This file is indexed.

/usr/share/pyshared/matplotlib/ticker.py is in python-matplotlib 1.1.1~rc1+git20120423-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
"""
Tick locating and formatting
============================

This module contains classes to support completely configurable tick
locating and formatting.  Although the locators know nothing about
major or minor ticks, they are used by the Axis class to support major
and minor tick locating and formatting.  Generic tick locators and
formatters are provided, as well as domain specific custom ones..


Tick locating
-------------

The Locator class is the base class for all tick locators.  The
locators handle autoscaling of the view limits based on the data
limits, and the choosing of tick locations.  A useful semi-automatic
tick locator is MultipleLocator.  You initialize this with a base, eg
10, and it picks axis limits and ticks that are multiples of your
base.

The Locator subclasses defined here are

:class:`NullLocator`
    No ticks

:class:`FixedLocator`
    Tick locations are fixed

:class:`IndexLocator`
    locator for index plots (eg. where x = range(len(y)))

:class:`LinearLocator`
    evenly spaced ticks from min to max

:class:`LogLocator`
    logarithmically ticks from min to max

:class:`MultipleLocator`
    ticks and range are a multiple of base;
                  either integer or float
:class:`OldAutoLocator`
    choose a MultipleLocator and dyamically reassign it for
    intelligent ticking during navigation

:class:`MaxNLocator`
    finds up to a max number of ticks at nice  locations

:class:`AutoLocator`
    :class:`MaxNLocator` with simple defaults. This is the default
    tick locator for most plotting.

:class:`AutoMinorLocator`
    locator for minor ticks when the axis is linear and the
    major ticks are uniformly spaced.  It subdivides the major
    tick interval into a specified number of minor intervals,
    defaulting to 4 or 5 depending on the major interval.


There are a number of locators specialized for date locations - see
the dates module

You can define your own locator by deriving from Locator.  You must
override the __call__ method, which returns a sequence of locations,
and you will probably want to override the autoscale method to set the
view limits from the data limits.

If you want to override the default locator, use one of the above or a
custom locator and pass it to the x or y axis instance.  The relevant
methods are::

  ax.xaxis.set_major_locator( xmajorLocator )
  ax.xaxis.set_minor_locator( xminorLocator )
  ax.yaxis.set_major_locator( ymajorLocator )
  ax.yaxis.set_minor_locator( yminorLocator )

The default minor locator is the NullLocator, eg no minor ticks on by
default.

Tick formatting
---------------

Tick formatting is controlled by classes derived from Formatter.  The
formatter operates on a single tick value and returns a string to the
axis.

:class:`NullFormatter`
    no labels on the ticks

:class:`IndexFormatter`
    set the strings from a list of labels

:class:`FixedFormatter`
    set the strings manually for the labels

:class:`FuncFormatter`
    user defined function sets the labels

:class:`FormatStrFormatter`
    use a sprintf format string

:class:`ScalarFormatter`
    default formatter for scalars; autopick the fmt string

:class:`LogFormatter`
    formatter for log axes


You can derive your own formatter from the Formatter base class by
simply overriding the ``__call__`` method.  The formatter class has access
to the axis view and data limits.

To control the major and minor tick label formats, use one of the
following methods::

  ax.xaxis.set_major_formatter( xmajorFormatter )
  ax.xaxis.set_minor_formatter( xminorFormatter )
  ax.yaxis.set_major_formatter( ymajorFormatter )
  ax.yaxis.set_minor_formatter( yminorFormatter )

See :ref:`pylab_examples-major_minor_demo1` for an example of setting
major an minor ticks.  See the :mod:`matplotlib.dates` module for
more information and examples of using date locators and formatters.
"""


from __future__ import division
import decimal
import locale
import math
import numpy as np
from matplotlib import rcParams
from matplotlib import cbook
from matplotlib import transforms as mtransforms



class TickHelper:
    axis = None
    class DummyAxis:
        def __init__(self):
            self.dataLim = mtransforms.Bbox.unit()
            self.viewLim = mtransforms.Bbox.unit()

        def get_view_interval(self):
            return self.viewLim.intervalx

        def set_view_interval(self, vmin, vmax):
            self.viewLim.intervalx = vmin, vmax

        def get_data_interval(self):
            return self.dataLim.intervalx

        def set_data_interval(self, vmin, vmax):
            self.dataLim.intervalx = vmin, vmax


    def set_axis(self, axis):
        self.axis = axis

    def create_dummy_axis(self):
        if self.axis is None:
            self.axis = self.DummyAxis()

    def set_view_interval(self, vmin, vmax):
        self.axis.set_view_interval(vmin, vmax)

    def set_data_interval(self, vmin, vmax):
        self.axis.set_data_interval(vmin, vmax)

    def set_bounds(self, vmin, vmax):
        self.set_view_interval(vmin, vmax)
        self.set_data_interval(vmin, vmax)


class Formatter(TickHelper):
    """
    Convert the tick location to a string
    """

