This file is indexed.

/usr/share/pyshared/matplotlib/scale.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import textwrap
import numpy as np
from numpy import ma
MaskedArray = ma.MaskedArray

from cbook import dedent
from ticker import NullFormatter, ScalarFormatter, LogFormatterMathtext, Formatter
from ticker import NullLocator, LogLocator, AutoLocator, SymmetricalLogLocator, FixedLocator
from ticker import is_decade
from transforms import Transform, IdentityTransform
from matplotlib import docstring

class ScaleBase(object):
    """
    The base class for all scales.

    Scales are separable transformations, working on a single dimension.

    Any subclasses will want to override:

      - :attr:`name`
      - :meth:`get_transform`

    And optionally:
      - :meth:`set_default_locators_and_formatters`
      - :meth:`limit_range_for_scale`
    """
    def get_transform(self):
        """
        Return the :class:`~matplotlib.transforms.Transform` object
        associated with this scale.
        """
        raise NotImplementedError

    def set_default_locators_and_formatters(self, axis):
        """
        Set the :class:`~matplotlib.ticker.Locator` and
        :class:`~matplotlib.ticker.Formatter` objects on the given
        axis to match this scale.
        """
        raise NotImplementedError

    def limit_range_for_scale(self, vmin, vmax, minpos):
        """
        Returns the range *vmin*, *vmax*, possibly limited to the
        domain supported by this scale.

        *minpos* should be the minimum positive value in the data.
         This is used by log scales to determine a minimum value.
        """
        return vmin, vmax

class LinearScale(ScaleBase):
    """
    The default linear scale.
    """

    name = 'linear'

    def __init__(self, axis, **kwargs):
        pass

    def set_default_locators_and_formatters(self, axis):
        """
        Set the locators and formatters to reasonable defaults for
        linear scaling.
        """
        axis.set_major_locator(AutoLocator())
        axis.set_major_formatter(ScalarFormatter())
        axis.set_minor_locator(NullLocator())
        axis.set_minor_formatter(NullFormatter())

    def get_transform(self):
        """
        The transform for linear scaling is just the
        :class:`~matplotlib.transforms.IdentityTransform`.
        """
        return IdentityTransform()


def _mask_non_positives(a):
    """
    Return a Numpy masked array where all non-positive values are
    masked.  If there are no non-positive values, the original array
    is returned.
    """
    mask = a <= 0.0
    if mask.any():
        return ma.MaskedArray(a, mask=mask)
    return a

def _clip_non_positives(a):
    a[a <= 0.0] = 1e-300
    return a

class LogScale(ScaleBase):
    """
    A standard logarithmic scale.  Care is taken so non-positive
    values are not plotted.

    For computational efficiency (to push as much as possible to Numpy
    C code in the common cases), this scale provides different
    transforms depending on the base of the logarithm:

       - base 10 (:class:`Log10Transform`)
       - base 2 (:class:`Log2Transform`)
       - base e (:class:`NaturalLogTransform`)
       - arbitrary base (:class:`LogTransform`)
    """

    name = 'log'

    class LogTransformBase(Transform):
        input_dims = 1
        output_dims = 1
        is_separable = True

        def __init__(self, nonpos):
            Transform.__init__(self)
            if nonpos == 'mask':
                self._handle_nonpos = _mask_non_positives
            else:
                self._handle_nonpos = _clip_non_positives


    class Log10Transform(LogTransformBase):
        base = 10.0

        def transform(self, a):
            a = self._handle_nonpos(a * 10.0)
            if isinstance(a, MaskedArray):
                return ma.log10(a)
            return np.log10(a)

        def inverted(self):
            return LogScale.InvertedLog10Transform()

    class InvertedLog10Transform(Transform):
        input_dims = 1
        output_dims = 1
        is_separable = True
        base = 10.0

        def transform(self, a):
            return ma.power(10.0, a) / 10.0

        def inverted(self):
            return LogScale.Log10Transform()

    class Log2Transform(LogTransformBase):
        base = 2.0

        def transform(self, a):
            a = self._handle_nonpos(a * 2.0)
            if isinstance(a, MaskedArray):
                return ma.log(a) / np.log(2)
            return np.log2(a)

        def inverted(self):
            return LogScale.InvertedLog2Transform()

    class InvertedLog2Transform(Transform):
        input_dims = 1
        output_dims = 1
        is_separable = True
        base = 2.0

