      their adjusted values. The adjustment is by a scale factor, S =
      adjusted_close/close. Adjusted prices are actual prices
      multiplied by S.

      Volume is not adjusted as it is already backward split adjusted
      by Yahoo. If you want to compute dollars traded, multiply volume
      by the adjusted close, regardless of whether you choose adjusted
      = True|False.


    *asobject*
      If False (default for compatibility with earlier versions)
      return a list of tuples containing

        d, open, close, high, low, volume

      If None (preferred alternative to False), return
      a 2-D ndarray corresponding to the list of tuples.

      Otherwise return a numpy recarray with

        date, year, month, day, d, open, close, high, low,
        volume, adjusted_close

      where d is a floating poing representation of date,
      as returned by date2num, and date is a python standard
      library datetime.date instance.

      The name of this kwarg is a historical artifact.  Formerly,
      True returned a cbook Bunch
      holding 1-D ndarrays.  The behavior of a numpy recarray is
      very similar to the Bunch.

    """

    lines = fh.readlines()

    results = []

    datefmt = '%Y-%m-%d'

    for line in lines[1:]:

        vals = line.split(',')
        if len(vals)!=7:
            continue      # add warning?
        datestr = vals[0]
        #dt = datetime.date(*time.strptime(datestr, datefmt)[:3])
        # Using strptime doubles the runtime. With the present
        # format, we don't need it.
        dt = datetime.date(*[int(val) for val in datestr.split('-')])
        dnum = date2num(dt)
        open, high, low, close =  [float(val) for val in vals[1:5]]
        volume = float(vals[5])
        aclose = float(vals[6])

        results.append((dt, dt.year, dt.month, dt.day,
                        dnum, open, close, high, low, volume, aclose))
    results.reverse()
    d = np.array(results, dtype=stock_dt)
    if adjusted:
        scale = d['aclose'] / d['close']
        scale[np.isinf(scale)] = np.nan
        d['open'] *= scale
        d['close'] *= scale
        d['high'] *= scale
        d['low'] *= scale

    if not asobject:
        # 2-D sequence; formerly list of tuples, now ndarray
        ret = np.zeros((len(d), 6), dtype=np.float)
        ret[:,0] = d['d']
        ret[:,1] = d['open']
        ret[:,2] = d['close']
        ret[:,3] = d['high']
        ret[:,4] = d['low']
        ret[:,5] = d['volume']
        if asobject is None:
            return ret
        return [tuple(row) for row in ret]

    return d.view(np.recarray)  # Close enough to former Bunch return


def fetch_historical_yahoo(ticker, date1, date2, cachename=None,dividends=False):
    """
    Fetch historical data for ticker between date1 and date2.  date1 and
    date2 are date or datetime instances, or (year, month, day) sequences.

    Ex:
    fh = fetch_historical_yahoo('^GSPC', (2000, 1, 1), (2001, 12, 31))

    cachename is the name of the local file cache.  If None, will
    default to the md5 hash or the url (which incorporates the ticker
    and date range)
    
    set dividends=True to return dividends instead of price data.  With
    this option set, parse functions will not work

    a file handle is returned
    """

    ticker = ticker.upper()


    if iterable(date1):
        d1 = (date1[1]-1, date1[2], date1[0])
    else:
        d1 = (date1.month-1, date1.day, date1.year)
    if iterable(date2):
        d2 = (date2[1]-1, date2[2], date2[0])
    else:
        d2 = (date2.month-1, date2.day, date2.year)


    if dividends:
        g='v'
        verbose.report('Retrieving dividends instead of prices')
    else:
        g='d'

    urlFmt = 'http://table.finance.yahoo.com/table.csv?a=%d&b=%d&c=%d&d=%d&e=%d&f=%d&s=%s&y=0&g=%s&ignore=.csv'


    url =  urlFmt % (d1[0], d1[1], d1[2],
                     d2[0], d2[1], d2[2], ticker, g)


