/usr/share/pyshared/matplotlib/quiver.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 | """
Support for plotting vector fields.
Presently this contains Quiver and Barb. Quiver plots an arrow in the
direction of the vector, with the size of the arrow related to the
magnitude of the vector.
Barbs are like quiver in that they point along a vector, but
the magnitude of the vector is given schematically by the presence of barbs
or flags on the barb.
This will also become a home for things such as standard
deviation ellipses, which can and will be derived very easily from
the Quiver code.
"""
import numpy as np
from numpy import ma
import matplotlib.collections as collections
import matplotlib.transforms as transforms
import matplotlib.text as mtext
import matplotlib.artist as martist
from matplotlib.artist import allow_rasterization
from matplotlib import docstring
import matplotlib.font_manager as font_manager
import matplotlib.cbook as cbook
from matplotlib.cbook import delete_masked_points
from matplotlib.patches import CirclePolygon
import math
_quiver_doc = """
Plot a 2-D field of arrows.
call signatures::
quiver(U, V, **kw)
quiver(U, V, C, **kw)
quiver(X, Y, U, V, **kw)
quiver(X, Y, U, V, C, **kw)
Arguments:
*X*, *Y*:
The x and y coordinates of the arrow locations (default is tail of
arrow; see *pivot* kwarg)
*U*, *V*:
Give the x and y components of the arrow vectors
*C*:
An optional array used to map colors to the arrows
All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y*
are absent, they will be generated as a uniform grid. If *U* and *V*
are 2-D arrays but *X* and *Y* are 1-D, and if ``len(X)`` and ``len(Y)``
match the column and row dimensions of *U*, then *X* and *Y* will be
expanded with :func:`numpy.meshgrid`.
*U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not
supported at present.
Keyword arguments:
*units*: [ 'width' | 'height' | 'dots' | 'inches' | 'x' | 'y' | 'xy' ]
Arrow units; the arrow dimensions *except for length* are in
multiples of this unit.
* 'width' or 'height': the width or height of the axes
* 'dots' or 'inches': pixels or inches, based on the figure dpi
* 'x', 'y', or 'xy': *X*, *Y*, or sqrt(X^2+Y^2) data units
The arrows scale differently depending on the units. For
'x' or 'y', the arrows get larger as one zooms in; for other
units, the arrow size is independent of the zoom state. For
'width or 'height', the arrow size increases with the width and
height of the axes, respectively, when the the window is resized;
for 'dots' or 'inches', resizing does not change the arrows.
*angles*: [ 'uv' | 'xy' | array ]
With the default 'uv', the arrow aspect ratio is 1, so that
if *U*==*V* the angle of the arrow on the plot is 45 degrees
CCW from the *x*-axis.
With 'xy', the arrow points from (x,y) to (x+u, y+v).
Alternatively, arbitrary angles may be specified as an array
of values in degrees, CCW from the *x*-axis.
*scale*: [ *None* | float ]
Data units per arrow length unit, e.g. m/s per plot width; a smaller
scale parameter makes the arrow longer. If *None*, a simple
autoscaling algorithm is used, based on the average vector length
and the number of vectors. The arrow length unit is given by
the *scale_units* parameter
*scale_units*: *None*, or any of the *units* options.
For example, if *scale_units* is 'inches', *scale* is 2.0, and
``(u,v) = (1,0)``, then the vector will be 0.5 inches long.
If *scale_units* is 'width', then the vector will be half the width
of the axes.
If *scale_units* is 'x' then the vector will be 0.5 x-axis
units. To plot vectors in the x-y plane, with u and v having
the same units as x and y, use
"angles='xy', scale_units='xy', scale=1".
*width*:
Shaft width in arrow units; default depends on choice of units,
above, and number of vectors; a typical starting value is about
0.005 times the width of the plot.
*headwidth*: scalar
Head width as multiple of shaft width, default is 3
*headlength*: scalar
Head length as multiple of shaft width, default is 5
*headaxislength*: scalar
Head length at shaft intersection, default is 4.5
*minshaft*: scalar
Length below which arrow scales, in units of head length. Do not
set this to less than 1, or small arrows will look terrible!
Default is 1
*minlength*: scalar
Minimum length as a multiple of shaft width; if an arrow length
is less than this, plot a dot (hexagon) of this diameter instead.
Default is 1.
*pivot*: [ 'tail' | 'middle' | 'tip' ]
The part of the arrow that is at the grid point; the arrow rotates
about this point, hence the name *pivot*.