        def transform(self, a):
            return ma.power(2.0, a) / 2.0

        def inverted(self):
            return LogScale.Log2Transform()

    class NaturalLogTransform(LogTransformBase):
        base = np.e

        def transform(self, a):
            a = self._handle_nonpos(a * np.e)
            if isinstance(a, MaskedArray):
                return ma.log(a)
            return np.log(a)

        def inverted(self):
            return LogScale.InvertedNaturalLogTransform()

    class InvertedNaturalLogTransform(Transform):
        input_dims = 1
        output_dims = 1
        is_separable = True
        base = np.e

        def transform(self, a):
            return ma.power(np.e, a) / np.e

        def inverted(self):
            return LogScale.NaturalLogTransform()

    class LogTransform(Transform):
        input_dims = 1
        output_dims = 1
        is_separable = True

        def __init__(self, base, nonpos):
            Transform.__init__(self)
            self.base = base
            if nonpos == 'mask':
                self._handle_nonpos = _mask_non_positives
            else:
                self._handle_nonpos = _clip_non_positives

        def transform(self, a):
            a = self._handle_nonpos(a * self.base)
            if isinstance(a, MaskedArray):
                return ma.log(a) / np.log(self.base)
            return np.log(a) / np.log(self.base)

        def inverted(self):
            return LogScale.InvertedLogTransform(self.base)

    class InvertedLogTransform(Transform):
        input_dims = 1
        output_dims = 1
        is_separable = True

        def __init__(self, base):
            Transform.__init__(self)
            self.base = base

        def transform(self, a):
            return ma.power(self.base, a) / self.base

        def inverted(self):
            return LogScale.LogTransform(self.base)


    def __init__(self, axis, **kwargs):
        """
        *basex*/*basey*:
           The base of the logarithm

        *nonposx*/*nonposy*: ['mask' | 'clip' ]
          non-positive values in *x* or *y* can be masked as
          invalid, or clipped to a very small positive number

        *subsx*/*subsy*:
           Where to place the subticks between each major tick.
           Should be a sequence of integers.  For example, in a log10
           scale: ``[2, 3, 4, 5, 6, 7, 8, 9]``

           will place 8 logarithmically spaced minor ticks between
           each major tick.
        """
        if axis.axis_name == 'x':
            base = kwargs.pop('basex', 10.0)
            subs = kwargs.pop('subsx', None)
            nonpos = kwargs.pop('nonposx', 'mask')
        else:
            base = kwargs.pop('basey', 10.0)
            subs = kwargs.pop('subsy', None)
            nonpos = kwargs.pop('nonposy', 'mask')

        if nonpos not in ['mask', 'clip']:
            raise ValueError("nonposx, nonposy kwarg must be 'mask' or 'clip'")

        if base == 10.0:
            self._transform = self.Log10Transform(nonpos)
        elif base == 2.0:
            self._transform = self.Log2Transform(nonpos)
        elif base == np.e:
            self._transform = self.NaturalLogTransform(nonpos)
        else:
            self._transform = self.LogTransform(base, nonpos)

        self.base = base
        self.subs = subs

    def set_default_locators_and_formatters(self, axis):
        """
        Set the locators and formatters to specialized versions for
        log scaling.
        """
        axis.set_major_locator(LogLocator(self.base))
        axis.set_major_formatter(LogFormatterMathtext(self.base))
        axis.set_minor_locator(LogLocator(self.base, self.subs))
        axis.set_minor_formatter(NullFormatter())

    def get_transform(self):
        """
        Return a :class:`~matplotlib.transforms.Transform` instance
        appropriate for the given logarithm base.
        """
        return self._transform

    def limit_range_for_scale(self, vmin, vmax, minpos):
        """
        Limit the domain to positive values.
        """
        return (vmin <= 0.0 and minpos or vmin,
                vmax <= 0.0 and minpos or vmax)


class SymmetricalLogScale(ScaleBase):
    """
    The symmetrical logarithmic scale is logarithmic in both the
    positive and negative directions from the origin.