    # some classes want to see all the locs to help format
    # individual ones
    locs = []
    def __call__(self, x, pos=None):
        'Return the format for tick val x at position pos; pos=None indicated unspecified'
        raise NotImplementedError('Derived must overide')

    def format_data(self,value):
        return self.__call__(value)

    def format_data_short(self,value):
        'return a short string version'
        return self.format_data(value)

    def get_offset(self):
        return ''

    def set_locs(self, locs):
        self.locs = locs

    def fix_minus(self, s):
        """
        some classes may want to replace a hyphen for minus with the
        proper unicode symbol as described `here
        <http://sourceforge.net/tracker/index.php?func=detail&aid=1962574&group_id=80706&atid=560720>`_.
        The default is to do nothing

        Note, if you use this method, eg in :meth`format_data` or
        call, you probably don't want to use it for
        :meth:`format_data_short` since the toolbar uses this for
        interactive coord reporting and I doubt we can expect GUIs
        across platforms will handle the unicode correctly.  So for
        now the classes that override :meth:`fix_minus` should have an
        explicit :meth:`format_data_short` method
        """
        return s

class IndexFormatter(Formatter):
    """
    format the position x to the nearest i-th label where i=int(x+0.5)
    """
    def __init__(self, labels):
        self.labels = labels
        self.n = len(labels)

    def __call__(self, x, pos=None):
        'Return the format for tick val x at position pos; pos=None indicated unspecified'
        i = int(x+0.5)
        if i<0:
            return ''
        elif i>=self.n:
            return ''
        else:
            return self.labels[i]


class NullFormatter(Formatter):
    'Always return the empty string'
    def __call__(self, x, pos=None):
        'Return the format for tick val *x* at position *pos*'
        return ''

class FixedFormatter(Formatter):
    'Return fixed strings for tick labels'
    def __init__(self, seq):
        """
        *seq* is a sequence of strings.  For positions ``i < len(seq)`` return
        *seq[i]* regardless of *x*.  Otherwise return ''
        """
        self.seq = seq
        self.offset_string = ''

    def __call__(self, x, pos=None):
        'Return the format for tick val *x* at position *pos*'
        if pos is None or pos>=len(self.seq): return ''
        else: return self.seq[pos]

    def get_offset(self):
        return self.offset_string

    def set_offset_string(self, ofs):
        self.offset_string = ofs

class FuncFormatter(Formatter):
    """
    User defined function for formatting
    """
    def __init__(self, func):
        self.func = func

    def __call__(self, x, pos=None):
        'Return the format for tick val *x* at position *pos*'
        return self.func(x, pos)


class FormatStrFormatter(Formatter):
    """
    Use a format string to format the tick
    """
    def __init__(self, fmt):
        self.fmt = fmt

    def __call__(self, x, pos=None):
        'Return the format for tick val *x* at position *pos*'
        return self.fmt % x

class OldScalarFormatter(Formatter):
    """
    Tick location is a plain old number.
    """

    def __call__(self, x, pos=None):
        'Return the format for tick val *x* at position *pos*'
        xmin, xmax = self.axis.get_view_interval()
        d = abs(xmax - xmin)

        return self.pprint_val(x,d)

    def pprint_val(self, x, d):
        #if the number is not too big and it's an int, format it as an
        #int
        if abs(x)<1e4 and x==int(x): return '%d' % x

        if d < 1e-2: fmt = '%1.3e'
        elif d < 1e-1: fmt = '%1.3f'
        elif d > 1e5: fmt = '%1.1e'
        elif d > 10 : fmt = '%1.1f'
        elif d > 1 : fmt = '%1.2f'
        else: fmt = '%1.3f'
        s =  fmt % x
        #print d, x, fmt, s
        tup = s.split('e')
        if len(tup)==2:
            mantissa = tup[0].rstrip('0').rstrip('.')
            sign = tup[1][0].replace('+', '')
            exponent = tup[1][1:].lstrip('0')
            s = '%se%s%s' %(mantissa, sign, exponent)
        else:
            s = s.rstrip('0').rstrip('.')
        return s


class ScalarFormatter(Formatter):
    """
    Tick location is a plain old number.  If useOffset==True and the data range
    is much smaller than the data average, then an offset will be determined
    such that the tick labels are meaningful. Scientific notation is used for
    data < 10^-n or data >= 10^m, where n and m are the power limits set using
    set_powerlimits((n,m)). The defaults for these are controlled by the
    axes.formatter.limits rc parameter.

    """

    def __init__(self, useOffset=True, useMathText=False, useLocale=None):
        # useOffset allows plotting small data ranges with large offsets:
        # for example: [1+1e-9,1+2e-9,1+3e-9]
        # useMathText will render the offset and scientific notation in mathtext
        self.set_useOffset(useOffset)
        self._usetex = rcParams['text.usetex']
        self._useMathText = useMathText
        self.orderOfMagnitude = 0
        self.format = ''
        self._scientific = True
        self._powerlimits = rcParams['axes.formatter.limits']
        if useLocale is None:
            self._useLocale = rcParams['axes.formatter.use_locale']
        else:
            self._useLocale = useLocale

    def get_useOffset(self):
        return self._useOffset

    def set_useOffset(self, val):
        if val in [True, False]:
            self.offset = 0
            self._useOffset = val
        else:
            self._useOffset = False
            self.offset = val

    useOffset = property(fget=get_useOffset, fset=set_useOffset)

    def get_useLocale(self):
        return self._useLocale

    def set_useLocale(self, val):
        if val is None:
            self._useLocale = rcParams['axes.formatter.use_locale']
        else:
            self._useLocale = val