*color*: [ color | color sequence ]
This is a synonym for the
:class:`~matplotlib.collections.PolyCollection` facecolor kwarg.
If *C* has been set, *color* has no effect.
The defaults give a slightly swept-back arrow; to make the head a
triangle, make *headaxislength* the same as *headlength*. To make the
arrow more pointed, reduce *headwidth* or increase *headlength* and
*headaxislength*. To make the head smaller relative to the shaft,
scale down all the head parameters. You will probably do best to leave
minshaft alone.
linewidths and edgecolors can be used to customize the arrow
outlines. Additional :class:`~matplotlib.collections.PolyCollection`
keyword arguments:
%(PolyCollection)s
""" % docstring.interpd.params
_quiverkey_doc = """
Add a key to a quiver plot.
Call signature::
quiverkey(Q, X, Y, U, label, **kw)
Arguments:
*Q*:
The Quiver instance returned by a call to quiver.
*X*, *Y*:
The location of the key; additional explanation follows.
*U*:
The length of the key
*label*:
A string with the length and units of the key
Keyword arguments:
*coordinates* = [ 'axes' | 'figure' | 'data' | 'inches' ]
Coordinate system and units for *X*, *Y*: 'axes' and 'figure' are
normalized coordinate systems with 0,0 in the lower left and 1,1
in the upper right; 'data' are the axes data coordinates (used for
the locations of the vectors in the quiver plot itself); 'inches'
is position in the figure in inches, with 0,0 at the lower left
corner.
*color*:
overrides face and edge colors from *Q*.
*labelpos* = [ 'N' | 'S' | 'E' | 'W' ]
Position the label above, below, to the right, to the left of the
arrow, respectively.
*labelsep*:
Distance in inches between the arrow and the label. Default is
0.1
*labelcolor*:
defaults to default :class:`~matplotlib.text.Text` color.
*fontproperties*:
A dictionary with keyword arguments accepted by the
:class:`~matplotlib.font_manager.FontProperties` initializer:
*family*, *style*, *variant*, *size*, *weight*
Any additional keyword arguments are used to override vector
properties taken from *Q*.
The positioning of the key depends on *X*, *Y*, *coordinates*, and
*labelpos*. If *labelpos* is 'N' or 'S', *X*, *Y* give the position
of the middle of the key arrow. If *labelpos* is 'E', *X*, *Y*
positions the head, and if *labelpos* is 'W', *X*, *Y* positions the
tail; in either of these two cases, *X*, *Y* is somewhere in the
middle of the arrow+label key object.
"""
class QuiverKey(martist.Artist):
""" Labelled arrow for use as a quiver plot scale key."""
halign = {'N': 'center', 'S': 'center', 'E': 'left', 'W': 'right'}
valign = {'N': 'bottom', 'S': 'top', 'E': 'center', 'W': 'center'}
pivot = {'N': 'mid', 'S': 'mid', 'E': 'tip', 'W': 'tail'}
def __init__(self, Q, X, Y, U, label, **kw):
martist.Artist.__init__(self)
self.Q = Q
self.X = X
self.Y = Y
self.U = U
self.coord = kw.pop('coordinates', 'axes')
self.color = kw.pop('color', None)
self.label = label
self._labelsep_inches = kw.pop('labelsep', 0.1)
self.labelsep = (self._labelsep_inches * Q.ax.figure.dpi)
def on_dpi_change(fig):
self.labelsep = (self._labelsep_inches * fig.dpi)
