/usr/share/pyshared/matplotlib/scale.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 | import textwrap
import numpy as np
from numpy import ma
MaskedArray = ma.MaskedArray
from cbook import dedent
from ticker import NullFormatter, ScalarFormatter, LogFormatterMathtext, Formatter
from ticker import NullLocator, LogLocator, AutoLocator, SymmetricalLogLocator, FixedLocator
from ticker import is_decade
from transforms import Transform, IdentityTransform
from matplotlib import docstring
class ScaleBase(object):
"""
The base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:
- :attr:`name`
- :meth:`get_transform`
And optionally:
- :meth:`set_default_locators_and_formatters`
- :meth:`limit_range_for_scale`
"""
def get_transform(self):
"""
Return the :class:`~matplotlib.transforms.Transform` object
associated with this scale.
"""
raise NotImplementedError
def set_default_locators_and_formatters(self, axis):
"""
Set the :class:`~matplotlib.ticker.Locator` and
:class:`~matplotlib.ticker.Formatter` objects on the given
axis to match this scale.
"""
raise NotImplementedError
def limit_range_for_scale(self, vmin, vmax, minpos):
"""
Returns the range *vmin*, *vmax*, possibly limited to the
domain supported by this scale.
*minpos* should be the minimum positive value in the data.
This is used by log scales to determine a minimum value.
"""
return vmin, vmax
class LinearScale(ScaleBase):
"""
The default linear scale.
"""
name = 'linear'
def __init__(self, axis, **kwargs):
pass
def set_default_locators_and_formatters(self, axis):
"""
Set the locators and formatters to reasonable defaults for
linear scaling.
"""
axis.set_major_locator(AutoLocator())
axis.set_major_formatter(ScalarFormatter())
axis.set_minor_locator(NullLocator())
axis.set_minor_formatter(NullFormatter())
def get_transform(self):
"""
The transform for linear scaling is just the
:class:`~matplotlib.transforms.IdentityTransform`.
"""
return IdentityTransform()
def _mask_non_positives(a):
"""
Return a Numpy masked array where all non-positive values are
masked. If there are no non-positive values, the original array
is returned.
"""
mask = a <= 0.0
if mask.any():
return ma.MaskedArray(a, mask=mask)
return a
def _clip_non_positives(a):
a[a <= 0.0] = 1e-300
return a
class LogScale(ScaleBase):
"""
A standard logarithmic scale. Care is taken so non-positive
values are not plotted.
For computational efficiency (to push as much as possible to Numpy
C code in the common cases), this scale provides different
transforms depending on the base of the logarithm:
- base 10 (:class:`Log10Transform`)
- base 2 (:class:`Log2Transform`)
- base e (:class:`NaturalLogTransform`)
- arbitrary base (:class:`LogTransform`)
"""
name = 'log'
class LogTransformBase(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, nonpos):
Transform.__init__(self)
if nonpos == 'mask':
self._handle_nonpos = _mask_non_positives
else:
self._handle_nonpos = _clip_non_positives
class Log10Transform(LogTransformBase):
base = 10.0
def transform(self, a):
a = self._handle_nonpos(a * 10.0)
if isinstance(a, MaskedArray):
return ma.log10(a)
return np.log10(a)
def inverted(self):
return LogScale.InvertedLog10Transform()
class InvertedLog10Transform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
base = 10.0
def transform(self, a):
return ma.power(10.0, a) / 10.0
def inverted(self):
return LogScale.Log10Transform()
class Log2Transform(LogTransformBase):
base = 2.0
def transform(self, a):
a = self._handle_nonpos(a * 2.0)
