This file is indexed.

/usr/share/pyshared/matplotlib/tests/test_axes.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import numpy as np
from numpy import ma
import matplotlib
from matplotlib.testing.decorators import image_comparison, knownfailureif
import matplotlib.pyplot as plt


@image_comparison(baseline_images=['formatter_ticker_001',
                                   'formatter_ticker_002',
                                   'formatter_ticker_003',
                                   'formatter_ticker_004',
                                   'formatter_ticker_005',
                                   ])
def test_formatter_ticker():
    import matplotlib.testing.jpl_units as units
    units.register()

    # This should affect the tick size.  (Tests issue #543)
    matplotlib.rcParams['lines.markeredgewidth'] = 30

    # This essentially test to see if user specified labels get overwritten
    # by the auto labeler functionality of the axes.
    xdata = [ x*units.sec for x in range(10) ]
    ydata1 = [ (1.5*y - 0.5)*units.km for y in range(10) ]
    ydata2 = [ (1.75*y - 1.0)*units.km for y in range(10) ]

    fig = plt.figure()
    ax = plt.subplot( 111 )
    ax.set_xlabel( "x-label 001" )

    fig = plt.figure()
    ax = plt.subplot( 111 )
    ax.set_xlabel( "x-label 001" )
    ax.plot( xdata, ydata1, color='blue', xunits="sec" )

    fig = plt.figure()
    ax = plt.subplot( 111 )
    ax.set_xlabel( "x-label 001" )
    ax.plot( xdata, ydata1, color='blue', xunits="sec" )
    ax.set_xlabel( "x-label 003" )

    fig = plt.figure()
    ax = plt.subplot( 111 )
    ax.plot( xdata, ydata1, color='blue', xunits="sec" )
    ax.plot( xdata, ydata2, color='green', xunits="hour" )
    ax.set_xlabel( "x-label 004" )

    # See SF bug 2846058
    # https://sourceforge.net/tracker/?func=detail&aid=2846058&group_id=80706&atid=560720
    fig = plt.figure()
    ax = plt.subplot( 111 )
    ax.plot( xdata, ydata1, color='blue', xunits="sec" )
    ax.plot( xdata, ydata2, color='green', xunits="hour" )
    ax.set_xlabel( "x-label 005" )
    ax.autoscale_view()

@image_comparison(baseline_images=['offset_points'])
def test_basic_annotate():
    # Setup some data
    t = np.arange( 0.0, 5.0, 0.01 )
    s = np.cos( 2.0*np.pi * t )

    # Offset Points

    fig = plt.figure()
    ax = fig.add_subplot( 111, autoscale_on=False, xlim=(-1,5), ylim=(-3,5) )
    line, = ax.plot( t, s, lw=3, color='purple' )

    ax.annotate( 'local max', xy=(3, 1), xycoords='data',
                 xytext=(3, 3), textcoords='offset points' )

@image_comparison(baseline_images=['polar_axes'])
def test_polar_annotations():
    # you can specify the xypoint and the xytext in different
    # positions and coordinate systems, and optionally turn on a
    # connecting line and mark the point with a marker.  Annotations
    # work on polar axes too.  In the example below, the xy point is
    # in native coordinates (xycoords defaults to 'data').  For a
    # polar axes, this is in (theta, radius) space.  The text in this
    # example is placed in the fractional figure coordinate system.
    # Text keyword args like horizontal and vertical alignment are
    # respected

    # Setup some data
    r = np.arange(0.0, 1.0, 0.001 )
    theta = 2.0 * 2.0 * np.pi * r

    fig = plt.figure()
    ax = fig.add_subplot( 111, polar=True )
    line, = ax.plot( theta, r, color='#ee8d18', lw=3 )

    ind = 800
    thisr, thistheta = r[ind], theta[ind]
    ax.plot([thistheta], [thisr], 'o')
    ax.annotate('a polar annotation',
                xy=(thistheta, thisr),  # theta, radius
                xytext=(0.05, 0.05),    # fraction, fraction
                textcoords='figure fraction',
                arrowprops=dict(facecolor='black', shrink=0.05),
                horizontalalignment='left',
                verticalalignment='baseline',
                )