    useLocale = property(fget=get_useLocale, fset=set_useLocale)
    
    def fix_minus(self, s):
        'use a unicode minus rather than hyphen'
        if rcParams['text.usetex'] or not rcParams['axes.unicode_minus']: return s
        else: return s.replace('-', u'\u2212')

    def __call__(self, x, pos=None):
        'Return the format for tick val *x* at position *pos*'
        if len(self.locs)==0:
            return ''
        else:
            s = self.pprint_val(x)
            return self.fix_minus(s)

    def set_scientific(self, b):
        '''True or False to turn scientific notation on or off
        see also :meth:`set_powerlimits`
        '''
        self._scientific = bool(b)

    def set_powerlimits(self, lims):
        '''
        Sets size thresholds for scientific notation.

        e.g. ``formatter.set_powerlimits((-3, 4))`` sets the pre-2007 default in
        which scientific notation is used for numbers less than
        1e-3 or greater than 1e4.
        See also :meth:`set_scientific`.
        '''
        assert len(lims) == 2, "argument must be a sequence of length 2"
        self._powerlimits = lims

    def format_data_short(self,value):
        'return a short formatted string representation of a number'
        if self._useLocale:
            return locale.format_string('%-12g', (value,))
        else:
            return '%-12g'%value

    def format_data(self,value):
        'return a formatted string representation of a number'
        if self._useLocale:
            s = locale.format_string('%1.10e', (value,))
        else:
            s = '%1.10e' % value
        s = self._formatSciNotation(s)
        return self.fix_minus(s)


    def get_offset(self):
        """Return scientific notation, plus offset"""
        if len(self.locs)==0: return ''
        s = ''
        if self.orderOfMagnitude or self.offset:
            offsetStr = ''
            sciNotStr = ''
            if self.offset:
                offsetStr = self.format_data(self.offset)
                if self.offset > 0: offsetStr = '+' + offsetStr
            if self.orderOfMagnitude:
                if self._usetex or self._useMathText:
                    sciNotStr = self.format_data(10**self.orderOfMagnitude)
                else:
                    sciNotStr = '1e%d'% self.orderOfMagnitude
            if self._useMathText:
                if sciNotStr != '':
                    sciNotStr = r'\times\mathdefault{%s}' % sciNotStr
                s = ''.join(('$',sciNotStr,r'\mathdefault{',offsetStr,'}$'))
            elif self._usetex:
                if sciNotStr != '':
                    sciNotStr = r'\times%s' % sciNotStr
                s =  ''.join(('$',sciNotStr,offsetStr,'$'))
            else:
                s =  ''.join((sciNotStr,offsetStr))

        return self.fix_minus(s)

    def set_locs(self, locs):
        'set the locations of the ticks'
        self.locs = locs
        if len(self.locs) > 0:
            vmin, vmax = self.axis.get_view_interval()
            d = abs(vmax-vmin)
            if self._useOffset:
                self._set_offset(d)
            self._set_orderOfMagnitude(d)
            self._set_format()

    def _set_offset(self, range):
        # offset of 20,001 is 20,000, for example
        locs = self.locs

        if locs is None or not len(locs) or range == 0:
            self.offset = 0
            return
        ave_loc = np.mean(locs)
        if ave_loc: # dont want to take log10(0)
            ave_oom = math.floor(math.log10(np.mean(np.absolute(locs))))
            range_oom = math.floor(math.log10(range))

            if np.absolute(ave_oom-range_oom) >= 3: # four sig-figs
                if ave_loc < 0:
                    self.offset = math.ceil(np.max(locs)/10**range_oom)*10**range_oom
                else:
                    self.offset = math.floor(np.min(locs)/10**(range_oom))*10**(range_oom)
            else: self.offset = 0

    def _set_orderOfMagnitude(self,range):
        # if scientific notation is to be used, find the appropriate exponent
        # if using an numerical offset, find the exponent after applying the offset
        if not self._scientific:
            self.orderOfMagnitude = 0
            return
        locs = np.absolute(self.locs)
        if self.offset: oom = math.floor(math.log10(range))
        else:
            if locs[0] > locs[-1]: val = locs[0]
            else: val = locs[-1]
            if val == 0: oom = 0
            else: oom = math.floor(math.log10(val))
        if oom <= self._powerlimits[0]:
            self.orderOfMagnitude = oom
        elif oom >= self._powerlimits[1]:
            self.orderOfMagnitude = oom
        else:
            self.orderOfMagnitude = 0

    def _set_format(self):
        # set the format string to format all the ticklabels
        # The floating point black magic (adding 1e-15 and formatting
        # to 8 digits) may warrant review and cleanup.
        locs = (np.asarray(self.locs)-self.offset) / 10**self.orderOfMagnitude+1e-15
        sigfigs = [len(str('%1.8f'% loc).split('.')[1].rstrip('0')) \
                   for loc in locs]
        sigfigs.sort()
        self.format = '%1.' + str(sigfigs[-1]) + 'f'
        if self._usetex:
            self.format = '$%s$' % self.format
        elif self._useMathText:
            self.format = '$\mathdefault{%s}$' % self.format

