This file is indexed.

/usr/share/pyshared/matplotlib/quiver.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
"""
Support for plotting vector fields.

Presently this contains Quiver and Barb. Quiver plots an arrow in the
direction of the vector, with the size of the arrow related to the
magnitude of the vector.

Barbs are like quiver in that they point along a vector, but
the magnitude of the vector is given schematically by the presence of barbs
or flags on the barb.

This will also become a home for things such as standard
deviation ellipses, which can and will be derived very easily from
the Quiver code.
"""


import numpy as np
from numpy import ma
import matplotlib.collections as collections
import matplotlib.transforms as transforms
import matplotlib.text as mtext
import matplotlib.artist as martist
from matplotlib.artist import allow_rasterization
from matplotlib import docstring
import matplotlib.font_manager as font_manager
import matplotlib.cbook as cbook
from matplotlib.cbook import delete_masked_points
from matplotlib.patches import CirclePolygon
import math


_quiver_doc = """
Plot a 2-D field of arrows.

call signatures::

  quiver(U, V, **kw)
  quiver(U, V, C, **kw)
  quiver(X, Y, U, V, **kw)
  quiver(X, Y, U, V, C, **kw)

Arguments:

  *X*, *Y*:
    The x and y coordinates of the arrow locations (default is tail of
    arrow; see *pivot* kwarg)

  *U*, *V*:
    Give the x and y components of the arrow vectors

  *C*:
    An optional array used to map colors to the arrows

All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y*
are absent, they will be generated as a uniform grid.  If *U* and *V*
are 2-D arrays but *X* and *Y* are 1-D, and if ``len(X)`` and ``len(Y)``
match the column and row dimensions of *U*, then *X* and *Y* will be
expanded with :func:`numpy.meshgrid`.

*U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not
supported at present.

Keyword arguments:

  *units*: [ 'width' | 'height' | 'dots' | 'inches' | 'x' | 'y' | 'xy' ]
    Arrow units; the arrow dimensions *except for length* are in
    multiples of this unit.

    * 'width' or 'height': the width or height of the axes

    * 'dots' or 'inches': pixels or inches, based on the figure dpi

    * 'x', 'y', or 'xy': *X*, *Y*, or sqrt(X^2+Y^2) data units

    The arrows scale differently depending on the units.  For
    'x' or 'y', the arrows get larger as one zooms in; for other
    units, the arrow size is independent of the zoom state.  For
    'width or 'height', the arrow size increases with the width and
    height of the axes, respectively, when the the window is resized;
    for 'dots' or 'inches', resizing does not change the arrows.


  *angles*: [ 'uv' | 'xy' | array ]
    With the default 'uv', the arrow aspect ratio is 1, so that
    if *U*==*V* the angle of the arrow on the plot is 45 degrees
    CCW from the *x*-axis.
    With 'xy', the arrow points from (x,y) to (x+u, y+v).
    Alternatively, arbitrary angles may be specified as an array
    of values in degrees, CCW from the *x*-axis.

  *scale*: [ *None* | float ]
    Data units per arrow length unit, e.g. m/s per plot width; a smaller
    scale parameter makes the arrow longer.  If *None*, a simple
    autoscaling algorithm is used, based on the average vector length
    and the number of vectors.  The arrow length unit is given by
    the *scale_units* parameter

  *scale_units*: *None*, or any of the *units* options.
    For example, if *scale_units* is 'inches', *scale* is 2.0, and
    ``(u,v) = (1,0)``, then the vector will be 0.5 inches long.
    If *scale_units* is 'width', then the vector will be half the width
    of the axes.

    If *scale_units* is 'x' then the vector will be 0.5 x-axis
    units.  To plot vectors in the x-y plane, with u and v having
    the same units as x and y, use
    "angles='xy', scale_units='xy', scale=1".

  *width*:
    Shaft width in arrow units; default depends on choice of units,
    above, and number of vectors; a typical starting value is about
    0.005 times the width of the plot.

  *headwidth*: scalar
    Head width as multiple of shaft width, default is 3

  *headlength*: scalar
    Head length as multiple of shaft width, default is 5

  *headaxislength*: scalar
    Head length at shaft intersection, default is 4.5

  *minshaft*: scalar
    Length below which arrow scales, in units of head length. Do not
    set this to less than 1, or small arrows will look terrible!
    Default is 1

  *minlength*: scalar
    Minimum length as a multiple of shaft width; if an arrow length
    is less than this, plot a dot (hexagon) of this diameter instead.
    Default is 1.

  *pivot*: [ 'tail' | 'middle' | 'tip' ]
    The part of the arrow that is at the grid point; the arrow rotates
    about this point, hence the name *pivot*.