self._initialized = False # simple brute force update
# works because _init is called
# at the start of draw.
Q.ax.figure.callbacks.connect('dpi_changed', on_dpi_change)
self.labelpos = kw.pop('labelpos', 'N')
self.labelcolor = kw.pop('labelcolor', None)
self.fontproperties = kw.pop('fontproperties', dict())
self.kw = kw
_fp = self.fontproperties
#boxprops = dict(facecolor='red')
self.text = mtext.Text(text=label, # bbox=boxprops,
horizontalalignment=self.halign[self.labelpos],
verticalalignment=self.valign[self.labelpos],
fontproperties=font_manager.FontProperties(**_fp))
if self.labelcolor is not None:
self.text.set_color(self.labelcolor)
self._initialized = False
self.zorder = Q.zorder + 0.1
__init__.__doc__ = _quiverkey_doc
def _init(self):
if True: ##not self._initialized:
self._set_transform()
_pivot = self.Q.pivot
self.Q.pivot = self.pivot[self.labelpos]
# Hack: save and restore the Umask
_mask = self.Q.Umask
self.Q.Umask = ma.nomask
self.verts = self.Q._make_verts(np.array([self.U]),
np.zeros((1,)))
self.Q.Umask = _mask
self.Q.pivot = _pivot
kw = self.Q.polykw
kw.update(self.kw)
self.vector = collections.PolyCollection(self.verts,
offsets=[(self.X,self.Y)],
transOffset=self.get_transform(),
**kw)
if self.color is not None:
self.vector.set_color(self.color)
self.vector.set_transform(self.Q.get_transform())
self._initialized = True
def _text_x(self, x):
if self.labelpos == 'E':
return x + self.labelsep
elif self.labelpos == 'W':
return x - self.labelsep
else:
return x
def _text_y(self, y):
if self.labelpos == 'N':
return y + self.labelsep
elif self.labelpos == 'S':
return y - self.labelsep
else:
return y
@allow_rasterization
def draw(self, renderer):
self._init()
self.vector.draw(renderer)
x, y = self.get_transform().transform_point((self.X, self.Y))
self.text.set_x(self._text_x(x))
self.text.set_y(self._text_y(y))
self.text.draw(renderer)
def _set_transform(self):
if self.coord == 'data':
self.set_transform(self.Q.ax.transData)
elif self.coord == 'axes':
self.set_transform(self.Q.ax.transAxes)
elif self.coord == 'figure':
self.set_transform(self.Q.ax.figure.transFigure)
elif self.coord == 'inches':
self.set_transform(self.Q.ax.figure.dpi_scale_trans)
else:
raise ValueError('unrecognized coordinates')
def set_figure(self, fig):
martist.Artist.set_figure(self, fig)
self.text.set_figure(fig)
def contains(self, mouseevent):
# Maybe the dictionary should allow one to
# distinguish between a text hit and a vector hit.
if (self.text.contains(mouseevent)[0]
or self.vector.contains(mouseevent)[0]):
return True, {}
return False, {}
quiverkey_doc = _quiverkey_doc
# This is a helper function that parses out the various combination of
# arguments for doing colored vector plots. Pulling it out here
# allows both Quiver and Barbs to use it
def _parse_args(*args):
X, Y, U, V, C = [None]*5
args = list(args)
# The use of atleast_1d allows for handling scalar arguments while also
# keeping masked arrays
if len(args) == 3 or len(args) == 5:
C = np.atleast_1d(args.pop(-1))
V = np.atleast_1d(args.pop(-1))
U = np.atleast_1d(args.pop(-1))
if U.ndim == 1:
nr, nc = 1, U.shape[0]
else:
nr, nc = U.shape
if len(args) == 2: # remaining after removing U,V,C
X, Y = [np.array(a).ravel() for a in args]
if len(X) == nc and len(Y) == nr:
X, Y = [a.ravel() for a in np.meshgrid(X, Y)]
else:
indexgrid = np.meshgrid(np.arange(nc), np.arange(nr))
X, Y = [np.ravel(a) for a in indexgrid]
return X, Y, U, V, C
class Quiver(collections.PolyCollection):
"""
Specialized PolyCollection for arrows.
The only API method is set_UVC(), which can be used
to change the size, orientation, and color of the
arrows; their locations are fixed when the class is
instantiated. Possibly this method will be useful
in animations.
Much of the work in this class is done in the draw()
method so that as much information as possible is available
about the plot. In subsequent draw() calls, recalculation
is limited to things that might have changed, so there
should be no performance penalty from putting the calculations
in the draw() method.
"""
@docstring.Substitution(_quiver_doc)
def __init__(self, ax, *args, **kw):
"""
The constructor takes one required argument, an Axes
instance, followed by the args and kwargs described
by the following pylab interface documentation:
%s
"""
self.ax = ax
X, Y, U, V, C = _parse_args(*args)
self.X = X
self.Y = Y
self.XY = np.hstack((X[:,np.newaxis], Y[:,np.newaxis]))
self.N = len(X)
self.scale = kw.pop('scale', None)
self.headwidth = kw.pop('headwidth', 3)
self.headlength = float(kw.pop('headlength', 5))
self.headaxislength = kw.pop('headaxislength', 4.5)
self.minshaft = kw.pop('minshaft', 1)
self.minlength = kw.pop('minlength', 1)
self.units = kw.pop('units', 'width')
self.scale_units = kw.pop('scale_units', None)
self.angles = kw.pop('angles', 'uv')
self.width = kw.pop('width', None)
self.color = kw.pop('color', 'k')
self.pivot = kw.pop('pivot', 'tail')
kw.setdefault('facecolors', self.color)
kw.setdefault('linewidths', (0,))
collections.PolyCollection.__init__(self, [], offsets=self.XY,
transOffset=ax.transData,
closed=False,
**kw)
self.polykw = kw
self.set_UVC(U, V, C)
self._initialized = False
self.keyvec = None
self.keytext = None
def on_dpi_change(fig):