    def pprint_val(self, x):
        xp = (x-self.offset)/10**self.orderOfMagnitude
        if np.absolute(xp) < 1e-8: xp = 0
        if self._useLocale:
            return locale.format_string(self.format, (xp,))
        else:
            return self.format % xp

    def _formatSciNotation(self, s):
        # transform 1e+004 into 1e4, for example
        if self._useLocale:
            decimal_point = locale.localeconv()['decimal_point']
            positive = locale.localeconv()['positive_sign']
        else:
            decimal_point = '.'
            positive_sign = '+'
        tup = s.split('e')
        try:
            significand = tup[0].rstrip('0').rstrip(decimal_point)
            sign = tup[1][0].replace(positive_sign, '')
            exponent = tup[1][1:].lstrip('0')
            if self._useMathText or self._usetex:
                if significand == '1':
                    # reformat 1x10^y as 10^y
                    significand = ''
                if exponent:
                    exponent = '10^{%s%s}'%(sign, exponent)
                if significand and exponent:
                    return r'%s{\times}%s'%(significand, exponent)
                else:
                    return r'%s%s'%(significand, exponent)
            else:
                s = ('%se%s%s' %(significand, sign, exponent)).rstrip('e')
                return s
        except IndexError, msg:
            return s


class LogFormatter(Formatter):
    """
    Format values for log axis;

    if attribute *decadeOnly* is True, only the decades will be labelled.
    """
    def __init__(self, base=10.0, labelOnlyBase = True):
        """
        *base* is used to locate the decade tick,
        which will be the only one to be labeled if *labelOnlyBase*
        is ``False``
        """
        self._base = base+0.0
        self.labelOnlyBase = labelOnlyBase
        self.decadeOnly = True

    def base(self, base):
        'change the *base* for labeling - warning: should always match the base used for :class:`LogLocator`'
        self._base = base

    def label_minor(self, labelOnlyBase):
        'switch on/off minor ticks labeling'
        self.labelOnlyBase = labelOnlyBase


    def __call__(self, x, pos=None):
        'Return the format for tick val *x* at position *pos*'
        vmin, vmax = self.axis.get_view_interval()
        d = abs(vmax - vmin)
        b = self._base
        if x == 0.0:
            return '0'
        sign = np.sign(x)
        # only label the decades
        fx = math.log(abs(x))/math.log(b)
        isDecade = is_close_to_int(fx)
        if not isDecade and self.labelOnlyBase: s = ''
        elif x>10000: s= '%1.0e'%x
        elif x<1: s =  '%1.0e'%x
        else        : s =  self.pprint_val(x, d)
        if sign == -1:
            s =  '-%s' % s

        return self.fix_minus(s)

    def format_data(self, value):
        b = self.labelOnlyBase
        self.labelOnlyBase = False
        value = cbook.strip_math(self.__call__(value))
        self.labelOnlyBase = b
        return value

    def format_data_short(self,value):
        'return a short formatted string representation of a number'
        return '%-12g'%value

    def pprint_val(self, x, d):
        #if the number is not too big and it's an int, format it as an
        #int
        if abs(x) < 1e4 and x == int(x): return '%d' % x

        if d < 1e-2: fmt = '%1.3e'
        elif d < 1e-1: fmt = '%1.3f'
        elif d > 1e5: fmt = '%1.1e'
        elif d > 10 : fmt = '%1.1f'
        elif d > 1 : fmt = '%1.2f'
        else: fmt = '%1.3f'
        s =  fmt % x
        #print d, x, fmt, s
        tup = s.split('e')
        if len(tup) == 2:
            mantissa = tup[0].rstrip('0').rstrip('.')
            sign = tup[1][0].replace('+', '')
            exponent = tup[1][1:].lstrip('0')
            s = '%se%s%s' %(mantissa, sign, exponent)
        else:
            s = s.rstrip('0').rstrip('.')
        return s

class LogFormatterExponent(LogFormatter):
    """
    Format values for log axis; using ``exponent = log_base(value)``
    """

    def __call__(self, x, pos=None):
        'Return the format for tick val *x* at position *pos*'


        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
        d = abs(vmax-vmin)
        b=self._base
        if x == 0:
            return '0'
        sign = np.sign(x)
        # only label the decades
        fx = math.log(abs(x))/math.log(b)
        isDecade = is_close_to_int(fx)
        if not isDecade and self.labelOnlyBase: s = ''
        #if 0: pass
        elif fx>10000: s= '%1.0e'%fx
        #elif x<1: s = '$10^{%d}$'%fx
        #elif x<1: s =  '10^%d'%fx
        elif fx<1: s =  '%1.0e'%fx
        else        : s =  self.pprint_val(fx,d)
        if sign == -1:
            s =  '-%s' % s

        return self.fix_minus(s)


class LogFormatterMathtext(LogFormatter):
    """
    Format values for log axis; using ``exponent = log_base(value)``
    """

    def __call__(self, x, pos=None):
        'Return the format for tick val *x* at position *pos*'
        b = self._base
        usetex = rcParams['text.usetex']

