/usr/share/pyshared/matplotlib/ticker.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 | """
Tick locating and formatting
============================
This module contains classes to support completely configurable tick
locating and formatting. Although the locators know nothing about
major or minor ticks, they are used by the Axis class to support major
and minor tick locating and formatting. Generic tick locators and
formatters are provided, as well as domain specific custom ones..
Tick locating
-------------
The Locator class is the base class for all tick locators. The
locators handle autoscaling of the view limits based on the data
limits, and the choosing of tick locations. A useful semi-automatic
tick locator is MultipleLocator. You initialize this with a base, eg
10, and it picks axis limits and ticks that are multiples of your
base.
The Locator subclasses defined here are
:class:`NullLocator`
No ticks
:class:`FixedLocator`
Tick locations are fixed
:class:`IndexLocator`
locator for index plots (eg. where x = range(len(y)))
:class:`LinearLocator`
evenly spaced ticks from min to max
:class:`LogLocator`
logarithmically ticks from min to max
:class:`MultipleLocator`
ticks and range are a multiple of base;
either integer or float
:class:`OldAutoLocator`
choose a MultipleLocator and dyamically reassign it for
intelligent ticking during navigation
:class:`MaxNLocator`
finds up to a max number of ticks at nice locations
:class:`AutoLocator`
:class:`MaxNLocator` with simple defaults. This is the default
tick locator for most plotting.
:class:`AutoMinorLocator`
locator for minor ticks when the axis is linear and the
major ticks are uniformly spaced. It subdivides the major
tick interval into a specified number of minor intervals,
defaulting to 4 or 5 depending on the major interval.
There are a number of locators specialized for date locations - see
the dates module
You can define your own locator by deriving from Locator. You must
override the __call__ method, which returns a sequence of locations,
and you will probably want to override the autoscale method to set the
view limits from the data limits.
If you want to override the default locator, use one of the above or a
custom locator and pass it to the x or y axis instance. The relevant
methods are::
ax.xaxis.set_major_locator( xmajorLocator )
ax.xaxis.set_minor_locator( xminorLocator )
ax.yaxis.set_major_locator( ymajorLocator )
ax.yaxis.set_minor_locator( yminorLocator )
The default minor locator is the NullLocator, eg no minor ticks on by
default.
Tick formatting
---------------
Tick formatting is controlled by classes derived from Formatter. The
formatter operates on a single tick value and returns a string to the
axis.
:class:`NullFormatter`
no labels on the ticks
:class:`IndexFormatter`
set the strings from a list of labels
:class:`FixedFormatter`
set the strings manually for the labels
:class:`FuncFormatter`
user defined function sets the labels
:class:`FormatStrFormatter`
use a sprintf format string
:class:`ScalarFormatter`
default formatter for scalars; autopick the fmt string
:class:`LogFormatter`
formatter for log axes
You can derive your own formatter from the Formatter base class by
simply overriding the ``__call__`` method. The formatter class has access
to the axis view and data limits.
To control the major and minor tick label formats, use one of the
following methods::
ax.xaxis.set_major_formatter( xmajorFormatter )
ax.xaxis.set_minor_formatter( xminorFormatter )
ax.yaxis.set_major_formatter( ymajorFormatter )
ax.yaxis.set_minor_formatter( yminorFormatter )
See :ref:`pylab_examples-major_minor_demo1` for an example of setting
major an minor ticks. See the :mod:`matplotlib.dates` module for
more information and examples of using date locators and formatters.
"""
from __future__ import division
import decimal
import locale
import math
import numpy as np
from matplotlib import rcParams
from matplotlib import cbook
from matplotlib import transforms as mtransforms
class TickHelper:
axis = None
class DummyAxis:
def __init__(self):
self.dataLim = mtransforms.Bbox.unit()
self.viewLim = mtransforms.Bbox.unit()
def get_view_interval(self):
return self.viewLim.intervalx
def set_view_interval(self, vmin, vmax):
self.viewLim.intervalx = vmin, vmax
def get_data_interval(self):
return self.dataLim.intervalx
def set_data_interval(self, vmin, vmax):
self.dataLim.intervalx = vmin, vmax
def set_axis(self, axis):
self.axis = axis
def create_dummy_axis(self):
if self.axis is None:
self.axis = self.DummyAxis()
def set_view_interval(self, vmin, vmax):
self.axis.set_view_interval(vmin, vmax)
def set_data_interval(self, vmin, vmax):
self.axis.set_data_interval(vmin, vmax)
def set_bounds(self, vmin, vmax):
self.set_view_interval(vmin, vmax)
self.set_data_interval(vmin, vmax)
class Formatter(TickHelper):
"""
Convert the tick location to a string
"""
# some classes want to see all the locs to help format
# individual ones
locs = []
def __call__(self, x, pos=None):
'Return the format for tick val x at position pos; pos=None indicated unspecified'
raise NotImplementedError('Derived must overide')
def format_data(self,value):
return self.__call__(value)
def format_data_short(self,value):
'return a short string version'
return self.format_data(value)
def get_offset(self):
return ''
def set_locs(self, locs):
self.locs = locs
def fix_minus(self, s):
"""
some classes may want to replace a hyphen for minus with the
proper unicode symbol as described `here
<http://sourceforge.net/tracker/index.php?func=detail&aid=1962574&group_id=80706&atid=560720>`_.
