This file is indexed.

/usr/share/pyshared/matplotlib/path.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
"""
Contains a class for managing paths (polylines).
"""

import math
from weakref import WeakValueDictionary

import numpy as np
from numpy import ma

from matplotlib._path import point_in_path, get_path_extents, \
    point_in_path_collection, get_path_collection_extents, \
    path_in_path, path_intersects_path, convert_path_to_polygons, \
    cleanup_path
from matplotlib.cbook import simple_linear_interpolation, maxdict
from matplotlib import rcParams

class Path(object):
    """
    :class:`Path` represents a series of possibly disconnected,
    possibly closed, line and curve segments.

    The underlying storage is made up of two parallel numpy arrays:
      - *vertices*: an Nx2 float array of vertices
      - *codes*: an N-length uint8 array of vertex types

    These two arrays always have the same length in the first
    dimension.  For example, to represent a cubic curve, you must
    provide three vertices as well as three codes ``CURVE3``.

    The code types are:

       - ``STOP``   :  1 vertex (ignored)
           A marker for the end of the entire path (currently not
           required and ignored)

       - ``MOVETO`` :  1 vertex
            Pick up the pen and move to the given vertex.

       - ``LINETO`` :  1 vertex
            Draw a line from the current position to the given vertex.

       - ``CURVE3`` :  1 control point, 1 endpoint
          Draw a quadratic Bezier curve from the current position,
          with the given control point, to the given end point.

       - ``CURVE4`` :  2 control points, 1 endpoint
          Draw a cubic Bezier curve from the current position, with
          the given control points, to the given end point.

       - ``CLOSEPOLY`` : 1 vertex (ignored)
          Draw a line segment to the start point of the current
          polyline.

    Users of Path objects should not access the vertices and codes
    arrays directly.  Instead, they should use :meth:`iter_segments`
    to get the vertex/code pairs.  This is important, since many
    :class:`Path` objects, as an optimization, do not store a *codes*
    at all, but have a default one provided for them by
    :meth:`iter_segments`.

    .. note::

        The vertices and codes arrays should be treated as
        immutable -- there are a number of optimizations and assumptions
        made up front in the constructor that will not change when the
        data changes.

    """

    # Path codes
    STOP      = 0    # 1 vertex
    MOVETO    = 1    # 1 vertex
    LINETO    = 2    # 1 vertex
    CURVE3    = 3    # 2 vertices
    CURVE4    = 4    # 3 vertices
    CLOSEPOLY = 0x4f # 1 vertex

    NUM_VERTICES = [1, 1, 1, 2,
                    3, 1, 1, 1,
                    1, 1, 1, 1,
                    1, 1, 1, 1]

    code_type = np.uint8

    def __init__(self, vertices, codes=None, _interpolation_steps=1, closed=False):
        """
        Create a new path with the given vertices and codes.

        *vertices* is an Nx2 numpy float array, masked array or Python
        sequence.

        *codes* is an N-length numpy array or Python sequence of type
        :attr:`matplotlib.path.Path.code_type`.

        These two arrays must have the same length in the first
        dimension.

        If *codes* is None, *vertices* will be treated as a series of
        line segments.

        If *vertices* contains masked values, they will be converted
        to NaNs which are then handled correctly by the Agg
        PathIterator and other consumers of path data, such as
        :meth:`iter_segments`.