   #--------------------------------------------------------------------
@image_comparison(baseline_images=['polar_coords'])
def test_polar_coord_annotations():
    # You can also use polar notation on a catesian axes.  Here the
    # native coordinate system ('data') is cartesian, so you need to
    # specify the xycoords and textcoords as 'polar' if you want to
    # use (theta, radius)
    from matplotlib.patches import Ellipse
    el = Ellipse((0,0), 10, 20, facecolor='r', alpha=0.5)

    fig = plt.figure()
    ax = fig.add_subplot( 111, aspect='equal' )

    ax.add_artist( el )
    el.set_clip_box( ax.bbox )

    ax.annotate('the top',
                xy=(np.pi/2., 10.),      # theta, radius
                xytext=(np.pi/3, 20.),   # theta, radius
                xycoords='polar',
                textcoords='polar',
                arrowprops=dict(facecolor='black', shrink=0.05),
                horizontalalignment='left',
                verticalalignment='baseline',
                clip_on=True, # clip to the axes bounding box
                )

    ax.set_xlim( -20, 20 )
    ax.set_ylim( -20, 20 )

@image_comparison(baseline_images=['fill_units'])
def test_fill_units():
    from datetime import datetime
    import matplotlib.testing.jpl_units as units
    units.register()

    # generate some data
    t = units.Epoch( "ET", dt=datetime(2009, 4, 27) )
    value = 10.0 * units.deg
    day = units.Duration( "ET", 24.0 * 60.0 * 60.0 )

    fig = plt.figure()

    # Top-Left
    ax1 = fig.add_subplot( 221 )
    ax1.plot( [t], [value], yunits='deg', color='red' )
    ax1.fill( [733525.0, 733525.0, 733526.0, 733526.0],
              [0.0, 0.0, 90.0, 0.0], 'b' )

    # Top-Right
    ax2 = fig.add_subplot( 222 )
    ax2.plot( [t], [value], yunits='deg', color='red' )
    ax2.fill( [t,      t,      t+day,     t+day],
              [0.0,  0.0,  90.0,    0.0], 'b' )

    # Bottom-Left
    ax3 = fig.add_subplot( 223 )
    ax3.plot( [t], [value], yunits='deg', color='red' )
    ax3.fill( [733525.0, 733525.0, 733526.0, 733526.0],
              [0*units.deg,  0*units.deg,  90*units.deg,    0*units.deg], 'b' )

    # Bottom-Right
    ax4 = fig.add_subplot( 224 )
    ax4.plot( [t], [value], yunits='deg', color='red' )
    ax4.fill( [t,      t,      t+day,     t+day],
              [0*units.deg,  0*units.deg,  90*units.deg,    0*units.deg],
              facecolor="blue" )

    fig.autofmt_xdate()

@image_comparison(baseline_images=['single_point'])
def test_single_point():
    fig = plt.figure()
    plt.subplot( 211 )
    plt.plot( [0], [0], 'o' )

    plt.subplot( 212 )
    plt.plot( [1], [1], 'o' )

@image_comparison(baseline_images=['single_date'])
def test_single_date():
    time1=[ 721964.0 ]
    data1=[ -65.54 ]

    fig = plt.figure()
    plt.subplot( 211 )
    plt.plot_date( time1, data1, 'o', color='r' )

    plt.subplot( 212 )
    plt.plot( time1, data1, 'o', color='r' )