self._new_UV = True # vertices depend on width, span
# which in turn depend on dpi
self._initialized = False # simple brute force update
# works because _init is called
# at the start of draw.
self.ax.figure.callbacks.connect('dpi_changed', on_dpi_change)
def _init(self):
"""
Initialization delayed until first draw;
allow time for axes setup.
"""
# It seems that there are not enough event notifications
# available to have this work on an as-needed basis at present.
if True: ##not self._initialized:
trans = self._set_transform()
ax = self.ax
sx, sy = trans.inverted().transform_point(
(ax.bbox.width, ax.bbox.height))
self.span = sx
if self.width is None:
sn = max(8, min(25, math.sqrt(self.N)))
self.width = 0.06 * self.span / sn
@allow_rasterization
def draw(self, renderer):
self._init()
if (self._new_UV or self.angles == 'xy'
or self.scale_units in ['x','y', 'xy']):
verts = self._make_verts(self.U, self.V)
self.set_verts(verts, closed=False)
self._new_UV = False
collections.PolyCollection.draw(self, renderer)
def set_UVC(self, U, V, C=None):
U = ma.masked_invalid(U, copy=False).ravel()
V = ma.masked_invalid(V, copy=False).ravel()
mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True)
if C is not None:
C = ma.masked_invalid(C, copy=False).ravel()
mask = ma.mask_or(mask, C.mask, copy=False, shrink=True)
if mask is ma.nomask:
C = C.filled()
else:
C = ma.array(C, mask=mask, copy=False)
self.U = U.filled(1)
self.V = V.filled(1)
self.Umask = mask
if C is not None:
self.set_array(C)
self._new_UV = True
def _dots_per_unit(self, units):
"""
Return a scale factor for converting from units to pixels
"""
ax = self.ax
if units in ('x', 'y', 'xy'):
if units == 'x':
dx0 = ax.viewLim.width
dx1 = ax.bbox.width
elif units == 'y':
dx0 = ax.viewLim.height
dx1 = ax.bbox.height
else: # 'xy' is assumed
dxx0 = ax.viewLim.width
dxx1 = ax.bbox.width
dyy0 = ax.viewLim.height
dyy1 = ax.bbox.height
dx1 = np.sqrt(dxx1*dxx1+dyy1*dyy1)
dx0 = np.sqrt(dxx0*dxx0+dyy0*dyy0)
dx = dx1/dx0
else:
if units == 'width':
dx = ax.bbox.width
elif units == 'height':
dx = ax.bbox.height
elif units == 'dots':
dx = 1.0
elif units == 'inches':
dx = ax.figure.dpi
else:
raise ValueError('unrecognized units')
return dx
def _set_transform(self):
"""
Sets the PolygonCollection transform to go
from arrow width units to pixels.
"""
dx = self._dots_per_unit(self.units)
self._trans_scale = dx # pixels per arrow width unit
trans = transforms.Affine2D().scale(dx)
self.set_transform(trans)
return trans
def _angles_lengths(self, U, V, eps=1):
xy = self.ax.transData.transform(self.XY)
uv = np.hstack((U[:,np.newaxis], V[:,np.newaxis]))
xyp = self.ax.transData.transform(self.XY + eps * uv)
dxy = xyp - xy
angles = np.arctan2(dxy[:,1], dxy[:,0])
lengths = np.absolute(dxy[:,0] + dxy[:,1]*1j) / eps
return angles, lengths
def _make_verts(self, U, V):
uv = (U+V*1j)
if self.angles == 'xy' and self.scale_units == 'xy':
# Here eps is 1 so that if we get U, V by diffing
# the X, Y arrays, the vectors will connect the
# points, regardless of the axis scaling (including log).
angles, lengths = self._angles_lengths(U, V, eps=1)
elif self.angles == 'xy' or self.scale_units == 'xy':