        *interpolation_steps* is used as a hint to certain projections,
        such as Polar, that this path should be linearly interpolated
        immediately before drawing.  This attribute is primarily an
        implementation detail and is not intended for public use.
        """
        if ma.isMaskedArray(vertices):
            vertices = vertices.astype(np.float_).filled(np.nan)
        else:
            vertices = np.asarray(vertices, np.float_)

        if codes is not None:
            codes = np.asarray(codes, self.code_type)
            assert codes.ndim == 1
            assert len(codes) == len(vertices)
            if len(codes):
                assert codes[0] == self.MOVETO
        elif closed:
            codes = np.empty(len(vertices), dtype=self.code_type)
            codes[0] = self.MOVETO
            codes[1:-1] = self.LINETO
            codes[-1] = self.CLOSEPOLY

        assert vertices.ndim == 2
        assert vertices.shape[1] == 2

        self.should_simplify = (rcParams['path.simplify'] and
                                (len(vertices) >= 128 and
                                 (codes is None or np.all(codes <= Path.LINETO))))
        self.simplify_threshold = rcParams['path.simplify_threshold']
        self.has_nonfinite = not np.isfinite(vertices).all()
        self.codes = codes
        self.vertices = vertices
        self._interpolation_steps = _interpolation_steps

    @classmethod
    def make_compound_path_from_polys(cls, XY):
        """
        (static method) Make a compound path object to draw a number
        of polygons with equal numbers of sides XY is a (numpolys x
        numsides x 2) numpy array of vertices.  Return object is a
        :class:`Path`

        .. plot:: mpl_examples/api/histogram_path_demo.py

        """

        # for each poly: 1 for the MOVETO, (numsides-1) for the LINETO, 1 for the
        # CLOSEPOLY; the vert for the closepoly is ignored but we still need
        # it to keep the codes aligned with the vertices
        numpolys, numsides, two = XY.shape
        assert(two==2)
        stride = numsides + 1
        nverts = numpolys * stride
        verts = np.zeros((nverts, 2))
        codes = np.ones(nverts, int) * cls.LINETO
        codes[0::stride] = cls.MOVETO
        codes[numsides::stride] = cls.CLOSEPOLY
        for i in range(numsides):
            verts[i::stride] = XY[:,i]

        return cls(verts, codes)

    @classmethod
    def make_compound_path(cls, *args):
        """
        (staticmethod) Make a compound path from a list of Path
        objects.  Only polygons (not curves) are supported.
        """
        for p in args:
            assert p.codes is None

        lengths = [len(x) for x in args]
        total_length = sum(lengths)

        vertices = np.vstack([x.vertices for x in args])
        vertices.reshape((total_length, 2))

        codes = cls.LINETO * np.ones(total_length)
        i = 0
        for length in lengths:
            codes[i] = cls.MOVETO
            i += length

        return cls(vertices, codes)

    def __repr__(self):
        return "Path(%s, %s)" % (self.vertices, self.codes)

    def __len__(self):
        return len(self.vertices)

    def iter_segments(self, transform=None, remove_nans=True, clip=None,
                      snap=False, stroke_width=1.0, simplify=None,
                      curves=True):
        """
        Iterates over all of the curve segments in the path.  Each
        iteration returns a 2-tuple (*vertices*, *code*), where
        *vertices* is a sequence of 1 - 3 coordinate pairs, and *code* is
        one of the :class:`Path` codes.

        Additionally, this method can provide a number of standard
        cleanups and conversions to the path.

        *transform*: if not None, the given affine transformation will
         be applied to the path.

        *remove_nans*: if True, will remove all NaNs from the path and
         insert MOVETO commands to skip over them.

        *clip*: if not None, must be a four-tuple (x1, y1, x2, y2)
         defining a rectangle in which to clip the path.

        *snap*: if None, auto-snap to pixels, to reduce
         fuzziness of rectilinear lines.  If True, force snapping, and
         if False, don't snap.

        *stroke_width*: the width of the stroke being drawn.  Needed
         as a hint for the snapping algorithm.

        *simplify*: if True, perform simplification, to remove
         vertices that do not affect the appearance of the path.  If
         False, perform no simplification.  If None, use the
         should_simplify member variable.