@image_comparison(baseline_images=['shaped_data'])
def test_shaped_data():
    xdata = np.array([[ 0.53295185,  0.23052951,  0.19057629,  0.66724975,  0.96577916,
                        0.73136095,  0.60823287,  0.017921  ,  0.29744742,  0.27164665],
                      [ 0.2798012 ,  0.25814229,  0.02818193,  0.12966456,  0.57446277,
                        0.58167607,  0.71028245,  0.69112737,  0.89923072,  0.99072476],
                      [ 0.81218578,  0.80464528,  0.76071809,  0.85616314,  0.12757994,
                        0.94324936,  0.73078663,  0.09658102,  0.60703967,  0.77664978],
                      [ 0.28332265,  0.81479711,  0.86985333,  0.43797066,  0.32540082,
                        0.43819229,  0.92230363,  0.49414252,  0.68168256,  0.05922372],
                      [ 0.10721335,  0.93904142,  0.79163075,  0.73232848,  0.90283839,
                        0.68408046,  0.25502302,  0.95976614,  0.59214115,  0.13663711],
                      [ 0.28087456,  0.33127607,  0.15530412,  0.76558121,  0.83389773,
                        0.03735974,  0.98717738,  0.71432229,  0.54881366,  0.86893953],
                      [ 0.77995937,  0.995556  ,  0.29688434,  0.15646162,  0.051848  ,
                        0.37161935,  0.12998491,  0.09377296,  0.36882507,  0.36583435],
                      [ 0.37851836,  0.05315792,  0.63144617,  0.25003433,  0.69586032,
                        0.11393988,  0.92362096,  0.88045438,  0.93530252,  0.68275072],
                      [ 0.86486596,  0.83236675,  0.82960664,  0.5779663 ,  0.25724233,
                        0.84841095,  0.90862812,  0.64414887,  0.3565272 ,  0.71026066],
                      [ 0.01383268,  0.3406093 ,  0.76084285,  0.70800694,  0.87634056,
                        0.08213693,  0.54655021,  0.98123181,  0.44080053,  0.86815815]])

    y1 = np.arange( 10 )
    y1.shape = 1, 10

    y2 = np.arange( 10 )
    y2.shape = 10, 1

    fig = plt.figure()
    plt.subplot( 411 )
    plt.plot( y1 )
    plt.subplot( 412 )
    plt.plot( y2 )

    plt.subplot( 413 )
    from nose.tools import assert_raises
    assert_raises(ValueError,plt.plot, (y1,y2))

    plt.subplot( 414 )
    plt.plot( xdata[:,1], xdata[1,:], 'o' )

@image_comparison(baseline_images=['const_xy'])
def test_const_xy():
    fig = plt.figure()

    plt.subplot( 311 )
    plt.plot( np.arange(10), np.ones( (10,) ) )

    plt.subplot( 312 )
    plt.plot( np.ones( (10,) ), np.arange(10) )

    plt.subplot( 313 )
    plt.plot( np.ones( (10,) ), np.ones( (10,) ), 'o' )

@image_comparison(baseline_images=['polar_wrap_180',
                                   'polar_wrap_360',
                                   ])
def test_polar_wrap():
    D2R = np.pi / 180.0

    fig = plt.figure()

    #NOTE: resolution=1 really should be the default
    plt.subplot( 111, polar=True, resolution=1 )
    plt.polar( [179*D2R, -179*D2R], [0.2, 0.1], "b.-" )
    plt.polar( [179*D2R,  181*D2R], [0.2, 0.1], "g.-" )
    plt.rgrids( [0.05, 0.1, 0.15, 0.2, 0.25, 0.3] )

    fig = plt.figure()

    #NOTE: resolution=1 really should be the default
    plt.subplot( 111, polar=True, resolution=1 )
    plt.polar( [2*D2R, -2*D2R], [0.2, 0.1], "b.-" )
    plt.polar( [2*D2R,  358*D2R], [0.2, 0.1], "g.-" )
    plt.polar( [358*D2R,  2*D2R], [0.2, 0.1], "r.-" )
    plt.rgrids( [0.05, 0.1, 0.15, 0.2, 0.25, 0.3] )

@image_comparison(baseline_images=['polar_units', 'polar_units_2'],
                  freetype_version=('2.4.5', '2.4.9'))
def test_polar_units():
    import matplotlib.testing.jpl_units as units
    from nose.tools import assert_true
    units.register()

    pi = np.pi
    deg = units.UnitDbl( 1.0, "deg" )
    km = units.UnitDbl( 1.0, "km" )

    x1 = [ pi/6.0, pi/4.0, pi/3.0, pi/2.0 ]
    x2 = [ 30.0*deg, 45.0*deg, 60.0*deg, 90.0*deg ]

    y1 = [ 1.0, 2.0, 3.0, 4.0]
    y2 = [ 4.0, 3.0, 2.0, 1.0 ]

    fig = plt.figure()

    plt.polar( x2, y1, color = "blue" )