# Calculate eps based on the extents of the plot
# so that we don't end up with roundoff error from
# adding a small number to a large.
angles, lengths = self._angles_lengths(U, V,
eps=np.abs(self.ax.dataLim.extents).max() * 0.001)
if self.scale_units == 'xy':
a = lengths
else:
a = np.absolute(uv)
if self.scale is None:
sn = max(10, math.sqrt(self.N))
if self.Umask is not ma.nomask:
amean = a[~self.Umask].mean()
else:
amean = a.mean()
scale = 1.8 * amean * sn / self.span # crude auto-scaling
# scale is typical arrow length as a multiple
# of the arrow width
if self.scale_units is None:
if self.scale is None:
self.scale = scale
widthu_per_lenu = 1.0
else:
if self.scale_units == 'xy':
dx = 1
else:
dx = self._dots_per_unit(self.scale_units)
widthu_per_lenu = dx/self._trans_scale
if self.scale is None:
self.scale = scale * widthu_per_lenu
length = a * (widthu_per_lenu / (self.scale * self.width))
X, Y = self._h_arrows(length)
if self.angles == 'xy':
theta = angles
elif self.angles == 'uv':
theta = np.angle(uv)
else:
# Make a copy to avoid changing the input array.
theta = ma.masked_invalid(self.angles, copy=True).filled(0)
theta = theta.ravel()
theta *= (np.pi/180.0)
theta.shape = (theta.shape[0], 1) # for broadcasting
xy = (X+Y*1j) * np.exp(1j*theta)*self.width
xy = xy[:,:,np.newaxis]
XY = np.concatenate((xy.real, xy.imag), axis=2)
if self.Umask is not ma.nomask:
XY = ma.array(XY)
XY[self.Umask] = ma.masked
# This might be handled more efficiently with nans, given
# that nans will end up in the paths anyway.
return XY
def _h_arrows(self, length):
""" length is in arrow width units """
# It might be possible to streamline the code
# and speed it up a bit by using complex (x,y)
# instead of separate arrays; but any gain would be slight.
minsh = self.minshaft * self.headlength
N = len(length)
length = length.reshape(N, 1)
# This number is chosen based on when pixel values overflow in Agg
# causing rendering errors
#length = np.minimum(length, 2 ** 16)
np.clip(length, 0, 2**16, out=length)
# x, y: normal horizontal arrow
x = np.array([0, -self.headaxislength,
-self.headlength, 0], np.float64)
x = x + np.array([0,1,1,1]) * length
y = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64)
y = np.repeat(y[np.newaxis,:], N, axis=0)
# x0, y0: arrow without shaft, for short vectors
x0 = np.array([0, minsh-self.headaxislength,
minsh-self.headlength, minsh], np.float64)
y0 = 0.5 * np.array([1, 1, self.headwidth, 0], np.float64)
ii = [0,1,2,3,2,1,0,0]
X = x.take(ii, 1)
Y = y.take(ii, 1)
Y[:, 3:-1] *= -1
X0 = x0.take(ii)
Y0 = y0.take(ii)
Y0[3:-1] *= -1
shrink = length/minsh
X0 = shrink * X0[np.newaxis,:]
Y0 = shrink * Y0[np.newaxis,:]
short = np.repeat(length < minsh, 8, axis=1)
# Now select X0, Y0 if short, otherwise X, Y
cbook._putmask(X, short, X0)
cbook._putmask(Y, short, Y0)
if self.pivot[:3] == 'mid':
X -= 0.5 * X[:,3, np.newaxis]
elif self.pivot[:3] == 'tip':
X = X - X[:,3, np.newaxis] #numpy bug? using -= does not
# work here unless we multiply
# by a float first, as with 'mid'.
tooshort = length < self.minlength
if tooshort.any():
# Use a heptagonal dot:
th = np.arange(0,8,1, np.float64) * (np.pi/3.0)
x1 = np.cos(th) * self.minlength * 0.5
y1 = np.sin(th) * self.minlength * 0.5
X1 = np.repeat(x1[np.newaxis, :], N, axis=0)
Y1 = np.repeat(y1[np.newaxis, :], N, axis=0)
tooshort = np.repeat(tooshort, 8, 1)
cbook._putmask(X, tooshort, X1)
cbook._putmask(Y, tooshort, Y1)
# Mask handling is deferred to the caller, _make_verts.
return X, Y
quiver_doc = _quiver_doc
_barbs_doc = """
Plot a 2-D field of barbs.