  *color*: [ color | color sequence ]
    This is a synonym for the
    :class:`~matplotlib.collections.PolyCollection` facecolor kwarg.
    If *C* has been set, *color* has no effect.

The defaults give a slightly swept-back arrow; to make the head a
triangle, make *headaxislength* the same as *headlength*. To make the
arrow more pointed, reduce *headwidth* or increase *headlength* and
*headaxislength*. To make the head smaller relative to the shaft,
scale down all the head parameters. You will probably do best to leave
minshaft alone.

linewidths and edgecolors can be used to customize the arrow
outlines. Additional :class:`~matplotlib.collections.PolyCollection`
keyword arguments:

%(PolyCollection)s
""" % docstring.interpd.params

_quiverkey_doc = """
Add a key to a quiver plot.

Call signature::

  quiverkey(Q, X, Y, U, label, **kw)

Arguments:

  *Q*:
    The Quiver instance returned by a call to quiver.

  *X*, *Y*:
    The location of the key; additional explanation follows.

  *U*:
    The length of the key

  *label*:
    A string with the length and units of the key

Keyword arguments:

  *coordinates* = [ 'axes' | 'figure' | 'data' | 'inches' ]
    Coordinate system and units for *X*, *Y*: 'axes' and 'figure' are
    normalized coordinate systems with 0,0 in the lower left and 1,1
    in the upper right; 'data' are the axes data coordinates (used for
    the locations of the vectors in the quiver plot itself); 'inches'
    is position in the figure in inches, with 0,0 at the lower left
    corner.

  *color*:
    overrides face and edge colors from *Q*.

  *labelpos* = [ 'N' | 'S' | 'E' | 'W' ]
    Position the label above, below, to the right, to the left of the
    arrow, respectively.

  *labelsep*:
    Distance in inches between the arrow and the label.  Default is
    0.1

  *labelcolor*:
    defaults to default :class:`~matplotlib.text.Text` color.

  *fontproperties*:
    A dictionary with keyword arguments accepted by the
    :class:`~matplotlib.font_manager.FontProperties` initializer:
    *family*, *style*, *variant*, *size*, *weight*

Any additional keyword arguments are used to override vector
properties taken from *Q*.

The positioning of the key depends on *X*, *Y*, *coordinates*, and
*labelpos*.  If *labelpos* is 'N' or 'S', *X*, *Y* give the position
of the middle of the key arrow.  If *labelpos* is 'E', *X*, *Y*
positions the head, and if *labelpos* is 'W', *X*, *Y* positions the
tail; in either of these two cases, *X*, *Y* is somewhere in the
middle of the arrow+label key object.
"""


class QuiverKey(martist.Artist):
    """ Labelled arrow for use as a quiver plot scale key."""
    halign = {'N': 'center', 'S': 'center', 'E': 'left',   'W': 'right'}
    valign = {'N': 'bottom', 'S': 'top',    'E': 'center', 'W': 'center'}
    pivot  = {'N': 'mid',    'S': 'mid',    'E': 'tip',    'W': 'tail'}

    def __init__(self, Q, X, Y, U, label, **kw):
        martist.Artist.__init__(self)
        self.Q = Q
        self.X = X
        self.Y = Y
        self.U = U
        self.coord = kw.pop('coordinates', 'axes')
        self.color = kw.pop('color', None)
        self.label = label
        self._labelsep_inches = kw.pop('labelsep', 0.1)
        self.labelsep = (self._labelsep_inches * Q.ax.figure.dpi)

        def on_dpi_change(fig):
            self.labelsep = (self._labelsep_inches * fig.dpi)
            self._initialized = False # simple brute force update
                                      # works because _init is called
                                      # at the start of draw.

        Q.ax.figure.callbacks.connect('dpi_changed', on_dpi_change)

        self.labelpos = kw.pop('labelpos', 'N')
        self.labelcolor = kw.pop('labelcolor', None)
        self.fontproperties = kw.pop('fontproperties', dict())
        self.kw = kw
        _fp = self.fontproperties
        #boxprops = dict(facecolor='red')
        self.text = mtext.Text(text=label,  #      bbox=boxprops,
                       horizontalalignment=self.halign[self.labelpos],
                       verticalalignment=self.valign[self.labelpos],
                       fontproperties=font_manager.FontProperties(**_fp))
        if self.labelcolor is not None:
            self.text.set_color(self.labelcolor)
        self._initialized = False
        self.zorder = Q.zorder + 0.1