The default is to do nothing
Note, if you use this method, eg in :meth`format_data` or
call, you probably don't want to use it for
:meth:`format_data_short` since the toolbar uses this for
interactive coord reporting and I doubt we can expect GUIs
across platforms will handle the unicode correctly. So for
now the classes that override :meth:`fix_minus` should have an
explicit :meth:`format_data_short` method
"""
return s
class IndexFormatter(Formatter):
"""
format the position x to the nearest i-th label where i=int(x+0.5)
"""
def __init__(self, labels):
self.labels = labels
self.n = len(labels)
def __call__(self, x, pos=None):
'Return the format for tick val x at position pos; pos=None indicated unspecified'
i = int(x+0.5)
if i<0:
return ''
elif i>=self.n:
return ''
else:
return self.labels[i]
class NullFormatter(Formatter):
'Always return the empty string'
def __call__(self, x, pos=None):
'Return the format for tick val *x* at position *pos*'
return ''
class FixedFormatter(Formatter):
'Return fixed strings for tick labels'
def __init__(self, seq):
"""
*seq* is a sequence of strings. For positions ``i < len(seq)`` return
*seq[i]* regardless of *x*. Otherwise return ''
"""
self.seq = seq
self.offset_string = ''
def __call__(self, x, pos=None):
'Return the format for tick val *x* at position *pos*'
if pos is None or pos>=len(self.seq): return ''
else: return self.seq[pos]
def get_offset(self):
return self.offset_string
def set_offset_string(self, ofs):
self.offset_string = ofs
class FuncFormatter(Formatter):
"""
User defined function for formatting
"""
def __init__(self, func):
self.func = func
def __call__(self, x, pos=None):
'Return the format for tick val *x* at position *pos*'
return self.func(x, pos)
class FormatStrFormatter(Formatter):
"""
Use a format string to format the tick
"""
def __init__(self, fmt):
self.fmt = fmt
def __call__(self, x, pos=None):
'Return the format for tick val *x* at position *pos*'
return self.fmt % x
class OldScalarFormatter(Formatter):
"""
Tick location is a plain old number.
"""
def __call__(self, x, pos=None):
'Return the format for tick val *x* at position *pos*'
xmin, xmax = self.axis.get_view_interval()
d = abs(xmax - xmin)
return self.pprint_val(x,d)
def pprint_val(self, x, d):
#if the number is not too big and it's an int, format it as an
#int
if abs(x)<1e4 and x==int(x): return '%d' % x
if d < 1e-2: fmt = '%1.3e'
elif d < 1e-1: fmt = '%1.3f'
elif d > 1e5: fmt = '%1.1e'
elif d > 10 : fmt = '%1.1f'
elif d > 1 : fmt = '%1.2f'
else: fmt = '%1.3f'
s = fmt % x
#print d, x, fmt, s
tup = s.split('e')
if len(tup)==2:
mantissa = tup[0].rstrip('0').rstrip('.')
sign = tup[1][0].replace('+', '')
exponent = tup[1][1:].lstrip('0')
s = '%se%s%s' %(mantissa, sign, exponent)
else:
s = s.rstrip('0').rstrip('.')
return s
class ScalarFormatter(Formatter):
"""
Tick location is a plain old number. If useOffset==True and the data range
is much smaller than the data average, then an offset will be determined
such that the tick labels are meaningful. Scientific notation is used for
data < 10^-n or data >= 10^m, where n and m are the power limits set using
set_powerlimits((n,m)). The defaults for these are controlled by the
axes.formatter.limits rc parameter.
"""
def __init__(self, useOffset=True, useMathText=False, useLocale=None):
# useOffset allows plotting small data ranges with large offsets:
# for example: [1+1e-9,1+2e-9,1+3e-9]
# useMathText will render the offset and scientific notation in mathtext
self.set_useOffset(useOffset)
self._usetex = rcParams['text.usetex']
self._useMathText = useMathText
self.orderOfMagnitude = 0
self.format = ''
self._scientific = True
self._powerlimits = rcParams['axes.formatter.limits']
if useLocale is None:
self._useLocale = rcParams['axes.formatter.use_locale']
else:
self._useLocale = useLocale
def get_useOffset(self):
return self._useOffset
def set_useOffset(self, val):
if val in [True, False]:
self.offset = 0
self._useOffset = val
else:
self._useOffset = False
self.offset = val
useOffset = property(fget=get_useOffset, fset=set_useOffset)
def get_useLocale(self):
return self._useLocale
def set_useLocale(self, val):
if val is None:
self._useLocale = rcParams['axes.formatter.use_locale']
else:
self._useLocale = val
useLocale = property(fget=get_useLocale, fset=set_useLocale)
def fix_minus(self, s):
'use a unicode minus rather than hyphen'
if rcParams['text.usetex'] or not rcParams['axes.unicode_minus']: return s
else: return s.replace('-', u'\u2212')
def __call__(self, x, pos=None):
'Return the format for tick val *x* at position *pos*'
if len(self.locs)==0:
return ''
else:
s = self.pprint_val(x)
return self.fix_minus(s)
def set_scientific(self, b):
'''True or False to turn scientific notation on or off
see also :meth:`set_powerlimits`
'''
self._scientific = bool(b)
def set_powerlimits(self, lims):
'''
Sets size thresholds for scientific notation.
e.g. ``formatter.set_powerlimits((-3, 4))`` sets the pre-2007 default in
which scientific notation is used for numbers less than
1e-3 or greater than 1e4.
See also :meth:`set_scientific`.