        *curves*: If True, curve segments will be returned as curve
         segments.  If False, all curves will be converted to line
         segments.
        """
        vertices = self.vertices
        if not len(vertices):
            return

        codes        = self.codes

        NUM_VERTICES = self.NUM_VERTICES
        MOVETO       = self.MOVETO
        LINETO       = self.LINETO
        CLOSEPOLY    = self.CLOSEPOLY
        STOP         = self.STOP

        vertices, codes = cleanup_path(self, transform, remove_nans, clip,
                                       snap, stroke_width, simplify, curves)
        len_vertices = len(vertices)

        i = 0
        while i < len_vertices:
            code = codes[i]
            if code == STOP:
                return
            else:
                num_vertices = NUM_VERTICES[int(code) & 0xf]
                curr_vertices = vertices[i:i+num_vertices].flatten()
                yield curr_vertices, code
                i += num_vertices

    def transformed(self, transform):
        """
        Return a transformed copy of the path.

        .. seealso::

            :class:`matplotlib.transforms.TransformedPath`
                A specialized path class that will cache the
                transformed result and automatically update when the
                transform changes.
        """
        return Path(transform.transform(self.vertices), self.codes,
                    self._interpolation_steps)

    def contains_point(self, point, transform=None, radius=0.0):
        """
        Returns *True* if the path contains the given point.

        If *transform* is not *None*, the path will be transformed
        before performing the test.
        """
        if transform is not None:
            transform = transform.frozen()
        result = point_in_path(point[0], point[1], radius, self, transform)
        return result

    def contains_path(self, path, transform=None):
        """
        Returns *True* if this path completely contains the given path.

        If *transform* is not *None*, the path will be transformed
        before performing the test.
        """
        if transform is not None:
            transform = transform.frozen()
        return path_in_path(self, None, path, transform)

    def get_extents(self, transform=None):
        """
        Returns the extents (*xmin*, *ymin*, *xmax*, *ymax*) of the
        path.

        Unlike computing the extents on the *vertices* alone, this
        algorithm will take into account the curves and deal with
        control points appropriately.
        """
        from transforms import Bbox
        path = self
        if transform is not None:
            transform = transform.frozen()
            if not transform.is_affine:
                path = self.transformed(transform)
                transform = None
        return Bbox(get_path_extents(path, transform))

    def intersects_path(self, other, filled=True):
        """
        Returns *True* if this path intersects another given path.

        *filled*, when True, treats the paths as if they were filled.
        That is, if one path completely encloses the other,
        :meth:`intersects_path` will return True.
        """
        return path_intersects_path(self, other, filled)

    def intersects_bbox(self, bbox, filled=True):
        """
        Returns *True* if this path intersects a given
        :class:`~matplotlib.transforms.Bbox`.

        *filled*, when True, treats the path as if it was filled.
        That is, if one path completely encloses the other,
        :meth:`intersects_path` will return True.
        """
        from transforms import BboxTransformTo
        rectangle = self.unit_rectangle().transformed(
            BboxTransformTo(bbox))
        result = self.intersects_path(rectangle, filled)
        return result

    def interpolated(self, steps):
        """
        Returns a new path resampled to length N x steps.  Does not
        currently handle interpolating curves.
        """
        if steps == 1:
            return self

        vertices = simple_linear_interpolation(self.vertices, steps)
        codes = self.codes
        if codes is not None:
            new_codes = Path.LINETO * np.ones(((len(codes) - 1) * steps + 1, ))
            new_codes[0::steps] = codes
        else:
            new_codes = None
        return Path(vertices, new_codes)

    def to_polygons(self, transform=None, width=0, height=0):
        """
        Convert this path to a list of polygons.  Each polygon is an
        Nx2 array of vertices.  In other words, each polygon has no
        ``MOVETO`` instructions or curves.  This is useful for
        displaying in backends that do not support compound paths or
        Bezier curves, such as GDK.