    __init__.__doc__ = _quiverkey_doc

    def _init(self):
        if True: ##not self._initialized:
            self._set_transform()
            _pivot = self.Q.pivot
            self.Q.pivot = self.pivot[self.labelpos]
            # Hack: save and restore the Umask
            _mask = self.Q.Umask
            self.Q.Umask = ma.nomask
            self.verts = self.Q._make_verts(np.array([self.U]),
                                                        np.zeros((1,)))
            self.Q.Umask = _mask
            self.Q.pivot = _pivot
            kw = self.Q.polykw
            kw.update(self.kw)
            self.vector = collections.PolyCollection(self.verts,
                                         offsets=[(self.X,self.Y)],
                                         transOffset=self.get_transform(),
                                         **kw)
            if self.color is not None:
                self.vector.set_color(self.color)
            self.vector.set_transform(self.Q.get_transform())
            self._initialized = True

    def _text_x(self, x):
        if self.labelpos == 'E':
            return x + self.labelsep
        elif self.labelpos == 'W':
            return x - self.labelsep
        else:
            return x

    def _text_y(self, y):
        if self.labelpos == 'N':
            return y + self.labelsep
        elif self.labelpos == 'S':
            return y - self.labelsep
        else:
            return y

    @allow_rasterization
    def draw(self, renderer):
        self._init()
        self.vector.draw(renderer)
        x, y = self.get_transform().transform_point((self.X, self.Y))
        self.text.set_x(self._text_x(x))
        self.text.set_y(self._text_y(y))
        self.text.draw(renderer)


    def _set_transform(self):
        if self.coord == 'data':
            self.set_transform(self.Q.ax.transData)
        elif self.coord == 'axes':
            self.set_transform(self.Q.ax.transAxes)
        elif self.coord == 'figure':
            self.set_transform(self.Q.ax.figure.transFigure)
        elif self.coord == 'inches':
            self.set_transform(self.Q.ax.figure.dpi_scale_trans)
        else:
            raise ValueError('unrecognized coordinates')

    def set_figure(self, fig):
        martist.Artist.set_figure(self, fig)
        self.text.set_figure(fig)

    def contains(self, mouseevent):
        # Maybe the dictionary should allow one to
        # distinguish between a text hit and a vector hit.
        if (self.text.contains(mouseevent)[0]
                or self.vector.contains(mouseevent)[0]):
            return True, {}
        return False, {}

    quiverkey_doc = _quiverkey_doc


# This is a helper function that parses out the various combination of
# arguments for doing colored vector plots.  Pulling it out here
# allows both Quiver and Barbs to use it
def _parse_args(*args):
    X, Y, U, V, C = [None]*5
    args = list(args)

    # The use of atleast_1d allows for handling scalar arguments while also
    # keeping masked arrays
    if len(args) == 3 or len(args) == 5:
        C = np.atleast_1d(args.pop(-1))
    V = np.atleast_1d(args.pop(-1))
    U = np.atleast_1d(args.pop(-1))
    if U.ndim == 1:
        nr, nc = 1, U.shape[0]
    else:
        nr, nc = U.shape
    if len(args) == 2: # remaining after removing U,V,C
        X, Y = [np.array(a).ravel() for a in args]
        if len(X) == nc and len(Y) == nr:
            X, Y = [a.ravel() for a in np.meshgrid(X, Y)]
    else:
        indexgrid = np.meshgrid(np.arange(nc), np.arange(nr))
        X, Y = [np.ravel(a) for a in indexgrid]
    return X, Y, U, V, C


class Quiver(collections.PolyCollection):
    """
    Specialized PolyCollection for arrows.

    The only API method is set_UVC(), which can be used
    to change the size, orientation, and color of the
    arrows; their locations are fixed when the class is
    instantiated.  Possibly this method will be useful
    in animations.

    Much of the work in this class is done in the draw()
    method so that as much information as possible is available
    about the plot.  In subsequent draw() calls, recalculation
    is limited to things that might have changed, so there
    should be no performance penalty from putting the calculations
    in the draw() method.
    """

    @docstring.Substitution(_quiver_doc)
    def __init__(self, ax, *args, **kw):
        """
        The constructor takes one required argument, an Axes
        instance, followed by the args and kwargs described
        by the following pylab interface documentation:
        %s
        """
        self.ax = ax
        X, Y, U, V, C = _parse_args(*args)
        self.X = X
        self.Y = Y
        self.XY = np.hstack((X[:,np.newaxis], Y[:,np.newaxis]))
        self.N = len(X)
        self.scale = kw.pop('scale', None)
        self.headwidth = kw.pop('headwidth', 3)
        self.headlength = float(kw.pop('headlength', 5))
        self.headaxislength = kw.pop('headaxislength', 4.5)
        self.minshaft = kw.pop('minshaft', 1)
        self.minlength = kw.pop('minlength', 1)
        self.units = kw.pop('units', 'width')
        self.scale_units = kw.pop('scale_units', None)
        self.angles = kw.pop('angles', 'uv')
        self.width = kw.pop('width', None)
        self.color = kw.pop('color', 'k')
        self.pivot = kw.pop('pivot', 'tail')
        kw.setdefault('facecolors', self.color)
        kw.setdefault('linewidths', (0,))
        collections.PolyCollection.__init__(self, [], offsets=self.XY,
                                            transOffset=ax.transData,
                                            closed=False,
                                            **kw)
        self.polykw = kw
        self.set_UVC(U, V, C)
        self._initialized = False

        self.keyvec = None
        self.keytext = None

        def on_dpi_change(fig):
            self._new_UV = True # vertices depend on width, span
                                # which in turn depend on dpi
            self._initialized = False # simple brute force update
                                      # works because _init is called
                                      # at the start of draw.