    # polar( x2, y1, color = "red", xunits="rad" )
    # polar( x2, y2, color = "green" )

    fig = plt.figure()

    # make sure runits and theta units work
    y1 = [ y*km for y in y1 ]
    plt.polar( x2, y1, color = "blue", thetaunits="rad", runits="km" )
    assert_true( isinstance(plt.gca().get_xaxis().get_major_formatter(), units.UnitDblFormatter) )


@image_comparison(baseline_images=['polar_rmin'])
def test_polar_rmin():
    r = np.arange(0, 3.0, 0.01)
    theta = 2*np.pi*r

    fig = plt.figure()
    ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
    ax.plot(theta, r)
    ax.set_rmax(2.0)
    ax.set_rmin(0.5)

@image_comparison(baseline_images=['polar_theta_position'])
def test_polar_theta_position():
    r = np.arange(0, 3.0, 0.01)
    theta = 2*np.pi*r

    fig = plt.figure()
    ax = fig.add_axes([0.1, 0.1, 0.8, 0.8], polar=True)
    ax.plot(theta, r)
    ax.set_theta_zero_location("NW")
    ax.set_theta_direction('clockwise')

@image_comparison(baseline_images=['axvspan_epoch'])
def test_axvspan_epoch():
    from datetime import datetime
    import matplotlib.testing.jpl_units as units
    units.register()

    # generate some data
    t0 = units.Epoch( "ET", dt=datetime(2009, 1, 20) )
    tf = units.Epoch( "ET", dt=datetime(2009, 1, 21) )

    dt = units.Duration( "ET", units.day.convert( "sec" ) )

    fig = plt.figure()

    plt.axvspan( t0, tf, facecolor="blue", alpha=0.25 )

    ax = plt.gca()
    ax.set_xlim( t0 - 5.0*dt, tf + 5.0*dt )

@image_comparison(baseline_images=['axhspan_epoch'])
def test_axhspan_epoch():
    from datetime import datetime
    import matplotlib.testing.jpl_units as units
    units.register()

    # generate some data
    t0 = units.Epoch( "ET", dt=datetime(2009, 1, 20) )
    tf = units.Epoch( "ET", dt=datetime(2009, 1, 21) )

    dt = units.Duration( "ET", units.day.convert( "sec" ) )

    fig = plt.figure()

    plt.axhspan( t0, tf, facecolor="blue", alpha=0.25 )

    ax = plt.gca()
    ax.set_ylim( t0 - 5.0*dt, tf + 5.0*dt )


@image_comparison(baseline_images=['hexbin_extent'])
def test_hexbin_extent():
    # this test exposes sf bug 2856228
    fig = plt.figure()

    ax = fig.add_subplot(111)
    data = np.arange(2000.)/2000.
    data.shape = 2, 1000
    x, y = data

    ax.hexbin(x, y, extent=[.1, .3, .6, .7])

@image_comparison(baseline_images=['nonfinite_limits'])
def test_nonfinite_limits():
    x = np.arange(0., np.e, 0.01)
    olderr = np.seterr(divide='ignore') #silence divide by zero warning from log(0)
    try:
        y = np.log(x)
    finally:
        np.seterr(**olderr)
    x[len(x)/2] = np.nan
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(x, y)

@image_comparison(baseline_images=['imshow'])
def test_imshow():
    #Create a NxN image
    N=100
    (x,y) = np.indices((N,N))
    x -= N/2
    y -= N/2
    r = np.sqrt(x**2+y**2-x*y)

    #Create a contour plot at N/4 and extract both the clip path and transform
    fig = plt.figure()
    ax = fig.add_subplot(111)

    ax.imshow(r)

@image_comparison(baseline_images=['imshow_clip'], tol=1e-2)
def test_imshow_clip():
    # As originally reported by Gellule Xg <gellule.xg@free.fr>

    #Create a NxN image
    N=100
    (x,y) = np.indices((N,N))
    x -= N/2
    y -= N/2
    r = np.sqrt(x**2+y**2-x*y)

    #Create a contour plot at N/4 and extract both the clip path and transform
    fig = plt.figure()
    ax = fig.add_subplot(111)

    c = ax.contour(r,[N/4])
    x = c.collections[0]
    clipPath = x.get_paths()[0]
    clipTransform = x.get_transform()

    from matplotlib.transforms import TransformedPath
    clip_path = TransformedPath(clipPath, clipTransform)