    if cachename is None:
        cachename = os.path.join(cachedir, md5(url).hexdigest())
    if os.path.exists(cachename):
        fh = file(cachename)
        verbose.report('Using cachefile %s for %s'%(cachename, ticker))
    else:
        if not os.path.isdir(cachedir):
            os.mkdir(cachedir)
        urlfh = urlopen(url)

        fh = file(cachename, 'w')
        fh.write(urlfh.read())
        fh.close()
        verbose.report('Saved %s data to cache file %s'%(ticker, cachename))
        fh = file(cachename, 'r')

    return fh


def quotes_historical_yahoo(ticker, date1, date2, asobject=False,
                                        adjusted=True, cachename=None):
    """
    Get historical data for ticker between date1 and date2.  date1 and
    date2 are datetime instances or (year, month, day) sequences.

    See :func:`parse_yahoo_historical` for explanation of output formats
    and the *asobject* and *adjusted* kwargs.

    Ex:
    sp = f.quotes_historical_yahoo('^GSPC', d1, d2,
                                asobject=True, adjusted=True)
    returns = (sp.open[1:] - sp.open[:-1])/sp.open[1:]
    [n,bins,patches] = hist(returns, 100)
    mu = mean(returns)
    sigma = std(returns)
    x = normpdf(bins, mu, sigma)
    plot(bins, x, color='red', lw=2)

    cachename is the name of the local file cache.  If None, will
    default to the md5 hash or the url (which incorporates the ticker
    and date range)
    """
    # Maybe enable a warning later as part of a slow transition
    # to using None instead of False.
    #if asobject is False:
    #    warnings.warn("Recommend changing to asobject=None")

    fh = fetch_historical_yahoo(ticker, date1, date2, cachename)

    try:
        ret = parse_yahoo_historical(fh, asobject=asobject,
                                            adjusted=adjusted)
        if len(ret) == 0:
            return None
    except IOError, exc:
        warnings.warn('fh failure\n%s'%(exc.strerror[1]))
        return None

    return ret

def plot_day_summary(ax, quotes, ticksize=3,
                     colorup='k', colordown='r',
                     ):
    """
    quotes is a sequence of (time, open, close, high, low, ...) sequences

    Represent the time, open, close, high, low as a vertical line
    ranging from low to high.  The left tick is the open and the right
    tick is the close.

    time must be in float date format - see date2num

    ax          : an Axes instance to plot to
    ticksize    : open/close tick marker in points
    colorup     : the color of the lines where close >= open
    colordown   : the color of the lines where close <  open
    return value is a list of lines added
    """

    lines = []
    for q in quotes:

        t, open, close, high, low = q[:5]

        if close>=open : color = colorup
        else           : color = colordown

        vline = Line2D(
            xdata=(t, t), ydata=(low, high),
            color=color,
            antialiased=False,   # no need to antialias vert lines
            )

        oline = Line2D(
            xdata=(t, t), ydata=(open, open),
            color=color,
            antialiased=False,
            marker=TICKLEFT,
            markersize=ticksize,
            )

        cline = Line2D(
            xdata=(t, t), ydata=(close, close),
            color=color,
            antialiased=False,
            markersize=ticksize,
            marker=TICKRIGHT)

        lines.extend((vline, oline, cline))
        ax.add_line(vline)
        ax.add_line(oline)
        ax.add_line(cline)


    ax.autoscale_view()

    return lines


def candlestick(ax, quotes, width=0.2, colorup='k', colordown='r',
                alpha=1.0):

    """

    quotes is a sequence of (time, open, close, high, low, ...) sequences.
    As long as the first 5 elements are these values,
    the record can be as long as you want (eg it may store volume).

    time must be in float days format - see date2num

    Plot the time, open, close, high, low as a vertical line ranging
    from low to high.  Use a rectangular bar to represent the
    open-close span.  If close >= open, use colorup to color the bar,
    otherwise use colordown

    ax          : an Axes instance to plot to
    width       : fraction of a day for the rectangle width
    colorup     : the color of the rectangle where close >= open
    colordown   : the color of the rectangle where close <  open
    alpha       : the rectangle alpha level

    return value is lines, patches where lines is a list of lines
    added and patches is a list of the rectangle patches added