        self.ax.figure.callbacks.connect('dpi_changed', on_dpi_change)


    def _init(self):
        """
        Initialization delayed until first draw;
        allow time for axes setup.
        """
        # It seems that there are not enough event notifications
        # available to have this work on an as-needed basis at present.
        if True: ##not self._initialized:
            trans = self._set_transform()
            ax = self.ax
            sx, sy = trans.inverted().transform_point(
                                            (ax.bbox.width, ax.bbox.height))
            self.span = sx
            if self.width is None:
                sn = max(8, min(25, math.sqrt(self.N)))
                self.width = 0.06 * self.span / sn

    @allow_rasterization
    def draw(self, renderer):
        self._init()
        if (self._new_UV or self.angles == 'xy'
                or self.scale_units in ['x','y', 'xy']):
            verts = self._make_verts(self.U, self.V)
            self.set_verts(verts, closed=False)
            self._new_UV = False
        collections.PolyCollection.draw(self, renderer)

    def set_UVC(self, U, V, C=None):
        U = ma.masked_invalid(U, copy=False).ravel()
        V = ma.masked_invalid(V, copy=False).ravel()
        mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True)
        if C is not None:
            C = ma.masked_invalid(C, copy=False).ravel()
            mask = ma.mask_or(mask, C.mask, copy=False, shrink=True)
            if mask is ma.nomask:
                C = C.filled()
            else:
                C = ma.array(C, mask=mask, copy=False)
        self.U = U.filled(1)
        self.V = V.filled(1)
        self.Umask = mask
        if C is not None:
            self.set_array(C)
        self._new_UV = True

    def _dots_per_unit(self, units):
        """
        Return a scale factor for converting from units to pixels
        """
        ax = self.ax
        if units in ('x', 'y', 'xy'):
            if units == 'x':
                dx0 = ax.viewLim.width
                dx1 = ax.bbox.width
            elif units == 'y':
                dx0 = ax.viewLim.height
                dx1 = ax.bbox.height
            else: # 'xy' is assumed
                dxx0 = ax.viewLim.width
                dxx1 = ax.bbox.width
                dyy0 = ax.viewLim.height
                dyy1 = ax.bbox.height
                dx1 = np.sqrt(dxx1*dxx1+dyy1*dyy1)
                dx0 = np.sqrt(dxx0*dxx0+dyy0*dyy0)
            dx = dx1/dx0
        else:
            if units == 'width':
                dx = ax.bbox.width
            elif units == 'height':
                dx = ax.bbox.height
            elif units == 'dots':
                dx = 1.0
            elif units == 'inches':
                dx = ax.figure.dpi
            else:
                raise ValueError('unrecognized units')
        return dx

    def _set_transform(self):
        """
        Sets the PolygonCollection transform to go
        from arrow width units to pixels.
        """
        dx = self._dots_per_unit(self.units)
        self._trans_scale = dx # pixels per arrow width unit
        trans = transforms.Affine2D().scale(dx)
        self.set_transform(trans)
        return trans

    def _angles_lengths(self, U, V, eps=1):
        xy = self.ax.transData.transform(self.XY)
        uv = np.hstack((U[:,np.newaxis], V[:,np.newaxis]))
        xyp = self.ax.transData.transform(self.XY + eps * uv)
        dxy = xyp - xy
        angles = np.arctan2(dxy[:,1], dxy[:,0])
        lengths = np.absolute(dxy[:,0] + dxy[:,1]*1j) / eps
        return angles, lengths