        # only label the decades
        if x == 0:
            if usetex:
                return '$0$'
            else:
                return '$\mathdefault{0}$'
        sign = np.sign(x)
        fx = math.log(abs(x))/math.log(b)
        isDecade = is_close_to_int(fx)

        if sign == -1:
            sign_string = '-'
        else:
            sign_string = ''

        if not isDecade and self.labelOnlyBase: s = ''
        elif not isDecade:
            if usetex:
                s = r'$%s%d^{%.2f}$'% (sign_string, b, fx)
            else:
                s = '$\mathdefault{%s%d^{%.2f}}$'% (sign_string, b, fx)
        else:
            if usetex:
                s = r'$%s%d^{%d}$'% (sign_string, b, nearest_long(fx))
            else:
                s = r'$\mathdefault{%s%d^{%d}}$'% (sign_string, b,
                                                   nearest_long(fx))

        return s

class EngFormatter(Formatter):
    """
    Formats axis values using engineering prefixes to represent powers of 1000,
    plus a specified unit, eg. 10 MHz instead of 1e7.
    """

    # The SI engineering prefixes
    ENG_PREFIXES = {
        -24: "y",
        -21: "z",
        -18: "a",
        -15: "f",
        -12: "p",
         -9: "n",
         -6: u"\u03bc", # Greek letter mu
         -3: "m",
          0: "",
          3: "k",
          6: "M",
          9: "G",
         12: "T",
         15: "P",
         18: "E",
         21: "Z",
         24: "Y"
      }

    def __init__(self, unit="", places=None):
        self.unit = unit
        self.places = places

    def __call__(self, x, pos=None):
        s = "%s%s" % (self.format_eng(x), self.unit)
        return self.fix_minus(s)

    def format_eng(self, num):
        """ Formats a number in engineering notation, appending a letter
        representing the power of 1000 of the original number. Some examples:

        >>> format_eng(0)       for self.places = 0
        '0'

        >>> format_eng(1000000) for self.places = 1
        '1.0 M'

        >>> format_eng("-1e-6") for self.places = 2
        u'-1.00 \u03bc'

        @param num: the value to represent
        @type num: either a numeric value or a string that can be converted to
                   a numeric value (as per decimal.Decimal constructor)

        @return: engineering formatted string
        """

        dnum = decimal.Decimal(str(num))

        sign = 1

        if dnum < 0:
            sign = -1
            dnum = -dnum

        if dnum != 0:
            pow10 = decimal.Decimal(int(math.floor(dnum.log10()/3)*3))
        else:
            pow10 = decimal.Decimal(0)

        pow10 = pow10.min(max(self.ENG_PREFIXES.keys()))
        pow10 = pow10.max(min(self.ENG_PREFIXES.keys()))

        prefix = self.ENG_PREFIXES[int(pow10)]

        mant = sign*dnum/(10**pow10)

        if self.places is None:
            format_str = u"%g %s"
        elif self.places == 0:
            format_str = u"%i %s"
        elif self.places > 0:
            format_str = (u"%%.%if %%s" % self.places)

        formatted = format_str % (mant, prefix)

        return formatted.strip()

class Locator(TickHelper):
    """
    Determine the tick locations;

    Note, you should not use the same locator between different :class:`~matplotlib.axis.Axis`
    because the locator stores references to the Axis data and view
    limits
    """

    # some automatic tick locators can generate so many ticks they
    # kill the machine when you try and render them, see eg sf bug
    # report
    # https://sourceforge.net/tracker/index.php?func=detail&aid=2715172&group_id=80706&atid=560720.
    # This parameter is set to cause locators to raise an error if too
    # many ticks are generated
    MAXTICKS = 1000
    def __call__(self):
        'Return the locations of the ticks'
        raise NotImplementedError('Derived must override')

    def raise_if_exceeds(self, locs):
        'raise a RuntimeError if Locator attempts to create more than MAXTICKS locs'
        if len(locs)>=self.MAXTICKS:
           raise RuntimeError('Locator attempting to generate %d ticks from %s to %s: exceeds Locator.MAXTICKS'%(len(locs), locs[0], locs[-1]))

        return locs

    def view_limits(self, vmin, vmax):
        """
        select a scale for the range from vmin to vmax

        Normally This will be overridden.
        """
        return mtransforms.nonsingular(vmin, vmax)

    def autoscale(self):
        'autoscale the view limits'
        return self.view_limits(*self.axis.get_view_interval())

    def pan(self, numsteps):
        'Pan numticks (can be positive or negative)'
        ticks = self()
        numticks = len(ticks)

        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
        if numticks>2:
            step = numsteps*abs(ticks[0]-ticks[1])
        else:
            d = abs(vmax-vmin)
            step = numsteps*d/6.

        vmin += step
        vmax += step
        self.axis.set_view_interval(vmin, vmax, ignore=True)


    def zoom(self, direction):
        "Zoom in/out on axis; if direction is >0 zoom in, else zoom out"