        If *width* and *height* are both non-zero then the lines will
        be simplified so that vertices outside of (0, 0), (width,
        height) will be clipped.
        """
        if len(self.vertices) == 0:
            return []

        if transform is not None:
            transform = transform.frozen()

        if self.codes is None and (width == 0 or height == 0):
            if transform is None:
                return [self.vertices]
            else:
                return [transform.transform(self.vertices)]

        # Deal with the case where there are curves and/or multiple
        # subpaths (using extension code)
        return convert_path_to_polygons(self, transform, width, height)

    _unit_rectangle = None
    @classmethod
    def unit_rectangle(cls):
        """
        (staticmethod) Returns a :class:`Path` of the unit rectangle
        from (0, 0) to (1, 1).
        """
        if cls._unit_rectangle is None:
            cls._unit_rectangle = \
                cls([[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [0.0, 1.0], [0.0, 0.0]],
                    [cls.MOVETO, cls.LINETO, cls.LINETO, cls.LINETO, cls.CLOSEPOLY])
        return cls._unit_rectangle

    _unit_regular_polygons = WeakValueDictionary()

    @classmethod
    def unit_regular_polygon(cls, numVertices):
        """
        (staticmethod) Returns a :class:`Path` for a unit regular
        polygon with the given *numVertices* and radius of 1.0,
        centered at (0, 0).
        """
        if numVertices <= 16:
            path = cls._unit_regular_polygons.get(numVertices)
        else:
            path = None
        if path is None:
            theta = (2*np.pi/numVertices *
                     np.arange(numVertices + 1).reshape((numVertices + 1, 1)))
            # This initial rotation is to make sure the polygon always
            # "points-up"
            theta += np.pi / 2.0
            verts = np.concatenate((np.cos(theta), np.sin(theta)), 1)
            codes = np.empty((numVertices + 1,))
            codes[0] = cls.MOVETO
            codes[1:-1] = cls.LINETO
            codes[-1] = cls.CLOSEPOLY
            path = cls(verts, codes)
            if numVertices <= 16:
                cls._unit_regular_polygons[numVertices] = path
        return path

    _unit_regular_stars = WeakValueDictionary()

    @classmethod
    def unit_regular_star(cls, numVertices, innerCircle=0.5):
        """
        (staticmethod) Returns a :class:`Path` for a unit regular star
        with the given numVertices and radius of 1.0, centered at (0,
        0).
        """
        if numVertices <= 16:
            path = cls._unit_regular_stars.get((numVertices, innerCircle))
        else:
            path = None
        if path is None:
            ns2 = numVertices * 2
            theta = (2*np.pi/ns2 * np.arange(ns2 + 1))
            # This initial rotation is to make sure the polygon always
            # "points-up"
            theta += np.pi / 2.0
            r = np.ones(ns2 + 1)
            r[1::2] = innerCircle
            verts = np.vstack((r*np.cos(theta), r*np.sin(theta))).transpose()
            codes = np.empty((ns2 + 1,))
            codes[0] = cls.MOVETO
            codes[1:-1] = cls.LINETO
            codes[-1] = cls.CLOSEPOLY
            path = cls(verts, codes)
            if numVertices <= 16:
                cls._unit_regular_polygons[(numVertices, innerCircle)] = path
        return path

    @classmethod
    def unit_regular_asterisk(cls, numVertices):
        """
        (staticmethod) Returns a :class:`Path` for a unit regular
        asterisk with the given numVertices and radius of 1.0,
        centered at (0, 0).
        """
        return cls.unit_regular_star(numVertices, 0.0)

    _unit_circle = None

    @classmethod
    def unit_circle(cls):
        """
        (staticmethod) Returns a :class:`Path` of the unit circle.
        The circle is approximated using cubic Bezier curves.  This
        uses 8 splines around the circle using the approach presented
        here:

          Lancaster, Don.  `Approximating a Circle or an Ellipse Using Four
          Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_.
        """
        if cls._unit_circle is None:
            MAGIC = 0.2652031
            SQRTHALF = np.sqrt(0.5)
            MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0)

            vertices = np.array(
                [[0.0, -1.0],

                 [MAGIC, -1.0],
                 [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
                 [SQRTHALF, -SQRTHALF],