    def _make_verts(self, U, V):
        uv = (U+V*1j)
        if self.angles == 'xy' and self.scale_units == 'xy':
            # Here eps is 1 so that if we get U, V by diffing
            # the X, Y arrays, the vectors will connect the
            # points, regardless of the axis scaling (including log).
            angles, lengths = self._angles_lengths(U, V, eps=1)
        elif self.angles == 'xy' or self.scale_units == 'xy':
            # Calculate eps based on the extents of the plot
            # so that we don't end up with roundoff error from
            # adding a small number to a large.
            angles, lengths = self._angles_lengths(U, V,
                eps=np.abs(self.ax.dataLim.extents).max() * 0.001)
        if self.scale_units == 'xy':
            a = lengths
        else:
            a = np.absolute(uv)
        if self.scale is None:
            sn = max(10, math.sqrt(self.N))
            if self.Umask is not ma.nomask:
                amean = a[~self.Umask].mean()
            else:
                amean = a.mean()
            scale = 1.8 * amean * sn / self.span # crude auto-scaling
                # scale is typical arrow length as a multiple
                # of the arrow width
        if self.scale_units is None:
            if self.scale is None:
                self.scale = scale
            widthu_per_lenu = 1.0
        else:
            if self.scale_units == 'xy':
                dx = 1
            else:
                dx = self._dots_per_unit(self.scale_units)
            widthu_per_lenu = dx/self._trans_scale
            if self.scale is None:
                self.scale = scale * widthu_per_lenu
        length = a * (widthu_per_lenu / (self.scale * self.width))
        X, Y = self._h_arrows(length)
        if self.angles == 'xy':
            theta = angles
        elif self.angles == 'uv':
            theta = np.angle(uv)
        else:
            # Make a copy to avoid changing the input array.
            theta = ma.masked_invalid(self.angles, copy=True).filled(0)
            theta = theta.ravel()
            theta *= (np.pi/180.0)
        theta.shape = (theta.shape[0], 1) # for broadcasting
        xy = (X+Y*1j) * np.exp(1j*theta)*self.width
        xy = xy[:,:,np.newaxis]
        XY = np.concatenate((xy.real, xy.imag), axis=2)
        if self.Umask is not ma.nomask:
            XY = ma.array(XY)
            XY[self.Umask] = ma.masked
            # This might be handled more efficiently with nans, given
            # that nans will end up in the paths anyway.

        return XY


    def _h_arrows(self, length):
        """ length is in arrow width units """
        # It might be possible to streamline the code
        # and speed it up a bit by using complex (x,y)
        # instead of separate arrays; but any gain would be slight.
        minsh = self.minshaft * self.headlength
        N = len(length)
        length = length.reshape(N, 1)
        # This number is chosen based on when pixel values overflow in Agg
        # causing rendering errors
        #length = np.minimum(length, 2 ** 16)
        np.clip(length, 0, 2**16, out=length)
        # x, y: normal horizontal arrow
        x = np.array([0, -self.headaxislength,
                        -self.headlength, 0], np.float64)
        x = x + np.array([0,1,1,1]) * length
        y = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64)
        y = np.repeat(y[np.newaxis,:], N, axis=0)
        # x0, y0: arrow without shaft, for short vectors
        x0 = np.array([0, minsh-self.headaxislength,
                        minsh-self.headlength, minsh], np.float64)
        y0 = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64)
        ii = [0,1,2,3,2,1,0,0]
        X = x.take(ii, 1)
        Y = y.take(ii, 1)
        Y[:, 3:-1] *= -1
        X0 = x0.take(ii)
        Y0 = y0.take(ii)
        Y0[3:-1] *= -1
        shrink = length/minsh
        X0 = shrink * X0[np.newaxis,:]
        Y0 = shrink * Y0[np.newaxis,:]
        short = np.repeat(length < minsh, 8, axis=1)
        # Now select X0, Y0 if short, otherwise X, Y
        cbook._putmask(X, short, X0)
        cbook._putmask(Y, short, Y0)
        if self.pivot[:3] == 'mid':
            X -= 0.5 * X[:,3, np.newaxis]
        elif self.pivot[:3] == 'tip':
            X = X - X[:,3, np.newaxis]   #numpy bug? using -= does not
                                         # work here unless we multiply
                                         # by a float first, as with 'mid'.
        tooshort = length < self.minlength
        if tooshort.any():
            # Use a heptagonal dot:
            th = np.arange(0,8,1, np.float64) * (np.pi/3.0)
            x1 = np.cos(th) * self.minlength * 0.5
            y1 = np.sin(th) * self.minlength * 0.5
            X1 = np.repeat(x1[np.newaxis, :], N, axis=0)
            Y1 = np.repeat(y1[np.newaxis, :], N, axis=0)
            tooshort = np.repeat(tooshort, 8, 1)
            cbook._putmask(X, tooshort, X1)
            cbook._putmask(Y, tooshort, Y1)
        # Mask handling is deferred to the caller, _make_verts.
        return X, Y

    quiver_doc = _quiver_doc

_barbs_doc = """
Plot a 2-D field of barbs.