'''
assert len(lims) == 2, "argument must be a sequence of length 2"
self._powerlimits = lims
def format_data_short(self,value):
'return a short formatted string representation of a number'
if self._useLocale:
return locale.format_string('%-12g', (value,))
else:
return '%-12g'%value
def format_data(self,value):
'return a formatted string representation of a number'
if self._useLocale:
s = locale.format_string('%1.10e', (value,))
else:
s = '%1.10e' % value
s = self._formatSciNotation(s)
return self.fix_minus(s)
def get_offset(self):
"""Return scientific notation, plus offset"""
if len(self.locs)==0: return ''
s = ''
if self.orderOfMagnitude or self.offset:
offsetStr = ''
sciNotStr = ''
if self.offset:
offsetStr = self.format_data(self.offset)
if self.offset > 0: offsetStr = '+' + offsetStr
if self.orderOfMagnitude:
if self._usetex or self._useMathText:
sciNotStr = self.format_data(10**self.orderOfMagnitude)
else:
sciNotStr = '1e%d'% self.orderOfMagnitude
if self._useMathText:
if sciNotStr != '':
sciNotStr = r'\times\mathdefault{%s}' % sciNotStr
s = ''.join(('$',sciNotStr,r'\mathdefault{',offsetStr,'}$'))
elif self._usetex:
if sciNotStr != '':
sciNotStr = r'\times%s' % sciNotStr
s = ''.join(('$',sciNotStr,offsetStr,'$'))
else:
s = ''.join((sciNotStr,offsetStr))
return self.fix_minus(s)
def set_locs(self, locs):
'set the locations of the ticks'
self.locs = locs
if len(self.locs) > 0:
vmin, vmax = self.axis.get_view_interval()
d = abs(vmax-vmin)
if self._useOffset:
self._set_offset(d)
self._set_orderOfMagnitude(d)
self._set_format()
def _set_offset(self, range):
# offset of 20,001 is 20,000, for example
locs = self.locs
if locs is None or not len(locs) or range == 0:
self.offset = 0
return
ave_loc = np.mean(locs)
if ave_loc: # dont want to take log10(0)
ave_oom = math.floor(math.log10(np.mean(np.absolute(locs))))
range_oom = math.floor(math.log10(range))
if np.absolute(ave_oom-range_oom) >= 3: # four sig-figs
if ave_loc < 0:
self.offset = math.ceil(np.max(locs)/10**range_oom)*10**range_oom
else:
self.offset = math.floor(np.min(locs)/10**(range_oom))*10**(range_oom)
else: self.offset = 0
def _set_orderOfMagnitude(self,range):
# if scientific notation is to be used, find the appropriate exponent
# if using an numerical offset, find the exponent after applying the offset
if not self._scientific:
self.orderOfMagnitude = 0
return
locs = np.absolute(self.locs)
if self.offset: oom = math.floor(math.log10(range))
else:
if locs[0] > locs[-1]: val = locs[0]
else: val = locs[-1]
if val == 0: oom = 0
else: oom = math.floor(math.log10(val))
if oom <= self._powerlimits[0]:
self.orderOfMagnitude = oom
elif oom >= self._powerlimits[1]:
self.orderOfMagnitude = oom
else:
self.orderOfMagnitude = 0
def _set_format(self):
# set the format string to format all the ticklabels
# The floating point black magic (adding 1e-15 and formatting
# to 8 digits) may warrant review and cleanup.
locs = (np.asarray(self.locs)-self.offset) / 10**self.orderOfMagnitude+1e-15
sigfigs = [len(str('%1.8f'% loc).split('.')[1].rstrip('0')) \
for loc in locs]
sigfigs.sort()
self.format = '%1.' + str(sigfigs[-1]) + 'f'
if self._usetex:
self.format = '$%s$' % self.format
elif self._useMathText:
self.format = '$\mathdefault{%s}$' % self.format
def pprint_val(self, x):
xp = (x-self.offset)/10**self.orderOfMagnitude
if np.absolute(xp) < 1e-8: xp = 0
if self._useLocale:
return locale.format_string(self.format, (xp,))
else:
return self.format % xp
def _formatSciNotation(self, s):
# transform 1e+004 into 1e4, for example
if self._useLocale:
decimal_point = locale.localeconv()['decimal_point']
positive = locale.localeconv()['positive_sign']
else:
decimal_point = '.'
positive_sign = '+'
tup = s.split('e')
try:
significand = tup[0].rstrip('0').rstrip(decimal_point)
sign = tup[1][0].replace(positive_sign, '')
exponent = tup[1][1:].lstrip('0')
if self._useMathText or self._usetex:
if significand == '1':
# reformat 1x10^y as 10^y
significand = ''
if exponent:
exponent = '10^{%s%s}'%(sign, exponent)
if significand and exponent:
return r'%s{\times}%s'%(significand, exponent)
else:
return r'%s%s'%(significand, exponent)
else:
s = ('%se%s%s' %(significand, sign, exponent)).rstrip('e')
return s
except IndexError, msg:
return s
class LogFormatter(Formatter):
"""
Format values for log axis;
if attribute *decadeOnly* is True, only the decades will be labelled.