    #Plot the image clipped by the contour
    ax.imshow(r, clip_path=clip_path)

@image_comparison(baseline_images=['polycollection_joinstyle'])
def test_polycollection_joinstyle():
    # Bug #2890979 reported by Matthew West

    from matplotlib import collections as mcoll

    fig = plt.figure()
    ax = fig.add_subplot(111)
    verts = np.array([[1,1], [1,2], [2,2], [2,1]])
    c = mcoll.PolyCollection([verts], linewidths = 40)
    ax.add_collection(c)
    ax.set_xbound(0, 3)
    ax.set_ybound(0, 3)
    ax.set_xticks([])
    ax.set_yticks([])

@image_comparison(baseline_images=['fill_between_interpolate'], tol=1e-2)
def test_fill_between_interpolate():
    x = np.arange(0.0, 2, 0.02)
    y1 = np.sin(2*np.pi*x)
    y2 = 1.2*np.sin(4*np.pi*x)

    fig = plt.figure()
    ax = fig.add_subplot(211)
    ax.plot(x, y1, x, y2, color='black')
    ax.fill_between(x, y1, y2, where=y2>=y1, facecolor='green', interpolate=True)
    ax.fill_between(x, y1, y2, where=y2<=y1, facecolor='red', interpolate=True)

    # Test support for masked arrays.
    y2 = np.ma.masked_greater(y2, 1.0)
    ax1 = fig.add_subplot(212, sharex=ax)
    ax1.plot(x, y1, x, y2, color='black')
    ax1.fill_between(x, y1, y2, where=y2>=y1, facecolor='green', interpolate=True)
    ax1.fill_between(x, y1, y2, where=y2<=y1, facecolor='red', interpolate=True)

@image_comparison(baseline_images=['symlog'])
def test_symlog():
    x = np.array([0,1,2,4,6,9,12,24])
    y = np.array([1000000, 500000, 100000, 100, 5, 0, 0, 0])

    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(x, y)
    ax.set_yscale('symlog')
    ax.set_xscale=('linear')
    ax.set_ylim(-1,10000000)

@image_comparison(baseline_images=['symlog2'])
def test_symlog2():
    # Numbers from -50 to 50, with 0.1 as step
    x = np.arange(-50,50, 0.001)

    fig = plt.figure()
    ax = fig.add_subplot(511)
    # Plots a simple linear function 'f(x) = x'
    ax.plot(x, x)
    ax.set_xscale('symlog', linthreshx=20.0)
    ax.grid(True)

    ax = fig.add_subplot(512)
    # Plots a simple linear function 'f(x) = x'
    ax.plot(x, x)
    ax.set_xscale('symlog', linthreshx=2.0)
    ax.grid(True)

    ax = fig.add_subplot(513)
    # Plots a simple linear function 'f(x) = x'
    ax.plot(x, x)
    ax.set_xscale('symlog', linthreshx=1.0)
    ax.grid(True)

    ax = fig.add_subplot(514)
    # Plots a simple linear function 'f(x) = x'
    ax.plot(x, x)
    ax.set_xscale('symlog', linthreshx=0.1)
    ax.grid(True)

    ax = fig.add_subplot(515)
    # Plots a simple linear function 'f(x) = x'
    ax.plot(x, x)
    ax.set_xscale('symlog', linthreshx=0.01)
    ax.grid(True)
    ax.set_ylim(-0.1, 0.1)

@image_comparison(baseline_images=['pcolormesh'], tol=0.02)
def test_pcolormesh():
    n = 12
    x = np.linspace(-1.5,1.5,n)
    y = np.linspace(-1.5,1.5,n*2)
    X,Y = np.meshgrid(x,y);
    Qx = np.cos(Y) - np.cos(X)
    Qz = np.sin(Y) + np.sin(X)
    Qx = (Qx + 1.1)
    Z = np.sqrt(X**2 + Y**2)/5;
    Z = (Z - Z.min()) / (Z.max() - Z.min())