Call signatures::

  barb(U, V, **kw)
  barb(U, V, C, **kw)
  barb(X, Y, U, V, **kw)
  barb(X, Y, U, V, C, **kw)

Arguments:

  *X*, *Y*:
    The x and y coordinates of the barb locations
    (default is head of barb; see *pivot* kwarg)

  *U*, *V*:
    Give the x and y components of the barb shaft

  *C*:
    An optional array used to map colors to the barbs

All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y*
are absent, they will be generated as a uniform grid.  If *U* and *V*
are 2-D arrays but *X* and *Y* are 1-D, and if ``len(X)`` and ``len(Y)``
match the column and row dimensions of *U*, then *X* and *Y* will be
expanded with :func:`numpy.meshgrid`.

*U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not
supported at present.

Keyword arguments:

  *length*:
    Length of the barb in points; the other parts of the barb
    are scaled against this.
    Default is 9

  *pivot*: [ 'tip' | 'middle' ]
    The part of the arrow that is at the grid point; the arrow rotates
    about this point, hence the name *pivot*.  Default is 'tip'

  *barbcolor*: [ color | color sequence ]
    Specifies the color all parts of the barb except any flags.  This
    parameter is analagous to the *edgecolor* parameter for polygons,
    which can be used instead. However this parameter will override
    facecolor.

  *flagcolor*: [ color | color sequence ]
    Specifies the color of any flags on the barb.  This parameter is
    analagous to the *facecolor* parameter for polygons, which can be
    used instead. However this parameter will override facecolor.  If
    this is not set (and *C* has not either) then *flagcolor* will be
    set to match *barbcolor* so that the barb has a uniform color. If
    *C* has been set, *flagcolor* has no effect.

  *sizes*:
    A dictionary of coefficients specifying the ratio of a given
    feature to the length of the barb. Only those values one wishes to
    override need to be included.  These features include:

        - 'spacing' - space between features (flags, full/half barbs)

        - 'height' - height (distance from shaft to top) of a flag or
          full barb

        - 'width' - width of a flag, twice the width of a full barb

        - 'emptybarb' - radius of the circle used for low magnitudes

  *fill_empty*:
    A flag on whether the empty barbs (circles) that are drawn should
    be filled with the flag color.  If they are not filled, they will
    be drawn such that no color is applied to the center.  Default is
    False

  *rounding*:
    A flag to indicate whether the vector magnitude should be rounded
    when allocating barb components.  If True, the magnitude is
    rounded to the nearest multiple of the half-barb increment.  If
    False, the magnitude is simply truncated to the next lowest
    multiple.  Default is True

  *barb_increments*:
    A dictionary of increments specifying values to associate with
    different parts of the barb. Only those values one wishes to
    override need to be included.

        - 'half' - half barbs (Default is 5)

        - 'full' - full barbs (Default is 10)

        - 'flag' - flags (default is 50)

  *flip_barb*:
    Either a single boolean flag or an array of booleans.  Single
    boolean indicates whether the lines and flags should point
    opposite to normal for all barbs.  An array (which should be the
    same size as the other data arrays) indicates whether to flip for
    each individual barb.  Normal behavior is for the barbs and lines
    to point right (comes from wind barbs having these features point
    towards low pressure in the Northern Hemisphere.)  Default is
    False

Barbs are traditionally used in meteorology as a way to plot the speed
and direction of wind observations, but can technically be used to
plot any two dimensional vector quantity.  As opposed to arrows, which
give vector magnitude by the length of the arrow, the barbs give more
quantitative information about the vector magnitude by putting slanted
lines or a triangle for various increments in magnitude, as show
schematically below::

 :     /\    \\
 :    /  \    \\
 :   /    \    \    \\
 :  /      \    \    \\
 : ------------------------------

.. note the double \\ at the end of each line to make the figure
.. render correctly

The largest increment is given by a triangle (or "flag"). After those
come full lines (barbs). The smallest increment is a half line.  There
is only, of course, ever at most 1 half line.  If the magnitude is
small and only needs a single half-line and no full lines or
triangles, the half-line is offset from the end of the barb so that it
can be easily distinguished from barbs with a single full line.  The
magnitude for the barb shown above would nominally be 65, using the
standard increments of 50, 10, and 5.

linewidths and edgecolors can be used to customize the barb.
Additional :class:`~matplotlib.collections.PolyCollection` keyword
arguments:

%(PolyCollection)s
""" % docstring.interpd.params

docstring.interpd.update(barbs_doc=_barbs_doc)

class Barbs(collections.PolyCollection):
    '''
    Specialized PolyCollection for barbs.

    The only API method is :meth:`set_UVC`, which can be used to
    change the size, orientation, and color of the arrows.  Locations
    are changed using the :meth:`set_offsets` collection method.
    Possibly this method will be useful in animations.