        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
        interval = abs(vmax-vmin)
        step = 0.1*interval*direction
        self.axis.set_view_interval(vmin + step, vmax - step, ignore=True)

    def refresh(self):
        'refresh internal information based on current lim'
        pass


class IndexLocator(Locator):
    """
    Place a tick on every multiple of some base number of points
    plotted, eg on every 5th point.  It is assumed that you are doing
    index plotting; ie the axis is 0, len(data).  This is mainly
    useful for x ticks.
    """
    def __init__(self, base, offset):
        'place ticks on the i-th data points where (i-offset)%base==0'
        self._base = base
        self.offset = offset

    def __call__(self):
        'Return the locations of the ticks'
        dmin, dmax = self.axis.get_data_interval()
        return self.raise_if_exceeds(
            np.arange(dmin + self.offset, dmax+1, self._base))


class FixedLocator(Locator):
    """
    Tick locations are fixed.  If nbins is not None,
    the array of possible positions will be subsampled to
    keep the number of ticks <= nbins +1.
    The subsampling will be done so as to include the smallest
    absolute value; for example, if zero is included in the
    array of possibilities, then it is guaranteed to be one of
    the chosen ticks.
    """

    def __init__(self, locs, nbins=None):
        self.locs = np.asarray(locs)
        self.nbins = nbins
        if self.nbins is not None:
            self.nbins = max(self.nbins, 2)

    def __call__(self):
        'Return the locations of the ticks'
        if self.nbins is None:
            return self.locs
        step = max(int(0.99 + len(self.locs) / float(self.nbins)), 1)
        ticks = self.locs[::step]
        for i in range(1,step):
            ticks1 = self.locs[i::step]
            if np.absolute(ticks1).min() < np.absolute(ticks).min():
                ticks = ticks1
        return self.raise_if_exceeds(ticks)




class NullLocator(Locator):
    """
    No ticks
    """

    def __call__(self):
        'Return the locations of the ticks'
        return []

class LinearLocator(Locator):
    """
    Determine the tick locations

    The first time this function is called it will try to set the
    number of ticks to make a nice tick partitioning.  Thereafter the
    number of ticks will be fixed so that interactive navigation will
    be nice
    """


    def __init__(self, numticks = None, presets=None):
        """
        Use presets to set locs based on lom.  A dict mapping vmin, vmax->locs
        """
        self.numticks = numticks
        if presets is None:
            self.presets = {}
        else:
            self.presets = presets

    def __call__(self):
        'Return the locations of the ticks'

        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
        if vmax<vmin:
            vmin, vmax = vmax, vmin

        if (vmin, vmax) in self.presets:
            return self.presets[(vmin, vmax)]

        if self.numticks is None:
            self._set_numticks()



        if self.numticks==0: return []
        ticklocs = np.linspace(vmin, vmax, self.numticks)

        return self.raise_if_exceeds(ticklocs)


    def _set_numticks(self):
        self.numticks = 11  # todo; be smart here; this is just for dev

    def view_limits(self, vmin, vmax):
        'Try to choose the view limits intelligently'

        if vmax<vmin:
            vmin, vmax = vmax, vmin

        if vmin==vmax:
            vmin-=1
            vmax+=1

        exponent, remainder = divmod(math.log10(vmax - vmin), 1)

        if remainder < 0.5:
            exponent -= 1
        scale = 10**(-exponent)
        vmin = math.floor(scale*vmin)/scale
        vmax = math.ceil(scale*vmax)/scale

        return mtransforms.nonsingular(vmin, vmax)


def closeto(x,y):
    if abs(x-y)<1e-10: return True
    else: return False

class Base:
    'this solution has some hacks to deal with floating point inaccuracies'
    def __init__(self, base):
        assert(base>0)
        self._base = base

    def lt(self, x):
        'return the largest multiple of base < x'
        d,m = divmod(x, self._base)
        if closeto(m,0) and not closeto(m/self._base,1):
            return (d-1)*self._base
        return d*self._base

    def le(self, x):
        'return the largest multiple of base <= x'
        d,m = divmod(x, self._base)
        if closeto(m/self._base,1): # was closeto(m, self._base)
            #looks like floating point error
            return (d+1)*self._base
        return d*self._base

    def gt(self, x):
        'return the smallest multiple of base > x'
        d,m = divmod(x, self._base)
        if closeto(m/self._base,1):
            #looks like floating point error
            return (d+2)*self._base
        return (d+1)*self._base

    def ge(self, x):
        'return the smallest multiple of base >= x'
        d,m = divmod(x, self._base)
        if closeto(m,0) and not closeto(m/self._base,1):
            return d*self._base
        return (d+1)*self._base

    def get_base(self):
        return self._base

class MultipleLocator(Locator):
    """
    Set a tick on every integer that is multiple of base in the
    view interval
    """

    def __init__(self, base=1.0):
        self._base = Base(base)

    def __call__(self):
        'Return the locations of the ticks'
        vmin, vmax = self.axis.get_view_interval()
        if vmax<vmin:
            vmin, vmax = vmax, vmin
        vmin = self._base.ge(vmin)
        base = self._base.get_base()
        n = (vmax - vmin + 0.001*base)//base
        locs = vmin + np.arange(n+1) * base
        return self.raise_if_exceeds(locs)

    def view_limits(self, dmin, dmax):
        """
        Set the view limits to the nearest multiples of base that
        contain the data
        """
        vmin = self._base.le(dmin)
        vmax = self._base.ge(dmax)
        if vmin==vmax:
            vmin -=1
            vmax +=1

        return mtransforms.nonsingular(vmin, vmax)