"""
def __init__(self, base=10.0, labelOnlyBase = True):
"""
*base* is used to locate the decade tick,
which will be the only one to be labeled if *labelOnlyBase*
is ``False``
"""
self._base = base+0.0
self.labelOnlyBase = labelOnlyBase
self.decadeOnly = True
def base(self, base):
'change the *base* for labeling - warning: should always match the base used for :class:`LogLocator`'
self._base = base
def label_minor(self, labelOnlyBase):
'switch on/off minor ticks labeling'
self.labelOnlyBase = labelOnlyBase
def __call__(self, x, pos=None):
'Return the format for tick val *x* at position *pos*'
vmin, vmax = self.axis.get_view_interval()
d = abs(vmax - vmin)
b = self._base
if x == 0.0:
return '0'
sign = np.sign(x)
# only label the decades
fx = math.log(abs(x))/math.log(b)
isDecade = is_close_to_int(fx)
if not isDecade and self.labelOnlyBase: s = ''
elif x>10000: s= '%1.0e'%x
elif x<1: s = '%1.0e'%x
else : s = self.pprint_val(x, d)
if sign == -1:
s = '-%s' % s
return self.fix_minus(s)
def format_data(self, value):
b = self.labelOnlyBase
self.labelOnlyBase = False
value = cbook.strip_math(self.__call__(value))
self.labelOnlyBase = b
return value
def format_data_short(self,value):
'return a short formatted string representation of a number'
return '%-12g'%value
def pprint_val(self, x, d):
#if the number is not too big and it's an int, format it as an
#int
if abs(x) < 1e4 and x == int(x): return '%d' % x
if d < 1e-2: fmt = '%1.3e'
elif d < 1e-1: fmt = '%1.3f'
elif d > 1e5: fmt = '%1.1e'
elif d > 10 : fmt = '%1.1f'
elif d > 1 : fmt = '%1.2f'
else: fmt = '%1.3f'
s = fmt % x
#print d, x, fmt, s
tup = s.split('e')
if len(tup) == 2:
mantissa = tup[0].rstrip('0').rstrip('.')
sign = tup[1][0].replace('+', '')
exponent = tup[1][1:].lstrip('0')
s = '%se%s%s' %(mantissa, sign, exponent)
else:
s = s.rstrip('0').rstrip('.')
return s
class LogFormatterExponent(LogFormatter):
"""
Format values for log axis; using ``exponent = log_base(value)``
"""
def __call__(self, x, pos=None):
'Return the format for tick val *x* at position *pos*'
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
d = abs(vmax-vmin)
b=self._base
if x == 0:
return '0'
sign = np.sign(x)
# only label the decades
fx = math.log(abs(x))/math.log(b)
isDecade = is_close_to_int(fx)
if not isDecade and self.labelOnlyBase: s = ''
#if 0: pass
elif fx>10000: s= '%1.0e'%fx
#elif x<1: s = '$10^{%d}$'%fx
#elif x<1: s = '10^%d'%fx
elif fx<1: s = '%1.0e'%fx
else : s = self.pprint_val(fx,d)
if sign == -1:
s = '-%s' % s
return self.fix_minus(s)
class LogFormatterMathtext(LogFormatter):
"""
Format values for log axis; using ``exponent = log_base(value)``
"""
def __call__(self, x, pos=None):
'Return the format for tick val *x* at position *pos*'
b = self._base
usetex = rcParams['text.usetex']
# only label the decades
if x == 0:
if usetex:
return '$0$'
else:
return '$\mathdefault{0}$'
sign = np.sign(x)
fx = math.log(abs(x))/math.log(b)
isDecade = is_close_to_int(fx)
if sign == -1:
sign_string = '-'
else:
sign_string = ''
if not isDecade and self.labelOnlyBase: s = ''
elif not isDecade:
if usetex:
s = r'$%s%d^{%.2f}$'% (sign_string, b, fx)
else:
s = '$\mathdefault{%s%d^{%.2f}}$'% (sign_string, b, fx)
else:
if usetex:
s = r'$%s%d^{%d}$'% (sign_string, b, nearest_long(fx))
else:
s = r'$\mathdefault{%s%d^{%d}}$'% (sign_string, b,
nearest_long(fx))
return s
class EngFormatter(Formatter):
"""
Formats axis values using engineering prefixes to represent powers of 1000,
plus a specified unit, eg. 10 MHz instead of 1e7.
"""
# The SI engineering prefixes
ENG_PREFIXES = {
-24: "y",
-21: "z",
-18: "a",
-15: "f",
-12: "p",
-9: "n",
-6: u"\u03bc", # Greek letter mu
-3: "m",
0: "",
3: "k",
6: "M",
9: "G",
12: "T",
15: "P",
18: "E",
21: "Z",
24: "Y"
}
def __init__(self, unit="", places=None):
self.unit = unit
self.places = places
def __call__(self, x, pos=None):
s = "%s%s" % (self.format_eng(x), self.unit)
return self.fix_minus(s)
def format_eng(self, num):
""" Formats a number in engineering notation, appending a letter
representing the power of 1000 of the original number. Some examples:
>>> format_eng(0) for self.places = 0
'0'
>>> format_eng(1000000) for self.places = 1
'1.0 M'
>>> format_eng("-1e-6") for self.places = 2
u'-1.00 \u03bc'
@param num: the value to represent
@type num: either a numeric value or a string that can be converted to
a numeric value (as per decimal.Decimal constructor)
@return: engineering formatted string
"""
dnum = decimal.Decimal(str(num))
sign = 1
if dnum < 0:
sign = -1
dnum = -dnum
if dnum != 0:
pow10 = decimal.Decimal(int(math.floor(dnum.log10()/3)*3))
else:
pow10 = decimal.Decimal(0)
pow10 = pow10.min(max(self.ENG_PREFIXES.keys()))
pow10 = pow10.max(min(self.ENG_PREFIXES.keys()))
prefix = self.ENG_PREFIXES[int(pow10)]
mant = sign*dnum/(10**pow10)
if self.places is None:
format_str = u"%g %s"
elif self.places == 0:
format_str = u"%i %s"
elif self.places > 0:
format_str = (u"%%.%if %%s" % self.places)
formatted = format_str % (mant, prefix)
return formatted.strip()
class Locator(TickHelper):
"""
Determine the tick locations;
Note, you should not use the same locator between different :class:`~matplotlib.axis.Axis`
because the locator stores references to the Axis data and view
limits
"""