if isinstance(a, MaskedArray):
return ma.log(a) / np.log(2)
return np.log2(a)
def inverted(self):
return LogScale.InvertedLog2Transform()
class InvertedLog2Transform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
base = 2.0
def transform(self, a):
return ma.power(2.0, a) / 2.0
def inverted(self):
return LogScale.Log2Transform()
class NaturalLogTransform(LogTransformBase):
base = np.e
def transform(self, a):
a = self._handle_nonpos(a * np.e)
if isinstance(a, MaskedArray):
return ma.log(a)
return np.log(a)
def inverted(self):
return LogScale.InvertedNaturalLogTransform()
class InvertedNaturalLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
base = np.e
def transform(self, a):
return ma.power(np.e, a) / np.e
def inverted(self):
return LogScale.NaturalLogTransform()
class LogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, base, nonpos):
Transform.__init__(self)
self.base = base
if nonpos == 'mask':
self._handle_nonpos = _mask_non_positives
else:
self._handle_nonpos = _clip_non_positives
def transform(self, a):
a = self._handle_nonpos(a * self.base)
if isinstance(a, MaskedArray):
return ma.log(a) / np.log(self.base)
return np.log(a) / np.log(self.base)
def inverted(self):
return LogScale.InvertedLogTransform(self.base)
class InvertedLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, base):
Transform.__init__(self)
self.base = base
def transform(self, a):
return ma.power(self.base, a) / self.base
def inverted(self):
return LogScale.LogTransform(self.base)
def __init__(self, axis, **kwargs):
"""
*basex*/*basey*:
The base of the logarithm
*nonposx*/*nonposy*: ['mask' | 'clip' ]
non-positive values in *x* or *y* can be masked as
invalid, or clipped to a very small positive number
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[2, 3, 4, 5, 6, 7, 8, 9]``
will place 8 logarithmically spaced minor ticks between
each major tick.
"""
if axis.axis_name == 'x':
base = kwargs.pop('basex', 10.0)
subs = kwargs.pop('subsx', None)
nonpos = kwargs.pop('nonposx', 'mask')
else:
base = kwargs.pop('basey', 10.0)
subs = kwargs.pop('subsy', None)
nonpos = kwargs.pop('nonposy', 'mask')
if nonpos not in ['mask', 'clip']:
raise ValueError("nonposx, nonposy kwarg must be 'mask' or 'clip'")
if base == 10.0:
self._transform = self.Log10Transform(nonpos)
elif base == 2.0:
self._transform = self.Log2Transform(nonpos)
elif base == np.e:
self._transform = self.NaturalLogTransform(nonpos)
else:
self._transform = self.LogTransform(base, nonpos)
self.base = base
self.subs = subs
def set_default_locators_and_formatters(self, axis):
"""
Set the locators and formatters to specialized versions for
log scaling.
"""
axis.set_major_locator(LogLocator(self.base))
axis.set_major_formatter(LogFormatterMathtext(self.base))
axis.set_minor_locator(LogLocator(self.base, self.subs))
axis.set_minor_formatter(NullFormatter())
def get_transform(self):
"""
Return a :class:`~matplotlib.transforms.Transform` instance
appropriate for the given logarithm base.
"""
return self._transform
def limit_range_for_scale(self, vmin, vmax, minpos):
"""
Limit the domain to positive values.
"""
return (vmin <= 0.0 and minpos or vmin,
vmax <= 0.0 and minpos or vmax)
class SymmetricalLogScale(ScaleBase):
"""
The symmetrical logarithmic scale is logarithmic in both the
positive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is a
need to have a range around zero that is linear. The parameter
*linthresh* allows the user to specify the size of this range
(-*linthresh*, *linthresh*).