def scale_range(vmin, vmax, n = 1, threshold=100):
    dv = abs(vmax - vmin)
    maxabsv = max(abs(vmin), abs(vmax))
    if maxabsv == 0 or dv/maxabsv < 1e-12:
        return 1.0, 0.0
    meanv = 0.5*(vmax+vmin)
    if abs(meanv)/dv < threshold:
        offset = 0
    elif meanv > 0:
        ex = divmod(math.log10(meanv), 1)[0]
        offset = 10**ex
    else:
        ex = divmod(math.log10(-meanv), 1)[0]
        offset = -10**ex
    ex = divmod(math.log10(dv/n), 1)[0]
    scale = 10**ex
    return scale, offset



class MaxNLocator(Locator):
    """
    Select no more than N intervals at nice locations.
    """
    default_params = dict(nbins = 10,
                          steps = None,
                          trim = True,
                          integer=False,
                          symmetric=False,
                          prune=None)
    def __init__(self, *args, **kwargs):
        """
        Keyword args:

        *nbins*
            Maximum number of intervals; one less than max number of ticks.

        *steps*
            Sequence of nice numbers starting with 1 and ending with 10;
            e.g., [1, 2, 4, 5, 10]

        *integer*
            If True, ticks will take only integer values.

        *symmetric*
            If True, autoscaling will result in a range symmetric
            about zero.

        *prune*
            ['lower' | 'upper' | 'both' | None]
            Remove edge ticks -- useful for stacked or ganged plots
            where the upper tick of one axes overlaps with the lower
            tick of the axes above it.
            If prune=='lower', the smallest tick will
            be removed.  If prune=='upper', the largest tick will be
            removed.  If prune=='both', the largest and smallest ticks
            will be removed.  If prune==None, no ticks will be removed.

        """
        # I left "trim" out; it defaults to True, and it is not
        # clear that there is any use case for False, so we may
        # want to remove that kwarg.  EF 2010/04/18
        if args:
            kwargs['nbins'] = args[0]
            if len(args) > 1:
                raise ValueError(
                    "Keywords are required for all arguments except 'nbins'")
        self.set_params(**self.default_params)
        self.set_params(**kwargs)

    def set_params(self, **kwargs):
        if 'nbins' in kwargs:
            self._nbins = int(kwargs['nbins'])
        if 'trim' in kwargs:
            self._trim = kwargs['trim']
        if 'integer' in kwargs:
            self._integer = kwargs['integer']
        if 'symmetric' in kwargs:
            self._symmetric = kwargs['symmetric']
        if 'prune' in kwargs:
            prune = kwargs['prune']
            if prune is not None and prune not in ['upper', 'lower', 'both']:
                raise ValueError(
                    "prune must be 'upper', 'lower', 'both', or None")
            self._prune = prune
        if 'steps' in kwargs:
            steps = kwargs['steps']
            if steps is None:
                self._steps = [1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10]
            else:
                if int(steps[-1]) != 10:
                    steps = list(steps)
                    steps.append(10)
                self._steps = steps
        if 'integer' in kwargs:
            self._integer = kwargs['integer']
        if self._integer:
            self._steps = [n for n in self._steps if divmod(n,1)[1] < 0.001]

    def bin_boundaries(self, vmin, vmax):
        nbins = self._nbins
        scale, offset = scale_range(vmin, vmax, nbins)
        if self._integer:
            scale = max(1, scale)
        vmin -= offset
        vmax -= offset
        raw_step = (vmax-vmin)/nbins
        scaled_raw_step = raw_step/scale
        best_vmax = vmax
        best_vmin = vmin

        for step in self._steps:
            if step < scaled_raw_step:
                continue
            step *= scale
            best_vmin = step*divmod(vmin, step)[0]
            best_vmax = best_vmin + step*nbins
            if (best_vmax >= vmax):
                break
        if self._trim:
            extra_bins = int(divmod((best_vmax - vmax), step)[0])
            nbins -= extra_bins
        return (np.arange(nbins+1) * step + best_vmin + offset)


    def __call__(self):
        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
        locs = self.bin_boundaries(vmin, vmax)
        #print 'locs=', locs
        prune = self._prune
        if prune=='lower':
            locs = locs[1:]
        elif prune=='upper':
            locs = locs[:-1]
        elif prune=='both':
            locs = locs[1:-1]
        return self.raise_if_exceeds(locs)

    def view_limits(self, dmin, dmax):
        if self._symmetric:
            maxabs = max(abs(dmin), abs(dmax))
            dmin = -maxabs
            dmax = maxabs
        dmin, dmax = mtransforms.nonsingular(dmin, dmax, expander = 0.05)
        return np.take(self.bin_boundaries(dmin, dmax), [0,-1])


def decade_down(x, base=10):
    'floor x to the nearest lower decade'
    if x == 0.0:
        return -base
    lx = np.floor(np.log(x)/np.log(base))
    return base**lx

def decade_up(x, base=10):
    'ceil x to the nearest higher decade'
    if x == 0.0:
        return base
    lx = np.ceil(np.log(x)/np.log(base))
    return base**lx

def nearest_long(x):
    if x == 0: return 0L
    elif x > 0: return long(x+0.5)
    else: return long(x-0.5)

def is_decade(x, base=10):
    if not np.isfinite(x):
        return False
    if x == 0.0:
        return True
    lx = np.log(np.abs(x))/np.log(base)
    return is_close_to_int(lx)