    """

    OFFSET = width/2.0

    lines = []
    patches = []
    for q in quotes:
        t, open, close, high, low = q[:5]

        if close>=open :
            color = colorup
            lower = open
            height = close-open
        else           :
            color = colordown
            lower = close
            height = open-close

        vline = Line2D(
            xdata=(t, t), ydata=(low, high),
            color='k',
            linewidth=0.5,
            antialiased=True,
            )

        rect = Rectangle(
            xy    = (t-OFFSET, lower),
            width = width,
            height = height,
            facecolor = color,
            edgecolor = color,
            )
        rect.set_alpha(alpha)


        lines.append(vline)
        patches.append(rect)
        ax.add_line(vline)
        ax.add_patch(rect)
    ax.autoscale_view()

    return lines, patches


def plot_day_summary2(ax, opens, closes, highs, lows, ticksize=4,
                      colorup='k', colordown='r',
                     ):
    """

    Represent the time, open, close, high, low as a vertical line
    ranging from low to high.  The left tick is the open and the right
    tick is the close.

    ax          : an Axes instance to plot to
    ticksize    : size of open and close ticks in points
    colorup     : the color of the lines where close >= open
    colordown   : the color of the lines where close <  open

    return value is a list of lines added
    """

    # note this code assumes if any value open, close, low, high is
    # missing they all are missing

    rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ]

    # the ticks will be from ticksize to 0 in points at the origin and
    # we'll translate these to the i, close location
    openSegments = [  ((-ticksize, 0), (0, 0)) ]

    # the ticks will be from 0 to ticksize in points at the origin and
    # we'll translate these to the i, close location
    closeSegments = [ ((0, 0), (ticksize, 0)) ]


    offsetsOpen = [ (i, open) for i, open in zip(xrange(len(opens)), opens) if open != -1 ]

    offsetsClose = [ (i, close) for i, close in zip(xrange(len(closes)), closes) if close != -1 ]


    scale = ax.figure.dpi * (1.0/72.0)

    tickTransform = Affine2D().scale(scale, 0.0)

    r,g,b = colorConverter.to_rgb(colorup)
    colorup = r,g,b,1
    r,g,b = colorConverter.to_rgb(colordown)
    colordown = r,g,b,1
    colord = { True : colorup,
               False : colordown,
               }
    colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1]

    assert(len(rangeSegments)==len(offsetsOpen))
    assert(len(offsetsOpen)==len(offsetsClose))
    assert(len(offsetsClose)==len(colors))

    useAA = 0,   # use tuple here
    lw = 1,      # and here
    rangeCollection = LineCollection(rangeSegments,
                                     colors       = colors,
                                     linewidths   = lw,
                                     antialiaseds = useAA,
                                     )

    openCollection = LineCollection(openSegments,
                                    colors       = colors,
                                    antialiaseds = useAA,
                                    linewidths   = lw,
                                    offsets      = offsetsOpen,
                                    transOffset  = ax.transData,
                                   )
    openCollection.set_transform(tickTransform)

    closeCollection = LineCollection(closeSegments,
                                     colors       = colors,
                                     antialiaseds = useAA,
                                     linewidths   = lw,
                                     offsets      = offsetsClose,
                                     transOffset  = ax.transData,
                                     )
    closeCollection.set_transform(tickTransform)

    minpy, maxx = (0, len(rangeSegments))
    miny = min([low for low in lows if low !=-1])
    maxy = max([high for high in highs if high != -1])
    corners = (minpy, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()

    # add these last
    ax.add_collection(rangeCollection)
    ax.add_collection(openCollection)
    ax.add_collection(closeCollection)
    return rangeCollection, openCollection, closeCollection


def candlestick2(ax, opens, closes, highs, lows, width=4,
                 colorup='k', colordown='r',
                 alpha=0.75,
                ):
    """