                 [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
                 [1.0, -MAGIC],
                 [1.0, 0.0],

                 [1.0, MAGIC],
                 [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
                 [SQRTHALF, SQRTHALF],

                 [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
                 [MAGIC, 1.0],
                 [0.0, 1.0],

                 [-MAGIC, 1.0],
                 [-SQRTHALF+MAGIC45, SQRTHALF+MAGIC45],
                 [-SQRTHALF, SQRTHALF],

                 [-SQRTHALF-MAGIC45, SQRTHALF-MAGIC45],
                 [-1.0, MAGIC],
                 [-1.0, 0.0],

                 [-1.0, -MAGIC],
                 [-SQRTHALF-MAGIC45, -SQRTHALF+MAGIC45],
                 [-SQRTHALF, -SQRTHALF],

                 [-SQRTHALF+MAGIC45, -SQRTHALF-MAGIC45],
                 [-MAGIC, -1.0],
                 [0.0, -1.0],

                 [0.0, -1.0]],
                np.float_)

            codes = cls.CURVE4 * np.ones(26)
            codes[0] = cls.MOVETO
            codes[-1] = cls.CLOSEPOLY

            cls._unit_circle = cls(vertices, codes)
        return cls._unit_circle

    _unit_circle_righthalf = None

    @classmethod
    def unit_circle_righthalf(cls):
        """
        (staticmethod) Returns a :class:`Path` of the right half
        of a unit circle. The circle is approximated using cubic Bezier
        curves.  This uses 4 splines around the circle using the approach
        presented here:

          Lancaster, Don.  `Approximating a Circle or an Ellipse Using Four
          Bezier Cubic Splines <http://www.tinaja.com/glib/ellipse4.pdf>`_.
        """
        if cls._unit_circle_righthalf is None:
            MAGIC = 0.2652031
            SQRTHALF = np.sqrt(0.5)
            MAGIC45 = np.sqrt((MAGIC*MAGIC) / 2.0)

            vertices = np.array(
                [[0.0, -1.0],

                 [MAGIC, -1.0],
                 [SQRTHALF-MAGIC45, -SQRTHALF-MAGIC45],
                 [SQRTHALF, -SQRTHALF],

                 [SQRTHALF+MAGIC45, -SQRTHALF+MAGIC45],
                 [1.0, -MAGIC],
                 [1.0, 0.0],

                 [1.0, MAGIC],
                 [SQRTHALF+MAGIC45, SQRTHALF-MAGIC45],
                 [SQRTHALF, SQRTHALF],

                 [SQRTHALF-MAGIC45, SQRTHALF+MAGIC45],
                 [MAGIC, 1.0],
                 [0.0, 1.0],

                 [0.0, -1.0]],

                np.float_)

            codes = cls.CURVE4 * np.ones(14)
            codes[0] = cls.MOVETO
            codes[-1] = cls.CLOSEPOLY

            cls._unit_circle_righthalf = cls(vertices, codes)
        return cls._unit_circle_righthalf

    @classmethod
    def arc(cls, theta1, theta2, n=None, is_wedge=False):
        """
        (staticmethod) Returns an arc on the unit circle from angle
        *theta1* to angle *theta2* (in degrees).

        If *n* is provided, it is the number of spline segments to make.
        If *n* is not provided, the number of spline segments is
        determined based on the delta between *theta1* and *theta2*.