    # The color array can include masked values:
    Zm = ma.masked_where(np.fabs(Qz) < 0.5*np.amax(Qz), Z)

    fig = plt.figure()
    ax = fig.add_subplot(131)
    ax.pcolormesh(Qx,Qz,Z, lw=0.5, edgecolors='k')
    ax.set_title('lw=0.5')
    ax.set_xticks([])
    ax.set_yticks([])

    ax = fig.add_subplot(132)
    ax.pcolormesh(Qx,Qz,Z, lw=3, edgecolors='k')
    ax.set_title('lw=3')
    ax.set_xticks([])
    ax.set_yticks([])

    ax = fig.add_subplot(133)
    ax.pcolormesh(Qx,Qz,Z, shading="gouraud")
    ax.set_title('gouraud')
    ax.set_xticks([])
    ax.set_yticks([])


@image_comparison(baseline_images=['canonical'])
def test_canonical():
    fig, ax = plt.subplots()
    ax.plot([1,2,3])


@image_comparison(baseline_images=['arc_ellipse'],
                  freetype_version=('2.4.5', '2.4.9'))
def test_arc_ellipse():
    from matplotlib import patches
    xcenter, ycenter = 0.38, 0.52
    width, height = 1e-1, 3e-1
    angle = -30

    theta = np.arange(0.0, 360.0, 1.0)*np.pi/180.0
    x = width/2. * np.cos(theta)
    y = height/2. * np.sin(theta)

    rtheta = angle*np.pi/180.
    R = np.array([
        [np.cos(rtheta),  -np.sin(rtheta)],
        [np.sin(rtheta), np.cos(rtheta)],
        ])

    x, y = np.dot(R, np.array([x, y]))
    x += xcenter
    y += ycenter

    fig = plt.figure()
    ax = fig.add_subplot(211, aspect='auto')
    ax.fill(x, y, alpha=0.2, facecolor='yellow', edgecolor='yellow', linewidth=1, zorder=1)

    e1 = patches.Arc((xcenter, ycenter), width, height,
                 angle=angle, linewidth=2, fill=False, zorder=2)

    ax.add_patch(e1)

    ax = fig.add_subplot(212, aspect='equal')
    ax.fill(x, y, alpha=0.2, facecolor='green', edgecolor='green', zorder=1)
    e2 = patches.Arc((xcenter, ycenter), width, height,
                 angle=angle, linewidth=2, fill=False, zorder=2)

    ax.add_patch(e2)

@image_comparison(baseline_images=['units_strings'])
def test_units_strings():
    # Make sure passing in sequences of strings doesn't cause the unit
    # conversion registry to recurse infinitely
    Id = ['50', '100', '150', '200', '250']
    pout = ['0', '7.4', '11.4', '14.2', '16.3']
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(Id, pout)

@image_comparison(baseline_images=['markevery'])
def test_markevery():
    x = np.linspace(0, 10, 100)
    y = np.sin(x) * np.sqrt(x/10 + 0.5)

    # check marker only plot
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(x, y, 'o', label='default')
    ax.plot(x, y, 'd', markevery=None, label='mark all')
    ax.plot(x, y, 's', markevery=10, label='mark every 10')
    ax.plot(x, y, '+', markevery=(5, 20), label='mark every 5 starting at 10')
    ax.legend()

@image_comparison(baseline_images=['markevery_line'],
                  freetype_version=('2.4.5', '2.4.9'))
def test_markevery_line():
    x = np.linspace(0, 10, 100)
    y = np.sin(x) * np.sqrt(x/10 + 0.5)

    # check line/marker combos
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.plot(x, y, '-o', label='default')
    ax.plot(x, y, '-d', markevery=None, label='mark all')
    ax.plot(x, y, '-s', markevery=10, label='mark every 10')
    ax.plot(x, y, '-+', markevery=(5, 20), label='mark every 5 starting at 10')
    ax.legend()

@image_comparison(baseline_images=['hist_log'])
def test_hist_log():
    data0 = np.linspace(0,1,200)**3
    data = np.r_[1-data0, 1+data0]
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.hist(data, fill=False, log=True)
    ax.set_xticks([])
    ax.set_yticks([])

if __name__=='__main__':
    import nose
    nose.runmodule(argv=['-s','--with-doctest'], exit=False)