Call signatures::
barb(U, V, **kw)
barb(U, V, C, **kw)
barb(X, Y, U, V, **kw)
barb(X, Y, U, V, C, **kw)
Arguments:
*X*, *Y*:
The x and y coordinates of the barb locations
(default is head of barb; see *pivot* kwarg)
*U*, *V*:
Give the x and y components of the barb shaft
*C*:
An optional array used to map colors to the barbs
All arguments may be 1-D or 2-D arrays or sequences. If *X* and *Y*
are absent, they will be generated as a uniform grid. If *U* and *V*
are 2-D arrays but *X* and *Y* are 1-D, and if ``len(X)`` and ``len(Y)``
match the column and row dimensions of *U*, then *X* and *Y* will be
expanded with :func:`numpy.meshgrid`.
*U*, *V*, *C* may be masked arrays, but masked *X*, *Y* are not
supported at present.
Keyword arguments:
*length*:
Length of the barb in points; the other parts of the barb
are scaled against this.
Default is 9
*pivot*: [ 'tip' | 'middle' ]
The part of the arrow that is at the grid point; the arrow rotates
about this point, hence the name *pivot*. Default is 'tip'
*barbcolor*: [ color | color sequence ]
Specifies the color all parts of the barb except any flags. This
parameter is analagous to the *edgecolor* parameter for polygons,
which can be used instead. However this parameter will override
facecolor.
*flagcolor*: [ color | color sequence ]
Specifies the color of any flags on the barb. This parameter is
analagous to the *facecolor* parameter for polygons, which can be
used instead. However this parameter will override facecolor. If
this is not set (and *C* has not either) then *flagcolor* will be
set to match *barbcolor* so that the barb has a uniform color. If
*C* has been set, *flagcolor* has no effect.
*sizes*:
A dictionary of coefficients specifying the ratio of a given
feature to the length of the barb. Only those values one wishes to
override need to be included. These features include:
- 'spacing' - space between features (flags, full/half barbs)
- 'height' - height (distance from shaft to top) of a flag or
full barb
- 'width' - width of a flag, twice the width of a full barb
- 'emptybarb' - radius of the circle used for low magnitudes
*fill_empty*:
A flag on whether the empty barbs (circles) that are drawn should
be filled with the flag color. If they are not filled, they will
be drawn such that no color is applied to the center. Default is
False
*rounding*:
A flag to indicate whether the vector magnitude should be rounded
when allocating barb components. If True, the magnitude is
rounded to the nearest multiple of the half-barb increment. If
False, the magnitude is simply truncated to the next lowest
multiple. Default is True
*barb_increments*:
A dictionary of increments specifying values to associate with
different parts of the barb. Only those values one wishes to
override need to be included.
- 'half' - half barbs (Default is 5)
- 'full' - full barbs (Default is 10)
- 'flag' - flags (default is 50)
*flip_barb*:
Either a single boolean flag or an array of booleans. Single
boolean indicates whether the lines and flags should point
opposite to normal for all barbs. An array (which should be the
same size as the other data arrays) indicates whether to flip for
each individual barb. Normal behavior is for the barbs and lines
to point right (comes from wind barbs having these features point
towards low pressure in the Northern Hemisphere.) Default is
False
Barbs are traditionally used in meteorology as a way to plot the speed
and direction of wind observations, but can technically be used to
plot any two dimensional vector quantity. As opposed to arrows, which
give vector magnitude by the length of the arrow, the barbs give more
quantitative information about the vector magnitude by putting slanted
lines or a triangle for various increments in magnitude, as show
schematically below::
: /\ \\
: / \ \\
: / \ \ \\
: / \ \ \\
: ------------------------------
.. note the double \\ at the end of each line to make the figure
.. render correctly
The largest increment is given by a triangle (or "flag"). After those
come full lines (barbs). The smallest increment is a half line. There
is only, of course, ever at most 1 half line. If the magnitude is
small and only needs a single half-line and no full lines or
triangles, the half-line is offset from the end of the barb so that it
can be easily distinguished from barbs with a single full line. The
magnitude for the barb shown above would nominally be 65, using the
standard increments of 50, 10, and 5.
linewidths and edgecolors can be used to customize the barb.
Additional :class:`~matplotlib.collections.PolyCollection` keyword
arguments:
%(PolyCollection)s
""" % docstring.interpd.params
docstring.interpd.update(barbs_doc=_barbs_doc)
class Barbs(collections.PolyCollection):
'''
Specialized PolyCollection for barbs.
The only API method is :meth:`set_UVC`, which can be used to
change the size, orientation, and color of the arrows. Locations
are changed using the :meth:`set_offsets` collection method.
Possibly this method will be useful in animations.
There is one internal function :meth:`_find_tails` which finds
exactly what should be put on the barb given the vector magnitude.
From there :meth:`_make_barbs` is used to find the vertices of the
polygon to represent the barb based on this information.