    There is one internal function :meth:`_find_tails` which finds
    exactly what should be put on the barb given the vector magnitude.
    From there :meth:`_make_barbs` is used to find the vertices of the
    polygon to represent the barb based on this information.
    '''
    #This may be an abuse of polygons here to render what is essentially maybe
    #1 triangle and a series of lines.  It works fine as far as I can tell
    #however.
    @docstring.interpd
    def __init__(self, ax, *args, **kw):
        """
        The constructor takes one required argument, an Axes
        instance, followed by the args and kwargs described
        by the following pylab interface documentation:
        %(barbs_doc)s
        """
        self._pivot = kw.pop('pivot', 'tip')
        self._length = kw.pop('length', 7)
        barbcolor = kw.pop('barbcolor', None)
        flagcolor = kw.pop('flagcolor', None)
        self.sizes = kw.pop('sizes', dict())
        self.fill_empty = kw.pop('fill_empty', False)
        self.barb_increments = kw.pop('barb_increments', dict())
        self.rounding = kw.pop('rounding', True)
        self.flip = kw.pop('flip_barb', False)

        #Flagcolor and and barbcolor provide convenience parameters for setting
        #the facecolor and edgecolor, respectively, of the barb polygon.  We
        #also work here to make the flag the same color as the rest of the barb
        #by default
        if None in (barbcolor, flagcolor):
            kw['edgecolors'] = 'face'
            if flagcolor:
                kw['facecolors'] = flagcolor
            elif barbcolor:
                kw['facecolors'] = barbcolor
            else:
                #Set to facecolor passed in or default to black
                kw.setdefault('facecolors', 'k')
        else:
            kw['edgecolors'] = barbcolor
            kw['facecolors'] = flagcolor

        #Parse out the data arrays from the various configurations supported
        x, y, u, v, c = _parse_args(*args)
        self.x = x
        self.y = y
        xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis]))

        #Make a collection
        barb_size = self._length**2 / 4 #Empirically determined
        collections.PolyCollection.__init__(self, [], (barb_size,), offsets=xy,
            transOffset=ax.transData, **kw)
        self.set_transform(transforms.IdentityTransform())

        self.set_UVC(u, v, c)

    def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50):
        '''
        Find how many of each of the tail pieces is necessary.  Flag
        specifies the increment for a flag, barb for a full barb, and half for
        half a barb. Mag should be the magnitude of a vector (ie. >= 0).

        This returns a tuple of:

            (*number of flags*, *number of barbs*, *half_flag*, *empty_flag*)

        *half_flag* is a boolean whether half of a barb is needed,
        since there should only ever be one half on a given
        barb. *empty_flag* flag is an array of flags to easily tell if
        a barb is empty (too low to plot any barbs/flags.
        '''

        #If rounding, round to the nearest multiple of half, the smallest
        #increment
        if rounding:
            mag = half * (mag / half + 0.5).astype(np.int)

        num_flags = np.floor(mag / flag).astype(np.int)
        mag = np.mod(mag, flag)

        num_barb = np.floor(mag / full).astype(np.int)
        mag = np.mod(mag, full)

        half_flag = mag >= half
        empty_flag = ~(half_flag | (num_flags > 0) | (num_barb > 0))

        return num_flags, num_barb, half_flag, empty_flag

    def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length,
        pivot, sizes, fill_empty, flip):
        '''
        This function actually creates the wind barbs.  *u* and *v*
        are components of the vector in the *x* and *y* directions,
        respectively.

        *nflags*, *nbarbs*, and *half_barb*, empty_flag* are,
        *respectively, the number of flags, number of barbs, flag for
        *half a barb, and flag for empty barb, ostensibly obtained
        *from :meth:`_find_tails`.

        *length* is the length of the barb staff in points.

        *pivot* specifies the point on the barb around which the
        entire barb should be rotated.  Right now, valid options are
        'head' and 'middle'.

        *sizes* is a dictionary of coefficients specifying the ratio
        of a given feature to the length of the barb. These features
        include:

            - *spacing*: space between features (flags, full/half
               barbs)

            - *height*: distance from shaft of top of a flag or full
               barb

            - *width* - width of a flag, twice the width of a full barb

            - *emptybarb* - radius of the circle used for low
               magnitudes

        *fill_empty* specifies whether the circle representing an
        empty barb should be filled or not (this changes the drawing
        of the polygon).

        *flip* is a flag indicating whether the features should be flipped to
        the other side of the barb (useful for winds in the southern
        hemisphere.

        This function returns list of arrays of vertices, defining a polygon for
        each of the wind barbs.  These polygons have been rotated to properly
        align with the vector direction.
        '''

        #These control the spacing and size of barb elements relative to the
        #length of the shaft
        spacing = length * sizes.get('spacing', 0.125)
        full_height = length * sizes.get('height', 0.4)
        full_width = length * sizes.get('width', 0.25)
        empty_rad = length * sizes.get('emptybarb', 0.15)

        #Controls y point where to pivot the barb.
        pivot_points = dict(tip=0.0, middle=-length/2.)