"""
name = 'symlog'
class SymmetricalLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, base, linthresh):
Transform.__init__(self)
self.base = base
self.linthresh = linthresh
self._log_base = np.log(base)
self._linadjust = (np.log(linthresh) / self._log_base) / linthresh
def transform(self, a):
sign = np.sign(a)
masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False)
log = sign * self.linthresh * (1 + ma.log(np.abs(masked) / self.linthresh))
if masked.mask.any():
return ma.where(masked.mask, a, log)
else:
return log
def inverted(self):
return SymmetricalLogScale.InvertedSymmetricalLogTransform(self.base, self.linthresh)
class InvertedSymmetricalLogTransform(Transform):
input_dims = 1
output_dims = 1
is_separable = True
def __init__(self, base, linthresh):
Transform.__init__(self)
self.base = base
self.linthresh = linthresh
self._log_base = np.log(base)
self._log_linthresh = np.log(linthresh) / self._log_base
self._linadjust = linthresh / (np.log(linthresh) / self._log_base)
def transform(self, a):
sign = np.sign(a)
masked = ma.masked_inside(a, -self.linthresh, self.linthresh, copy=False)
exp = sign * self.linthresh * ma.exp(sign * masked / self.linthresh - 1)
if masked.mask.any():
return ma.where(masked.mask, a, exp)
else:
return exp
def __init__(self, axis, **kwargs):
"""
*basex*/*basey*:
The base of the logarithm
*linthreshx*/*linthreshy*:
The range (-*x*, *x*) within which the plot is linear (to
avoid having the plot go to infinity around zero).
*subsx*/*subsy*:
Where to place the subticks between each major tick.
Should be a sequence of integers. For example, in a log10
scale: ``[2, 3, 4, 5, 6, 7, 8, 9]``
will place 8 logarithmically spaced minor ticks between
each major tick.
"""
if axis.axis_name == 'x':
base = kwargs.pop('basex', 10.0)
linthresh = kwargs.pop('linthreshx', 2.0)
subs = kwargs.pop('subsx', None)
else:
base = kwargs.pop('basey', 10.0)
linthresh = kwargs.pop('linthreshy', 2.0)
subs = kwargs.pop('subsy', None)
self._transform = self.SymmetricalLogTransform(base, linthresh)
assert base > 0.0
assert linthresh > 0.0
self.base = base
self.linthresh = linthresh
self.subs = subs
def set_default_locators_and_formatters(self, axis):
"""
Set the locators and formatters to specialized versions for
symmetrical log scaling.
"""
axis.set_major_locator(SymmetricalLogLocator(self.get_transform()))
axis.set_major_formatter(LogFormatterMathtext(self.base))
axis.set_minor_locator(SymmetricalLogLocator(self.get_transform(), self.subs))
axis.set_minor_formatter(NullFormatter())
def get_transform(self):
"""
Return a :class:`SymmetricalLogTransform` instance.
"""
return self._transform
_scale_mapping = {
'linear' : LinearScale,
'log' : LogScale,
'symlog' : SymmetricalLogScale
}
def get_scale_names():
names = _scale_mapping.keys()
names.sort()
return names
def scale_factory(scale, axis, **kwargs):
"""
Return a scale class by name.
ACCEPTS: [ %(names)s ]
"""
scale = scale.lower()
if scale is None:
scale = 'linear'
if scale not in _scale_mapping:
raise ValueError("Unknown scale type '%s'" % scale)
return _scale_mapping[scale](axis, **kwargs)
scale_factory.__doc__ = dedent(scale_factory.__doc__) % \
{'names': " | ".join(get_scale_names())}
def register_scale(scale_class):
"""
Register a new kind of scale.
*scale_class* must be a subclass of :class:`ScaleBase`.
"""
_scale_mapping[scale_class.name] = scale_class
def get_scale_docs():
"""
Helper function for generating docstrings related to scales.
"""
docs = []
for name in get_scale_names():
scale_class = _scale_mapping[name]
docs.append(" '%s'" % name)
docs.append("")
class_docs = dedent(scale_class.__init__.__doc__)
class_docs = "".join([" %s\n" %
x for x in class_docs.split("\n")])
docs.append(class_docs)
docs.append("")
return "\n".join(docs)
docstring.interpd.update(
scale = ' | '.join([repr(x) for x in get_scale_names()]),
scale_docs = get_scale_docs().strip(),
)
|