# some automatic tick locators can generate so many ticks they
# kill the machine when you try and render them, see eg sf bug
# report
# https://sourceforge.net/tracker/index.php?func=detail&aid=2715172&group_id=80706&atid=560720.
# This parameter is set to cause locators to raise an error if too
# many ticks are generated
MAXTICKS = 1000
def __call__(self):
'Return the locations of the ticks'
raise NotImplementedError('Derived must override')
def raise_if_exceeds(self, locs):
'raise a RuntimeError if Locator attempts to create more than MAXTICKS locs'
if len(locs)>=self.MAXTICKS:
raise RuntimeError('Locator attempting to generate %d ticks from %s to %s: exceeds Locator.MAXTICKS'%(len(locs), locs[0], locs[-1]))
return locs
def view_limits(self, vmin, vmax):
"""
select a scale for the range from vmin to vmax
Normally This will be overridden.
"""
return mtransforms.nonsingular(vmin, vmax)
def autoscale(self):
'autoscale the view limits'
return self.view_limits(*self.axis.get_view_interval())
def pan(self, numsteps):
'Pan numticks (can be positive or negative)'
ticks = self()
numticks = len(ticks)
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
if numticks>2:
step = numsteps*abs(ticks[0]-ticks[1])
else:
d = abs(vmax-vmin)
step = numsteps*d/6.
vmin += step
vmax += step
self.axis.set_view_interval(vmin, vmax, ignore=True)
def zoom(self, direction):
"Zoom in/out on axis; if direction is >0 zoom in, else zoom out"
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
interval = abs(vmax-vmin)
step = 0.1*interval*direction
self.axis.set_view_interval(vmin + step, vmax - step, ignore=True)
def refresh(self):
'refresh internal information based on current lim'
pass
class IndexLocator(Locator):
"""
Place a tick on every multiple of some base number of points
plotted, eg on every 5th point. It is assumed that you are doing
index plotting; ie the axis is 0, len(data). This is mainly
useful for x ticks.
"""
def __init__(self, base, offset):
'place ticks on the i-th data points where (i-offset)%base==0'
self._base = base
self.offset = offset
def __call__(self):
'Return the locations of the ticks'
dmin, dmax = self.axis.get_data_interval()
return self.raise_if_exceeds(
np.arange(dmin + self.offset, dmax+1, self._base))
class FixedLocator(Locator):
"""
Tick locations are fixed. If nbins is not None,
the array of possible positions will be subsampled to
keep the number of ticks <= nbins +1.
The subsampling will be done so as to include the smallest
absolute value; for example, if zero is included in the
array of possibilities, then it is guaranteed to be one of
the chosen ticks.
"""
def __init__(self, locs, nbins=None):
self.locs = np.asarray(locs)
self.nbins = nbins
if self.nbins is not None:
self.nbins = max(self.nbins, 2)
def __call__(self):
'Return the locations of the ticks'
if self.nbins is None:
return self.locs
step = max(int(0.99 + len(self.locs) / float(self.nbins)), 1)
ticks = self.locs[::step]
for i in range(1,step):
ticks1 = self.locs[i::step]
if np.absolute(ticks1).min() < np.absolute(ticks).min():
ticks = ticks1
return self.raise_if_exceeds(ticks)
class NullLocator(Locator):
"""
No ticks
"""
def __call__(self):
'Return the locations of the ticks'
return []
class LinearLocator(Locator):
"""
Determine the tick locations
The first time this function is called it will try to set the
number of ticks to make a nice tick partitioning. Thereafter the
number of ticks will be fixed so that interactive navigation will
be nice
"""
def __init__(self, numticks = None, presets=None):
"""
Use presets to set locs based on lom. A dict mapping vmin, vmax->locs
"""
self.numticks = numticks
if presets is None:
self.presets = {}
else:
self.presets = presets
def __call__(self):
'Return the locations of the ticks'
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
if vmax<vmin:
vmin, vmax = vmax, vmin
if (vmin, vmax) in self.presets:
return self.presets[(vmin, vmax)]
if self.numticks is None:
self._set_numticks()
if self.numticks==0: return []
ticklocs = np.linspace(vmin, vmax, self.numticks)
return self.raise_if_exceeds(ticklocs)
def _set_numticks(self):
self.numticks = 11 # todo; be smart here; this is just for dev
def view_limits(self, vmin, vmax):
'Try to choose the view limits intelligently'
if vmax<vmin:
vmin, vmax = vmax, vmin
if vmin==vmax:
vmin-=1
vmax+=1
exponent, remainder = divmod(math.log10(vmax - vmin), 1)
if remainder < 0.5:
exponent -= 1
scale = 10**(-exponent)
vmin = math.floor(scale*vmin)/scale
vmax = math.ceil(scale*vmax)/scale
return mtransforms.nonsingular(vmin, vmax)
def closeto(x,y):
if abs(x-y)<1e-10: return True