'''
#This may be an abuse of polygons here to render what is essentially maybe
#1 triangle and a series of lines. It works fine as far as I can tell
#however.
@docstring.interpd
def __init__(self, ax, *args, **kw):
"""
The constructor takes one required argument, an Axes
instance, followed by the args and kwargs described
by the following pylab interface documentation:
%(barbs_doc)s
"""
self._pivot = kw.pop('pivot', 'tip')
self._length = kw.pop('length', 7)
barbcolor = kw.pop('barbcolor', None)
flagcolor = kw.pop('flagcolor', None)
self.sizes = kw.pop('sizes', dict())
self.fill_empty = kw.pop('fill_empty', False)
self.barb_increments = kw.pop('barb_increments', dict())
self.rounding = kw.pop('rounding', True)
self.flip = kw.pop('flip_barb', False)
#Flagcolor and and barbcolor provide convenience parameters for setting
#the facecolor and edgecolor, respectively, of the barb polygon. We
#also work here to make the flag the same color as the rest of the barb
#by default
if None in (barbcolor, flagcolor):
kw['edgecolors'] = 'face'
if flagcolor:
kw['facecolors'] = flagcolor
elif barbcolor:
kw['facecolors'] = barbcolor
else:
#Set to facecolor passed in or default to black
kw.setdefault('facecolors', 'k')
else:
kw['edgecolors'] = barbcolor
kw['facecolors'] = flagcolor
#Parse out the data arrays from the various configurations supported
x, y, u, v, c = _parse_args(*args)
self.x = x
self.y = y
xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis]))
#Make a collection
barb_size = self._length**2 / 4 #Empirically determined
collections.PolyCollection.__init__(self, [], (barb_size,), offsets=xy,
transOffset=ax.transData, **kw)
self.set_transform(transforms.IdentityTransform())
self.set_UVC(u, v, c)
def _find_tails(self, mag, rounding=True, half=5, full=10, flag=50):
'''
Find how many of each of the tail pieces is necessary. Flag
specifies the increment for a flag, barb for a full barb, and half for
half a barb. Mag should be the magnitude of a vector (ie. >= 0).
This returns a tuple of:
(*number of flags*, *number of barbs*, *half_flag*, *empty_flag*)
*half_flag* is a boolean whether half of a barb is needed,
since there should only ever be one half on a given
barb. *empty_flag* flag is an array of flags to easily tell if
a barb is empty (too low to plot any barbs/flags.
'''
#If rounding, round to the nearest multiple of half, the smallest
#increment
if rounding:
mag = half * (mag / half + 0.5).astype(np.int)
num_flags = np.floor(mag / flag).astype(np.int)
mag = np.mod(mag, flag)
num_barb = np.floor(mag / full).astype(np.int)
mag = np.mod(mag, full)
half_flag = mag >= half
empty_flag = ~(half_flag | (num_flags > 0) | (num_barb > 0))
return num_flags, num_barb, half_flag, empty_flag
def _make_barbs(self, u, v, nflags, nbarbs, half_barb, empty_flag, length,
pivot, sizes, fill_empty, flip):
'''
This function actually creates the wind barbs. *u* and *v*
are components of the vector in the *x* and *y* directions,
respectively.
*nflags*, *nbarbs*, and *half_barb*, empty_flag* are,
*respectively, the number of flags, number of barbs, flag for
*half a barb, and flag for empty barb, ostensibly obtained
*from :meth:`_find_tails`.
*length* is the length of the barb staff in points.
*pivot* specifies the point on the barb around which the
entire barb should be rotated. Right now, valid options are
'head' and 'middle'.
*sizes* is a dictionary of coefficients specifying the ratio
of a given feature to the length of the barb. These features
include:
- *spacing*: space between features (flags, full/half
barbs)
- *height*: distance from shaft of top of a flag or full
barb
- *width* - width of a flag, twice the width of a full barb
- *emptybarb* - radius of the circle used for low
magnitudes
*fill_empty* specifies whether the circle representing an
empty barb should be filled or not (this changes the drawing
of the polygon).
*flip* is a flag indicating whether the features should be flipped to
the other side of the barb (useful for winds in the southern
hemisphere.
This function returns list of arrays of vertices, defining a polygon for
each of the wind barbs. These polygons have been rotated to properly
align with the vector direction.
'''
#These control the spacing and size of barb elements relative to the
#length of the shaft
spacing = length * sizes.get('spacing', 0.125)
full_height = length * sizes.get('height', 0.4)
full_width = length * sizes.get('width', 0.25)
empty_rad = length * sizes.get('emptybarb', 0.15)
#Controls y point where to pivot the barb.
pivot_points = dict(tip=0.0, middle=-length/2.)
