This file is indexed.

/usr/share/pyshared/matplotlib/hatch.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""
Contains a classes for generating hatch patterns.
"""

import numpy as np
from matplotlib.path import Path

class HatchPatternBase:
    """
    The base class for a hatch pattern.
    """
    pass

class HorizontalHatch(HatchPatternBase):
    def __init__(self, hatch, density):
        self.num_lines = (hatch.count('-') + hatch.count('+')) * density
        self.num_vertices = self.num_lines * 2

    def set_vertices_and_codes(self, vertices, codes):
        steps = np.linspace(0.0, 1.0, self.num_lines, False)
        vertices[0::2, 0] = 0.0
        vertices[0::2, 1] = steps
        vertices[1::2, 0] = 1.0
        vertices[1::2, 1] = steps
        codes[0::2] = Path.MOVETO
        codes[1::2] = Path.LINETO

class VerticalHatch(HatchPatternBase):
    def __init__(self, hatch, density):
        self.num_lines = (hatch.count('|') + hatch.count('+')) * density
        self.num_vertices = self.num_lines * 2

    def set_vertices_and_codes(self, vertices, codes):
        steps = np.linspace(0.0, 1.0, self.num_lines, False)
        vertices[0::2, 0] = steps
        vertices[0::2, 1] = 0.0
        vertices[1::2, 0] = steps
        vertices[1::2, 1] = 1.0
        codes[0::2] = Path.MOVETO
        codes[1::2] = Path.LINETO

class NorthEastHatch(HatchPatternBase):
    def __init__(self, hatch, density):
        self.num_lines = (hatch.count('/') + hatch.count('x') + hatch.count('X')) * density
        self.num_vertices = self.num_lines * 4

    def set_vertices_and_codes(self, vertices, codes):
        steps = np.linspace(0.0, 1.0, self.num_lines, False)
        rev_steps = 1.0 - steps
        vertices[0::4, 0] = 0.0
        vertices[0::4, 1] = steps
        vertices[1::4, 0] = rev_steps
        vertices[1::4, 1] = 1.0
        vertices[2::4, 0] = rev_steps
        vertices[2::4, 1] = 0.0
        vertices[3::4, 0] = 1.0
        vertices[3::4, 1] = steps
        codes[0::2] = Path.MOVETO
        codes[1::2] = Path.LINETO

class SouthEastHatch(HatchPatternBase):
    def __init__(self, hatch, density):
        self.num_lines = (hatch.count('\\') + hatch.count('x') + hatch.count('X')) * density
        self.num_vertices = self.num_lines * 4

    def set_vertices_and_codes(self, vertices, codes):
        steps = np.linspace(0.0, 1.0, self.num_lines, False)
        vertices[0::4, 0] = 1.0
        vertices[0::4, 1] = steps
        vertices[1::4, 0] = steps
        vertices[1::4, 1] = 1.0
        vertices[2::4, 0] = steps
        vertices[2::4, 1] = 0.0
        vertices[3::4, 0] = 0.0
        vertices[3::4, 1] = steps
        codes[0::2] = Path.MOVETO
        codes[1::2] = Path.LINETO

class Shapes(HatchPatternBase):
    filled = False
    def __init__(self, hatch, density):
        if self.num_rows == 0:
            self.num_shapes = 0
            self.num_vertices = 0
        else:
            self.num_shapes = ((self.num_rows / 2 + 1) * (self.num_rows + 1) +
                               (self.num_rows / 2) * (self.num_rows))
            self.num_vertices = (self.num_shapes *
                                 len(self.shape_vertices) *
                                 (self.filled and 1 or 2))

    def set_vertices_and_codes(self, vertices, codes):
        offset = 1.0 / self.num_rows
        shape_vertices = self.shape_vertices * offset * self.size
        if not self.filled:
            inner_vertices = shape_vertices[::-1] * 0.9
        shape_codes = self.shape_codes
        shape_size = len(shape_vertices)

        cursor = 0
        for row in xrange(self.num_rows + 1):
            if row % 2 == 0:
                cols = np.linspace(0.0, 1.0, self.num_rows + 1, True)
            else:
                cols = np.linspace(offset / 2.0, 1.0 - offset / 2.0, self.num_rows, True)
            row_pos = row * offset
            for col_pos in cols:
                vertices[cursor:cursor+shape_size] = shape_vertices + (col_pos, row_pos)
                codes[cursor:cursor+shape_size] = shape_codes
                cursor += shape_size
                if not self.filled:
                    vertices[cursor:cursor+shape_size] = inner_vertices + (col_pos, row_pos)
                    codes[cursor:cursor+shape_size] = shape_codes
                    cursor += shape_size

class Circles(Shapes):
    def __init__(self, hatch, density):
        path = Path.unit_circle()
        self.shape_vertices = path.vertices
        self.shape_codes = path.codes
        Shapes.__init__(self, hatch, density)

class SmallCircles(Circles):
    size = 0.2

    def __init__(self, hatch, density):
        self.num_rows = (hatch.count('o')) * density
        Circles.__init__(self, hatch, density)

class LargeCircles(Circles):
    size = 0.35

    def __init__(self, hatch, density):
        self.num_rows = (hatch.count('O')) * density
        Circles.__init__(self, hatch, density)

class SmallFilledCircles(SmallCircles):
    size = 0.1
    filled = True

    def __init__(self, hatch, density):
        self.num_rows = (hatch.count('.')) * density
        Circles.__init__(self, hatch, density)

class Stars(Shapes):
    size = 1.0 / 3.0
    filled = True

    def __init__(self, hatch, density):
        self.num_rows = (hatch.count('*')) * density
        path = Path.unit_regular_star(5)
        self.shape_vertices = path.vertices
        self.shape_codes = np.ones(len(self.shape_vertices)) * Path.LINETO
        self.shape_codes[0] = Path.MOVETO
        Shapes.__init__(self, hatch, density)

_hatch_types = [
    HorizontalHatch,
    VerticalHatch,
    NorthEastHatch,
    SouthEastHatch,
    SmallCircles,
    LargeCircles,
    SmallFilledCircles,
    Stars
    ]

def get_path(hatchpattern, density=6):
    """
    Given a hatch specifier, *hatchpattern*, generates Path to render
    the hatch in a unit square.  *density* is the number of lines per
    unit square.
    """
    size = 1.0
    density = int(density)

    patterns = [hatch_type(hatchpattern, density) for hatch_type in _hatch_types]
    num_vertices = sum([pattern.num_vertices for pattern in patterns])

    if num_vertices == 0:
        return Path(np.empty((0, 2)))

    vertices = np.empty((num_vertices, 2))
    codes    = np.empty((num_vertices,), np.uint8)

    cursor = 0
    for pattern in patterns:
        if pattern.num_vertices != 0:
            vertices_chunk = vertices[cursor:cursor + pattern.num_vertices]
            codes_chunk = codes[cursor:cursor + pattern.num_vertices]
            pattern.set_vertices_and_codes(vertices_chunk, codes_chunk)
            cursor += pattern.num_vertices

    return Path(vertices, codes)