    Since the values close to zero tend toward infinity, there is a
    need to have a range around zero that is linear.  The parameter
    *linthresh* allows the user to specify the size of this range
    (-*linthresh*, *linthresh*).
    """
    name = 'symlog'

    class SymmetricalLogTransform(Transform):
            input_dims = 1
            output_dims = 1
            is_separable = True

            def __init__(self, base, linthresh):
                Transform.__init__(self)
                self.base = base
                self.linthresh = linthresh
                self._log_base = np.log(base)
                self._linadjust = (np.log(linthresh) / self._log_base) / linthresh

            def transform(self, a):
                sign = np.sign(a)
                masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False)
                log = sign * self.linthresh * (1 + ma.log(np.abs(masked) / self.linthresh))
                if masked.mask.any():
                    return ma.where(masked.mask, a, log)
                else:
                    return log

            def inverted(self):
                return SymmetricalLogScale.InvertedSymmetricalLogTransform(self.base, self.linthresh)

    class InvertedSymmetricalLogTransform(Transform):
        input_dims = 1
        output_dims = 1
        is_separable = True

        def __init__(self, base, linthresh):
            Transform.__init__(self)
            self.base = base
            self.linthresh = linthresh
            self._log_base = np.log(base)
            self._log_linthresh = np.log(linthresh) / self._log_base
            self._linadjust = linthresh / (np.log(linthresh) / self._log_base)

        def transform(self, a):
            sign = np.sign(a)
            masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False)
            exp = sign * self.linthresh * ma.exp(sign * masked / self.linthresh - 1)
            if masked.mask.any():
                return ma.where(masked.mask, a, exp)
            else:
                return exp

    def __init__(self, axis, **kwargs):
        """
        *basex*/*basey*:
           The base of the logarithm

        *linthreshx*/*linthreshy*:
          The range (-*x*, *x*) within which the plot is linear (to
          avoid having the plot go to infinity around zero).

        *subsx*/*subsy*:
           Where to place the subticks between each major tick.
           Should be a sequence of integers.  For example, in a log10
           scale: ``[2, 3, 4, 5, 6, 7, 8, 9]``

           will place 8 logarithmically spaced minor ticks between
           each major tick.
        """
        if axis.axis_name == 'x':
            base = kwargs.pop('basex', 10.0)
            linthresh = kwargs.pop('linthreshx', 2.0)
            subs = kwargs.pop('subsx', None)
        else:
            base = kwargs.pop('basey', 10.0)
            linthresh = kwargs.pop('linthreshy', 2.0)
            subs = kwargs.pop('subsy', None)

        self._transform = self.SymmetricalLogTransform(base, linthresh)

        assert base > 0.0
        assert linthresh > 0.0

        self.base = base
        self.linthresh = linthresh
        self.subs = subs

    def set_default_locators_and_formatters(self, axis):
        """
        Set the locators and formatters to specialized versions for
        symmetrical log scaling.
        """
        axis.set_major_locator(SymmetricalLogLocator(self.get_transform()))
        axis.set_major_formatter(LogFormatterMathtext(self.base))
        axis.set_minor_locator(SymmetricalLogLocator(self.get_transform(), self.subs))
        axis.set_minor_formatter(NullFormatter())

    def get_transform(self):
        """
        Return a :class:`SymmetricalLogTransform` instance.
        """
        return self._transform



_scale_mapping = {
    'linear'            : LinearScale,
    'log'               : LogScale,
    'symlog'            : SymmetricalLogScale
    }
def get_scale_names():
    names = _scale_mapping.keys()
    names.sort()
    return names

def scale_factory(scale, axis, **kwargs):
    """
    Return a scale class by name.

    ACCEPTS: [ %(names)s ]
    """
    scale = scale.lower()
    if scale is None:
        scale = 'linear'

    if scale not in _scale_mapping:
        raise ValueError("Unknown scale type '%s'" % scale)

    return _scale_mapping[scale](axis, **kwargs)
scale_factory.__doc__ = dedent(scale_factory.__doc__) % \
    {'names': " | ".join(get_scale_names())}

def register_scale(scale_class):
    """
    Register a new kind of scale.

    *scale_class* must be a subclass of :class:`ScaleBase`.
    """
    _scale_mapping[scale_class.name] = scale_class

def get_scale_docs():
    """
    Helper function for generating docstrings related to scales.
    """
    docs = []
    for name in get_scale_names():
        scale_class = _scale_mapping[name]
        docs.append("    '%s'" % name)
        docs.append("")
        class_docs = dedent(scale_class.__init__.__doc__)
        class_docs = "".join(["        %s\n" %
                              x for x in class_docs.split("\n")])
        docs.append(class_docs)
        docs.append("")
    return "\n".join(docs)

docstring.interpd.update(
    scale = ' | '.join([repr(x) for x in get_scale_names()]),
    scale_docs = get_scale_docs().strip(),
    )