    Represent the open, close as a bar line and high low range as a
    vertical line.


    ax          : an Axes instance to plot to
    width       : the bar width in points
    colorup     : the color of the lines where close >= open
    colordown   : the color of the lines where close <  open
    alpha       : bar transparency

    return value is lineCollection, barCollection
    """

    # note this code assumes if any value open, close, low, high is
    # missing they all are missing

    delta = width/2.
    barVerts = [ ( (i-delta, open), (i-delta, close), (i+delta, close), (i+delta, open) ) for i, open, close in zip(xrange(len(opens)), opens, closes) if open != -1 and close!=-1 ]

    rangeSegments = [ ((i, low), (i, high)) for i, low, high in zip(xrange(len(lows)), lows, highs) if low != -1 ]



    r,g,b = colorConverter.to_rgb(colorup)
    colorup = r,g,b,alpha
    r,g,b = colorConverter.to_rgb(colordown)
    colordown = r,g,b,alpha
    colord = { True : colorup,
               False : colordown,
               }
    colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1]


    assert(len(barVerts)==len(rangeSegments))

    useAA = 0,  # use tuple here
    lw = 0.5,   # and here
    rangeCollection = LineCollection(rangeSegments,
                                     colors       = ( (0,0,0,1), ),
                                     linewidths   = lw,
                                     antialiaseds = useAA,
                                     )


    barCollection = PolyCollection(barVerts,
                                   facecolors   = colors,
                                   edgecolors   = ( (0,0,0,1), ),
                                   antialiaseds = useAA,
                                   linewidths   = lw,
                                   )

    minx, maxx = 0, len(rangeSegments)
    miny = min([low for low in lows if low !=-1])
    maxy = max([high for high in highs if high != -1])

    corners = (minx, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()

    # add these last
    ax.add_collection(barCollection)
    ax.add_collection(rangeCollection)
    return rangeCollection, barCollection

def volume_overlay(ax, opens, closes, volumes,
                   colorup='k', colordown='r',
                   width=4, alpha=1.0):
    """
    Add a volume overlay to the current axes.  The opens and closes
    are used to determine the color of the bar.  -1 is missing.  If a
    value is missing on one it must be missing on all

    ax          : an Axes instance to plot to
    width       : the bar width in points
    colorup     : the color of the lines where close >= open
    colordown   : the color of the lines where close <  open
    alpha       : bar transparency


    """

    r,g,b = colorConverter.to_rgb(colorup)
    colorup = r,g,b,alpha
    r,g,b = colorConverter.to_rgb(colordown)
    colordown = r,g,b,alpha
    colord = { True : colorup,
               False : colordown,
               }
    colors = [colord[open<close] for open, close in zip(opens, closes) if open!=-1 and close !=-1]

    delta = width/2.
    bars = [ ( (i-delta, 0), (i-delta, v), (i+delta, v), (i+delta, 0)) for i, v in enumerate(volumes) if v != -1 ]

    barCollection = PolyCollection(bars,
                                   facecolors   = colors,
                                   edgecolors   = ( (0,0,0,1), ),
                                   antialiaseds = (0,),
                                   linewidths   = (0.5,),
                                   )

    corners = (0, 0), (len(bars), max(volumes))
    ax.update_datalim(corners)
    ax.autoscale_view()

    # add these last
    return barCollection


def volume_overlay2(ax, closes, volumes,
                   colorup='k', colordown='r',
                   width=4, alpha=1.0):
    """
    Add a volume overlay to the current axes.  The closes are used to
    determine the color of the bar.  -1 is missing.  If a value is
    missing on one it must be missing on all

    ax          : an Axes instance to plot to
    width       : the bar width in points
    colorup     : the color of the lines where close >= open
    colordown   : the color of the lines where close <  open
    alpha       : bar transparency

    nb: first point is not displayed - it is used only for choosing the
    right color