        #Check for flip
        if flip: full_height = -full_height

        endx = 0.0
        endy = pivot_points[pivot.lower()]

        #Get the appropriate angle for the vector components.  The offset is due
        #to the way the barb is initially drawn, going down the y-axis.  This
        #makes sense in a meteorological mode of thinking since there 0 degrees
        #corresponds to north (the y-axis traditionally)
        angles = -(ma.arctan2(v, u) + np.pi/2)

        #Used for low magnitude.  We just get the vertices, so if we make it
        #out here, it can be reused.  The center set here should put the
        #center of the circle at the location(offset), rather than at the
        #same point as the barb pivot; this seems more sensible.
        circ = CirclePolygon((0,0), radius=empty_rad).get_verts()
        if fill_empty:
            empty_barb = circ
        else:
            #If we don't want the empty one filled, we make a degenerate polygon
            #that wraps back over itself
            empty_barb = np.concatenate((circ, circ[::-1]))

        barb_list = []
        for index, angle in np.ndenumerate(angles):
            #If the vector magnitude is too weak to draw anything, plot an
            #empty circle instead
            if empty_flag[index]:
                #We can skip the transform since the circle has no preferred
                #orientation
                barb_list.append(empty_barb)
                continue

            poly_verts = [(endx, endy)]
            offset = length

            #Add vertices for each flag
            for i in range(nflags[index]):
                #The spacing that works for the barbs is a little to much for
                #the flags, but this only occurs when we have more than 1 flag.
                if offset != length: offset += spacing / 2.
                poly_verts.extend([[endx, endy + offset],
                    [endx + full_height, endy - full_width/2 + offset],
                    [endx, endy - full_width + offset]])

                offset -= full_width + spacing

            #Add vertices for each barb.  These really are lines, but works
            #great adding 3 vertices that basically pull the polygon out and
            #back down the line
            for i in range(nbarbs[index]):
                poly_verts.extend([(endx, endy + offset),
                    (endx + full_height, endy + offset + full_width/2),
                    (endx, endy + offset)])

                offset -= spacing

            #Add the vertices for half a barb, if needed
            if half_barb[index]:
                #If the half barb is the first on the staff, traditionally it is
                #offset from the end to make it easy to distinguish from a barb
                #with a full one
                if offset == length:
                    poly_verts.append((endx, endy + offset))
                    offset -= 1.5 * spacing
                poly_verts.extend([(endx, endy + offset),
                    (endx + full_height/2, endy + offset + full_width/4),
                    (endx, endy + offset)])

            #Rotate the barb according the angle. Making the barb first and then
            #rotating it made the math for drawing the barb really easy.  Also,
            #the transform framework makes doing the rotation simple.
            poly_verts = transforms.Affine2D().rotate(-angle).transform(
                poly_verts)
            barb_list.append(poly_verts)

        return barb_list

    def set_UVC(self, U, V, C=None):
        self.u = ma.masked_invalid(U, copy=False).ravel()
        self.v = ma.masked_invalid(V, copy=False).ravel()
        if C is not None:
            c = ma.masked_invalid(C, copy=False).ravel()
            x,y,u,v,c = delete_masked_points(self.x.ravel(), self.y.ravel(),
                self.u, self.v, c)
        else:
            x,y,u,v = delete_masked_points(self.x.ravel(), self.y.ravel(),
                self.u, self.v)

        magnitude = np.sqrt(u*u + v*v)
        flags, barbs, halves, empty = self._find_tails(magnitude,
            self.rounding, **self.barb_increments)

        #Get the vertices for each of the barbs

        plot_barbs = self._make_barbs(u, v, flags, barbs, halves, empty,
            self._length, self._pivot, self.sizes, self.fill_empty, self.flip)
        self.set_verts(plot_barbs)

        #Set the color array
        if C is not None:
            self.set_array(c)

        #Update the offsets in case the masked data changed
        xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis]))
        self._offsets = xy

    def set_offsets(self, xy):
        """
        Set the offsets for the barb polygons.  This saves the offets passed in
        and actually sets version masked as appropriate for the existing U/V
        data. *offsets* should be a sequence.

        ACCEPTS: sequence of pairs of floats
        """
        self.x = xy[:,0]
        self.y = xy[:,1]
        x,y,u,v = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u,
            self.v)
        xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis]))
        collections.PolyCollection.set_offsets(self, xy)
    set_offsets.__doc__ = collections.PolyCollection.set_offsets.__doc__

    barbs_doc = _barbs_doc