#Check for flip
if flip: full_height = -full_height
endx = 0.0
endy = pivot_points[pivot.lower()]
#Get the appropriate angle for the vector components. The offset is due
#to the way the barb is initially drawn, going down the y-axis. This
#makes sense in a meteorological mode of thinking since there 0 degrees
#corresponds to north (the y-axis traditionally)
angles = -(ma.arctan2(v, u) + np.pi/2)
#Used for low magnitude. We just get the vertices, so if we make it
#out here, it can be reused. The center set here should put the
#center of the circle at the location(offset), rather than at the
#same point as the barb pivot; this seems more sensible.
circ = CirclePolygon((0,0), radius=empty_rad).get_verts()
if fill_empty:
empty_barb = circ
else:
#If we don't want the empty one filled, we make a degenerate polygon
#that wraps back over itself
empty_barb = np.concatenate((circ, circ[::-1]))
barb_list = []
for index, angle in np.ndenumerate(angles):
#If the vector magnitude is too weak to draw anything, plot an
#empty circle instead
if empty_flag[index]:
#We can skip the transform since the circle has no preferred
#orientation
barb_list.append(empty_barb)
continue
poly_verts = [(endx, endy)]
offset = length
#Add vertices for each flag
for i in range(nflags[index]):
#The spacing that works for the barbs is a little to much for
#the flags, but this only occurs when we have more than 1 flag.
if offset != length: offset += spacing / 2.
poly_verts.extend([[endx, endy + offset],
[endx + full_height, endy - full_width/2 + offset],
[endx, endy - full_width + offset]])
offset -= full_width + spacing
#Add vertices for each barb. These really are lines, but works
#great adding 3 vertices that basically pull the polygon out and
#back down the line
for i in range(nbarbs[index]):
poly_verts.extend([(endx, endy + offset),
(endx + full_height, endy + offset + full_width/2),
(endx, endy + offset)])
offset -= spacing
#Add the vertices for half a barb, if needed
if half_barb[index]:
#If the half barb is the first on the staff, traditionally it is
#offset from the end to make it easy to distinguish from a barb
#with a full one
if offset == length:
poly_verts.append((endx, endy + offset))
offset -= 1.5 * spacing
poly_verts.extend([(endx, endy + offset),
(endx + full_height/2, endy + offset + full_width/4),
(endx, endy + offset)])
#Rotate the barb according the angle. Making the barb first and then
#rotating it made the math for drawing the barb really easy. Also,
#the transform framework makes doing the rotation simple.
poly_verts = transforms.Affine2D().rotate(-angle).transform(
poly_verts)
barb_list.append(poly_verts)
return barb_list
def set_UVC(self, U, V, C=None):
self.u = ma.masked_invalid(U, copy=False).ravel()
self.v = ma.masked_invalid(V, copy=False).ravel()
if C is not None:
c = ma.masked_invalid(C, copy=False).ravel()
x,y,u,v,c = delete_masked_points(self.x.ravel(), self.y.ravel(),
self.u, self.v, c)
else:
x,y,u,v = delete_masked_points(self.x.ravel(), self.y.ravel(),
self.u, self.v)
magnitude = np.sqrt(u*u + v*v)
flags, barbs, halves, empty = self._find_tails(magnitude,
self.rounding, **self.barb_increments)
#Get the vertices for each of the barbs
plot_barbs = self._make_barbs(u, v, flags, barbs, halves, empty,
self._length, self._pivot, self.sizes, self.fill_empty, self.flip)
self.set_verts(plot_barbs)
#Set the color array
if C is not None:
self.set_array(c)
#Update the offsets in case the masked data changed
xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis]))
self._offsets = xy
def set_offsets(self, xy):
"""
Set the offsets for the barb polygons. This saves the offets passed in
and actually sets version masked as appropriate for the existing U/V
data. *offsets* should be a sequence.
ACCEPTS: sequence of pairs of floats
"""
self.x = xy[:,0]
self.y = xy[:,1]
x,y,u,v = delete_masked_points(self.x.ravel(), self.y.ravel(), self.u,
self.v)
xy = np.hstack((x[:,np.newaxis], y[:,np.newaxis]))
collections.PolyCollection.set_offsets(self, xy)
set_offsets.__doc__ = collections.PolyCollection.set_offsets.__doc__
barbs_doc = _barbs_doc
|