    """

    return volume_overlay(ax,closes[:-1],closes[1:],volumes[1:],colorup,colordown,width,alpha)


def volume_overlay3(ax, quotes,
                   colorup='k', colordown='r',
                   width=4, alpha=1.0):
    """
    Add a volume overlay to the current axes.  quotes is a list of (d,
    open, close, high, low, volume) and close-open is used to
    determine the color of the bar

    kwarg
    width       : the bar width in points
    colorup     : the color of the lines where close1 >= close0
    colordown   : the color of the lines where close1 <  close0
    alpha       : bar transparency


    """

    r,g,b = colorConverter.to_rgb(colorup)
    colorup = r,g,b,alpha
    r,g,b = colorConverter.to_rgb(colordown)
    colordown = r,g,b,alpha
    colord = { True : colorup,
               False : colordown,
               }

    dates, opens, closes, highs, lows, volumes = zip(*quotes)
    colors = [colord[close1>=close0] for close0, close1 in zip(closes[:-1], closes[1:]) if close0!=-1 and close1 !=-1]
    colors.insert(0,colord[closes[0]>=opens[0]])

    right = width/2.0
    left = -width/2.0


    bars = [ ( (left, 0), (left, volume), (right, volume), (right, 0)) for d, open, close, high, low, volume in quotes]

    sx = ax.figure.dpi * (1.0/72.0)  # scale for points
    sy = ax.bbox.height / ax.viewLim.height

    barTransform = Affine2D().scale(sx,sy)

    dates = [d for d, open, close, high, low, volume in quotes]
    offsetsBars = [(d, 0) for d in dates]

    useAA = 0,  # use tuple here
    lw = 0.5,   # and here
    barCollection = PolyCollection(bars,
                                   facecolors   = colors,
                                   edgecolors   = ( (0,0,0,1), ),
                                   antialiaseds = useAA,
                                   linewidths   = lw,
                                   offsets      = offsetsBars,
                                   transOffset  = ax.transData,
                                   )
    barCollection.set_transform(barTransform)






    minpy, maxx = (min(dates), max(dates))
    miny = 0
    maxy = max([volume for d, open, close, high, low, volume in quotes])
    corners = (minpy, miny), (maxx, maxy)
    ax.update_datalim(corners)
    #print 'datalim', ax.dataLim.bounds
    #print 'viewlim', ax.viewLim.bounds

    ax.add_collection(barCollection)
    ax.autoscale_view()

    return barCollection

def index_bar(ax, vals,
              facecolor='b', edgecolor='l',
              width=4, alpha=1.0, ):
    """
    Add a bar collection graph with height vals (-1 is missing).

    ax          : an Axes instance to plot to
    width       : the bar width in points
    alpha       : bar transparency


    """

    facecolors = (colorConverter.to_rgba(facecolor, alpha),)
    edgecolors = (colorConverter.to_rgba(edgecolor, alpha),)

    right = width/2.0
    left = -width/2.0


    bars = [ ( (left, 0), (left, v), (right, v), (right, 0)) for v in vals if v != -1 ]

    sx = ax.figure.dpi * (1.0/72.0)  # scale for points
    sy = ax.bbox.height / ax.viewLim.height

    barTransform = Affine2D().scale(sx,sy)

    offsetsBars = [ (i, 0) for i,v in enumerate(vals) if v != -1 ]

    barCollection = PolyCollection(bars,
                                   facecolors   = facecolors,
                                   edgecolors   = edgecolors,
                                   antialiaseds = (0,),
                                   linewidths   = (0.5,),
                                   offsets      = offsetsBars,
                                   transOffset  = ax.transData,
                                   )
    barCollection.set_transform(barTransform)






    minpy, maxx = (0, len(offsetsBars))
    miny = 0
    maxy = max([v for v in vals if v!=-1])
    corners = (minpy, miny), (maxx, maxy)
    ax.update_datalim(corners)
    ax.autoscale_view()

    # add these last
    ax.add_collection(barCollection)
    return barCollection