           Masionobe, L.  2003.  `Drawing an elliptical arc using
           polylines, quadratic or cubic Bezier curves
           <http://www.spaceroots.org/documents/ellipse/index.html>`_.
        """
        # degrees to radians
        theta1 *= np.pi / 180.0
        theta2 *= np.pi / 180.0

        twopi  = np.pi * 2.0
        halfpi = np.pi * 0.5

        eta1 = np.arctan2(np.sin(theta1), np.cos(theta1))
        eta2 = np.arctan2(np.sin(theta2), np.cos(theta2))
        eta2 -= twopi * np.floor((eta2 - eta1) / twopi)
        if (theta2 - theta1 > np.pi) and (eta2 - eta1 < np.pi):
            eta2 += twopi

        # number of curve segments to make
        if n is None:
            n = int(2 ** np.ceil((eta2 - eta1) / halfpi))
        if n < 1:
            raise ValueError("n must be >= 1 or None")

        deta = (eta2 - eta1) / n
        t = np.tan(0.5 * deta)
        alpha = np.sin(deta) * (np.sqrt(4.0 + 3.0 * t * t) - 1) / 3.0

        steps = np.linspace(eta1, eta2, n + 1, True)
        cos_eta = np.cos(steps)
        sin_eta = np.sin(steps)

        xA = cos_eta[:-1]
        yA = sin_eta[:-1]
        xA_dot = -yA
        yA_dot = xA

        xB = cos_eta[1:]
        yB = sin_eta[1:]
        xB_dot = -yB
        yB_dot = xB

        if is_wedge:
            length = n * 3 + 4
            vertices = np.zeros((length, 2), np.float_)
            codes = cls.CURVE4 * np.ones((length, ), cls.code_type)
            vertices[1] = [xA[0], yA[0]]
            codes[0:2] = [cls.MOVETO, cls.LINETO]
            codes[-2:] = [cls.LINETO, cls.CLOSEPOLY]
            vertex_offset = 2
            end = length - 2
        else:
            length = n * 3 + 1
            vertices = np.empty((length, 2), np.float_)
            codes = cls.CURVE4 * np.ones((length, ), cls.code_type)
            vertices[0] = [xA[0], yA[0]]
            codes[0] = cls.MOVETO
            vertex_offset = 1
            end = length

        vertices[vertex_offset  :end:3, 0] = xA + alpha * xA_dot
        vertices[vertex_offset  :end:3, 1] = yA + alpha * yA_dot
        vertices[vertex_offset+1:end:3, 0] = xB - alpha * xB_dot
        vertices[vertex_offset+1:end:3, 1] = yB - alpha * yB_dot
        vertices[vertex_offset+2:end:3, 0] = xB
        vertices[vertex_offset+2:end:3, 1] = yB

        return cls(vertices, codes)

    @classmethod
    def wedge(cls, theta1, theta2, n=None):
        """
        (staticmethod) Returns a wedge of the unit circle from angle
        *theta1* to angle *theta2* (in degrees).

        If *n* is provided, it is the number of spline segments to make.
        If *n* is not provided, the number of spline segments is
        determined based on the delta between *theta1* and *theta2*.
        """
        return cls.arc(theta1, theta2, n, True)

    _hatch_dict = maxdict(8)

    @classmethod
    def hatch(cls, hatchpattern, density=6):
        """
        Given a hatch specifier, *hatchpattern*, generates a Path that
        can be used in a repeated hatching pattern.  *density* is the
        number of lines per unit square.
        """
        from matplotlib.hatch import get_path

        if hatchpattern is None:
            return None

        hatch_path = cls._hatch_dict.get((hatchpattern, density))
        if hatch_path is not None:
            return hatch_path

        hatch_path = get_path(hatchpattern, density)
        cls._hatch_dict[(hatchpattern, density)] = hatch_path
        return hatch_path

_get_path_collection_extents = get_path_collection_extents
def get_path_collection_extents(*args):
    """
    Given a sequence of :class:`Path` objects, returns the bounding
    box that encapsulates all of them.
    """
    from transforms import Bbox
    if len(args[1]) == 0:
        raise ValueError("No paths provided")
    return Bbox.from_extents(*_get_path_collection_extents(*args))