else: return False
class Base:
'this solution has some hacks to deal with floating point inaccuracies'
def __init__(self, base):
assert(base>0)
self._base = base
def lt(self, x):
'return the largest multiple of base < x'
d,m = divmod(x, self._base)
if closeto(m,0) and not closeto(m/self._base,1):
return (d-1)*self._base
return d*self._base
def le(self, x):
'return the largest multiple of base <= x'
d,m = divmod(x, self._base)
if closeto(m/self._base,1): # was closeto(m, self._base)
#looks like floating point error
return (d+1)*self._base
return d*self._base
def gt(self, x):
'return the smallest multiple of base > x'
d,m = divmod(x, self._base)
if closeto(m/self._base,1):
#looks like floating point error
return (d+2)*self._base
return (d+1)*self._base
def ge(self, x):
'return the smallest multiple of base >= x'
d,m = divmod(x, self._base)
if closeto(m,0) and not closeto(m/self._base,1):
return d*self._base
return (d+1)*self._base
def get_base(self):
return self._base
class MultipleLocator(Locator):
"""
Set a tick on every integer that is multiple of base in the
view interval
"""
def __init__(self, base=1.0):
self._base = Base(base)
def __call__(self):
'Return the locations of the ticks'
vmin, vmax = self.axis.get_view_interval()
if vmax<vmin:
vmin, vmax = vmax, vmin
vmin = self._base.ge(vmin)
base = self._base.get_base()
n = (vmax - vmin + 0.001*base)//base
locs = vmin + np.arange(n+1) * base
return self.raise_if_exceeds(locs)
def view_limits(self, dmin, dmax):
"""
Set the view limits to the nearest multiples of base that
contain the data
"""
vmin = self._base.le(dmin)
vmax = self._base.ge(dmax)
if vmin==vmax:
vmin -=1
vmax +=1
return mtransforms.nonsingular(vmin, vmax)
def scale_range(vmin, vmax, n = 1, threshold=100):
dv = abs(vmax - vmin)
maxabsv = max(abs(vmin), abs(vmax))
if maxabsv == 0 or dv/maxabsv < 1e-12:
return 1.0, 0.0
meanv = 0.5*(vmax+vmin)
if abs(meanv)/dv < threshold:
offset = 0
elif meanv > 0:
ex = divmod(math.log10(meanv), 1)[0]
offset = 10**ex
else:
ex = divmod(math.log10(-meanv), 1)[0]
offset = -10**ex
ex = divmod(math.log10(dv/n), 1)[0]
scale = 10**ex
return scale, offset
class MaxNLocator(Locator):
"""
Select no more than N intervals at nice locations.
"""
default_params = dict(nbins = 10,
steps = None,
trim = True,
integer=False,
symmetric=False,
prune=None)
def __init__(self, *args, **kwargs):
"""
Keyword args:
*nbins*
Maximum number of intervals; one less than max number of ticks.
*steps*
Sequence of nice numbers starting with 1 and ending with 10;
e.g., [1, 2, 4, 5, 10]
*integer*
If True, ticks will take only integer values.
*symmetric*
If True, autoscaling will result in a range symmetric
about zero.
*prune*
['lower' | 'upper' | 'both' | None]
Remove edge ticks -- useful for stacked or ganged plots
where the upper tick of one axes overlaps with the lower
tick of the axes above it.
If prune=='lower', the smallest tick will
be removed. If prune=='upper', the largest tick will be
removed. If prune=='both', the largest and smallest ticks
will be removed. If prune==None, no ticks will be removed.
"""
# I left "trim" out; it defaults to True, and it is not
# clear that there is any use case for False, so we may
# want to remove that kwarg. EF 2010/04/18
if args:
kwargs['nbins'] = args[0]
if len(args) > 1:
raise ValueError(
"Keywords are required for all arguments except 'nbins'")
self.set_params(**self.default_params)
self.set_params(**kwargs)
def set_params(self, **kwargs):
if 'nbins' in kwargs:
self._nbins = int(kwargs['nbins'])
if 'trim' in kwargs:
self._trim = kwargs['trim']
if 'integer' in kwargs:
self._integer = kwargs['integer']
if 'symmetric' in kwargs:
self._symmetric = kwargs['symmetric']
if 'prune' in kwargs:
prune = kwargs['prune']
if prune is not None and prune not in ['upper', 'lower', 'both']:
raise ValueError(
"prune must be 'upper', 'lower', 'both', or None")
self._prune = prune
if 'steps' in kwargs:
steps = kwargs['steps']
if steps is None:
self._steps = [1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10]
else:
if int(steps[-1]) != 10:
steps = list(steps)
steps.append(10)
self._steps = steps
if 'integer' in kwargs:
self._integer = kwargs['integer']
if self._integer:
self._steps = [n for n in self._steps if divmod(n,1)[1] < 0.001]
def bin_boundaries(self, vmin, vmax):
nbins = self._nbins
scale, offset = scale_range(vmin, vmax, nbins)
if self._integer:
scale = max(1, scale)
vmin -= offset
vmax -= offset
raw_step = (vmax-vmin)/nbins
scaled_raw_step = raw_step/scale
best_vmax = vmax
best_vmin = vmin
for step in self._steps:
if step < scaled_raw_step:
continue
step *= scale
best_vmin = step*divmod(vmin, step)[0]
best_vmax = best_vmin + step*nbins
if (best_vmax >= vmax):
break
if self._trim:
extra_bins = int(divmod((best_vmax - vmax), step)[0])
nbins -= extra_bins
return (np.arange(nbins+1) * step + best_vmin + offset)
def __call__(self):
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
locs = self.bin_boundaries(vmin, vmax)
#print 'locs=', locs
prune = self._prune
if prune=='lower':
locs = locs[1:]
elif prune=='upper':
locs = locs[:-1]
elif prune=='both':
locs = locs[1:-1]
return self.raise_if_exceeds(locs)
def view_limits(self, dmin, dmax):
if self._symmetric:
maxabs = max(abs(dmin), abs(dmax))
dmin = -maxabs
dmax = maxabs
dmin, dmax = mtransforms.nonsingular(dmin, dmax, expander = 0.05)
return np.take(self.bin_boundaries(dmin, dmax), [0,-1])
def decade_down(x, base=10):
'floor x to the nearest lower decade'
if x == 0.0:
return -base
lx = np.floor(np.log(x)/np.log(base))
return base**lx
def decade_up(x, base=10):
'ceil x to the nearest higher decade'
if x == 0.0:
return base
lx = np.ceil(np.log(x)/np.log(base))
return base**lx
def nearest_long(x):
if x == 0: return 0L
elif x > 0: return long(x+0.5)
else: return long(x-0.5)
def is_decade(x, base=10):
if not np.isfinite(x):
return False
if x == 0.0:
return True
lx = np.log(np.abs(x))/np.log(base)
return is_close_to_int(lx)
def is_close_to_int(x):
if not np.isfinite(x):
return False
return abs(x - nearest_long(x)) < 1e-10
class LogLocator(Locator):
"""
Determine the tick locations for log axes
"""
def __init__(self, base=10.0, subs=[1.0], numdecs=4):
"""
place ticks on the location= base**i*subs[j]
"""
self.base(base)
self.subs(subs)
self.numticks = 15
self.numdecs = numdecs
def base(self,base):
"""
set the base of the log scaling (major tick every base**i, i integer)
"""
self._base=base+0.0
def subs(self,subs):
"""
set the minor ticks the log scaling every base**i*subs[j]
"""
if subs is None:
self._subs = None # autosub
else:
self._subs = np.asarray(subs)+0.0
def __call__(self):
'Return the locations of the ticks'
b=self._base
vmin, vmax = self.axis.get_view_interval()
# dummy axis has no axes attribute
if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar':
vmax = math.ceil(math.log(vmax) / math.log(b))
decades = np.arange(vmax - self.numdecs, vmax)
ticklocs = b ** decades
return ticklocs
if vmin <= 0.0:
vmin = self.axis.get_minpos()
if vmin <= 0.0 or not np.isfinite(vmin):
raise ValueError(
"Data has no positive values, and therefore can not be log-scaled.")
vmin = math.log(vmin)/math.log(b)
vmax = math.log(vmax)/math.log(b)
if vmax<vmin:
vmin, vmax = vmax, vmin
numdec = math.floor(vmax)-math.ceil(vmin)
if self._subs is None: # autosub
if numdec>10: subs = np.array([1.0])
elif numdec>6: subs = np.arange(2.0, b, 2.0)
else: subs = np.arange(2.0, b)
else:
subs = self._subs
stride = 1
while numdec/stride+1 > self.numticks:
stride += 1
decades = np.arange(math.floor(vmin),
math.ceil(vmax)+stride, stride)
if hasattr(self, '_transform'):
ticklocs = self._transform.inverted().transform(decades)
if len(subs) > 1 or (len(subs == 1) and subs[0] != 1.0):
ticklocs = np.ravel(np.outer(subs, ticklocs))
else:
if len(subs) > 1 or (len(subs == 1) and subs[0] != 1.0):
ticklocs = []
for decadeStart in b**decades:
ticklocs.extend( subs*decadeStart )
else:
ticklocs = b**decades
return self.raise_if_exceeds(np.asarray(ticklocs))
def view_limits(self, vmin, vmax):
'Try to choose the view limits intelligently'
b = self._base
if vmax<vmin:
vmin, vmax = vmax, vmin
if self.axis.axes.name == 'polar':
vmax = math.ceil(math.log(vmax) / math.log(b))
vmin = b ** (vmax - self.numdecs)
return vmin, vmax
minpos = self.axis.get_minpos()
if minpos<=0 or not np.isfinite(minpos):
raise ValueError(
"Data has no positive values, and therefore can not be log-scaled.")
if vmin <= minpos:
vmin = minpos
if not is_decade(vmin,self._base): vmin = decade_down(vmin,self._base)
if not is_decade(vmax,self._base): vmax = decade_up(vmax,self._base)
if vmin==vmax:
vmin = decade_down(vmin,self._base)
vmax = decade_up(vmax,self._base)
result = mtransforms.nonsingular(vmin, vmax)
return result
class SymmetricalLogLocator(Locator):
"""
Determine the tick locations for log axes
"""
def __init__(self, transform, subs=[1.0]):
"""
place ticks on the location= base**i*subs[j]
"""
self._transform = transform
self._subs = subs
self.numticks = 15
def __call__(self):
'Return the locations of the ticks'
b = self._transform.base
t = self._transform.linthresh
# Note, these are untransformed coordinates
vmin, vmax = self.axis.get_view_interval()
if vmax < vmin:
vmin, vmax = vmax, vmin
# The domain is divided into three sections, only some of
# which may actually be present.
#
# <======== -t ==0== t ========>
# aaaaaaaaa bbbbb ccccccccc
#
# a) and c) will have ticks at integral log positions. The
# number of ticks needs to be reduced if there are more
# than self.numticks of them.
#
# b) has a tick at 0 and only 0 (we assume t is a small
# number, and the linear segment is just an implementation
# detail and not interesting.)
#
# We could also add ticks at t, but that seems to usually be
# uninteresting.
#
# "simple" mode is when the range falls entirely within (-t,
# t) -- it should just display (vmin, 0, vmax)
has_a = has_b = has_c = False
if vmin < -t:
has_a = True
if vmax > -t:
has_b = True
if vmax > t:
has_c = True
elif vmin < 0:
if vmax > 0:
has_b = True
if vmax > t:
has_c = True
else:
return [vmin, vmax]
elif vmin < t:
if vmax > t:
has_b = True
has_c = True
else:
return [vmin, vmax]
else:
has_c = True
def get_log_range(lo, hi):
lo = np.floor(np.log(lo) / np.log(b))
hi = np.ceil(np.log(hi) / np.log(b))
return lo, hi
# First, calculate all the ranges, so we can determine striding
if has_a:
if has_b:
a_range = get_log_range(t, -vmin + 1)
else:
a_range = get_log_range(-vmax, -vmin + 1)
else:
a_range = (0, 0)
if has_c:
if has_b:
c_range = get_log_range(t, vmax + 1)
else:
c_range = get_log_range(vmin, vmax + 1)
else:
c_range = (0, 0)
total_ticks = (a_range[1] - a_range[0]) + (c_range[1] - c_range[0])
if has_b:
total_ticks += 1
stride = max(np.floor(float(total_ticks) / (self.numticks - 1)), 1)
decades = []
if has_a:
decades.extend(-1 * (b ** (np.arange(a_range[0], a_range[1], stride)[::-1])))
if has_b:
decades.append(0.0)
if has_c:
decades.extend(b ** (np.arange(c_range[0], c_range[1], stride)))
# Add the subticks if requested
if self._subs is None:
subs = np.arange(2.0, b)
else:
subs = np.asarray(self._subs)
if len(subs) > 1 or subs[0] != 1.0:
ticklocs = []
for decade in decades:
ticklocs.extend(subs * decade)
else:
ticklocs = decades
return self.raise_if_exceeds(np.array(ticklocs))
def view_limits(self, vmin, vmax):
'Try to choose the view limits intelligently'
b = self._transform.base
if vmax<vmin:
vmin, vmax = vmax, vmin
if not is_decade(abs(vmin), b):
if vmin < 0:
vmin = -decade_up(-vmin, b)
else:
vmin = decade_down(vmin, b)
if not is_decade(abs(vmax), b):
if vmax < 0:
vmax = -decade_down(-vmax, b)
else:
vmax = decade_up(vmax, b)
if vmin == vmax:
if vmin < 0:
vmin = -decade_up(-vmin, b)
vmax = -decade_down(-vmax, b)
else:
vmin = decade_down(vmin, b)
vmax = decade_up(vmax, b)
result = mtransforms.nonsingular(vmin, vmax)
return result
class AutoLocator(MaxNLocator):
def __init__(self):
MaxNLocator.__init__(self, nbins=9, steps=[1, 2, 5, 10])
class AutoMinorLocator(Locator):
"""
Dynamically find minor tick positions based on the positions of
major ticks. Assumes the scale is linear and major ticks are
evenly spaced.
"""
def __init__(self, n=None):
"""
*n* is the number of subdivisions of the interval between
major ticks; e.g., n=2 will place a single minor tick midway
between major ticks.
If *n* is omitted or None, it will be set to 5 or 4.
"""
self.ndivs = n
def __call__(self):
'Return the locations of the ticks'
majorlocs = self.axis.get_majorticklocs()
try:
majorstep = majorlocs[1] - majorlocs[0]
except IndexError:
raise ValueError('Need at least two major ticks to find minor '
'tick locations')
if self.ndivs is None:
x = int(round(10 ** (np.log10(majorstep) % 1)))
if x in [1, 5, 10]:
ndivs = 5
else:
ndivs = 4
else:
ndivs = self.ndivs
minorstep = majorstep / ndivs
vmin, vmax = self.axis.get_view_interval()
if vmin > vmax:
vmin,vmax = vmax,vmin
t0 = majorlocs[0]
tmin = np.ceil((vmin - t0) / minorstep) * minorstep
tmax = np.floor((vmax - t0) / minorstep) * minorstep
locs = np.arange(tmin, tmax, minorstep) + t0
cond = np.abs((locs - t0) % majorstep) > minorstep/10.0
locs = locs.compress(cond)
return self.raise_if_exceeds(np.array(locs))
class OldAutoLocator(Locator):
"""
On autoscale this class picks the best MultipleLocator to set the
view limits and the tick locs.
"""
def __init__(self):
self._locator = LinearLocator()
def __call__(self):
'Return the locations of the ticks'
self.refresh()
return self.raise_if_exceeds(self._locator())
def refresh(self):
'refresh internal information based on current lim'
vmin, vmax = self.axis.get_view_interval()
vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
d = abs(vmax-vmin)
self._locator = self.get_locator(d)
def view_limits(self, vmin, vmax):
'Try to choose the view limits intelligently'
d = abs(vmax-vmin)
self._locator = self.get_locator(d)
return self._locator.view_limits(vmin, vmax)
def get_locator(self, d):
'pick the best locator based on a distance'
d = abs(d)
if d<=0:
locator = MultipleLocator(0.2)
else:
try: ld = math.log10(d)
except OverflowError:
raise RuntimeError('AutoLocator illegal data interval range')
fld = math.floor(ld)
base = 10**fld
#if ld==fld: base = 10**(fld-1)
#else: base = 10**fld
if d >= 5*base : ticksize = base
elif d >= 2*base : ticksize = base/2.0
else : ticksize = base/5.0
locator = MultipleLocator(ticksize)
return locator
__all__ = ('TickHelper', 'Formatter', 'FixedFormatter',
'NullFormatter', 'FuncFormatter', 'FormatStrFormatter',
'ScalarFormatter', 'LogFormatter', 'LogFormatterExponent',
'LogFormatterMathtext', 'Locator', 'IndexLocator',
'FixedLocator', 'NullLocator', 'LinearLocator',
'LogLocator', 'AutoLocator', 'MultipleLocator',
'MaxNLocator', 'AutoMinorLocator',)
|