def is_close_to_int(x):
    if not np.isfinite(x):
        return False
    return abs(x - nearest_long(x)) < 1e-10

class LogLocator(Locator):
    """
    Determine the tick locations for log axes
    """

    def __init__(self, base=10.0, subs=[1.0], numdecs=4):
        """
        place ticks on the location= base**i*subs[j]
        """
        self.base(base)
        self.subs(subs)
        self.numticks = 15
        self.numdecs = numdecs

    def base(self,base):
        """
        set the base of the log scaling (major tick every base**i, i integer)
        """
        self._base=base+0.0

    def subs(self,subs):
        """
        set the minor ticks the log scaling every base**i*subs[j]
        """
        if subs is None:
            self._subs = None  # autosub
        else:
            self._subs = np.asarray(subs)+0.0

    def __call__(self):
        'Return the locations of the ticks'
        b=self._base

        vmin, vmax = self.axis.get_view_interval()

        # dummy axis has no axes attribute
        if hasattr(self.axis, 'axes') and self.axis.axes.name == 'polar':
            vmax = math.ceil(math.log(vmax) / math.log(b))
            decades = np.arange(vmax - self.numdecs, vmax)
            ticklocs = b ** decades

            return ticklocs

        if vmin <= 0.0:
            vmin = self.axis.get_minpos()
            if vmin <= 0.0 or not np.isfinite(vmin):
                raise ValueError(
                    "Data has no positive values, and therefore can not be log-scaled.")

        vmin = math.log(vmin)/math.log(b)
        vmax = math.log(vmax)/math.log(b)

        if vmax<vmin:
            vmin, vmax = vmax, vmin

        numdec = math.floor(vmax)-math.ceil(vmin)

        if self._subs is None: # autosub
            if numdec>10: subs = np.array([1.0])
            elif numdec>6: subs = np.arange(2.0, b, 2.0)
            else: subs = np.arange(2.0, b)
        else:
            subs = self._subs

        stride = 1
        while numdec/stride+1 > self.numticks:
            stride += 1

        decades = np.arange(math.floor(vmin),
                            math.ceil(vmax)+stride, stride)
        if hasattr(self, '_transform'):
            ticklocs = self._transform.inverted().transform(decades)
            if len(subs) > 1 or (len(subs == 1) and subs[0] != 1.0):
                ticklocs = np.ravel(np.outer(subs, ticklocs))
        else:
            if len(subs) > 1 or (len(subs == 1) and subs[0] != 1.0):
                ticklocs = []
                for decadeStart in b**decades:
                    ticklocs.extend( subs*decadeStart )
            else:
                ticklocs = b**decades

        return self.raise_if_exceeds(np.asarray(ticklocs))

    def view_limits(self, vmin, vmax):
        'Try to choose the view limits intelligently'
        b = self._base

        if vmax<vmin:
            vmin, vmax = vmax, vmin

        if self.axis.axes.name == 'polar':
            vmax = math.ceil(math.log(vmax) / math.log(b))
            vmin = b ** (vmax - self.numdecs)
            return vmin, vmax

        minpos = self.axis.get_minpos()

        if minpos<=0 or not np.isfinite(minpos):
            raise ValueError(
                "Data has no positive values, and therefore can not be log-scaled.")

        if vmin <= minpos:
            vmin = minpos

        if not is_decade(vmin,self._base): vmin = decade_down(vmin,self._base)
        if not is_decade(vmax,self._base): vmax = decade_up(vmax,self._base)

        if vmin==vmax:
            vmin = decade_down(vmin,self._base)
            vmax = decade_up(vmax,self._base)
        result = mtransforms.nonsingular(vmin, vmax)
        return result

class SymmetricalLogLocator(Locator):
    """
    Determine the tick locations for log axes
    """

    def __init__(self, transform, subs=[1.0]):
        """
        place ticks on the location= base**i*subs[j]
        """
        self._transform = transform
        self._subs = subs
        self.numticks = 15

    def __call__(self):
        'Return the locations of the ticks'
        b = self._transform.base
        t = self._transform.linthresh

        # Note, these are untransformed coordinates
        vmin, vmax = self.axis.get_view_interval()
        if vmax < vmin:
            vmin, vmax = vmax, vmin

        # The domain is divided into three sections, only some of
        # which may actually be present.
        #
        # <======== -t ==0== t ========>
        # aaaaaaaaa    bbbbb   ccccccccc
        #
        # a) and c) will have ticks at integral log positions.  The
        # number of ticks needs to be reduced if there are more
        # than self.numticks of them.
        #
        # b) has a tick at 0 and only 0 (we assume t is a small
        # number, and the linear segment is just an implementation
        # detail and not interesting.)
        #
        # We could also add ticks at t, but that seems to usually be
        # uninteresting.
        #
        # "simple" mode is when the range falls entirely within (-t,
        # t) -- it should just display (vmin, 0, vmax)
        
        has_a = has_b = has_c = False
        if vmin < -t:
            has_a = True
            if vmax > -t:
                has_b = True
                if vmax > t:
                    has_c = True
        elif vmin < 0:
            if vmax > 0:
                has_b = True
                if vmax > t:
                    has_c = True
            else:
                return [vmin, vmax]
        elif vmin < t:
            if vmax > t:
                has_b = True
                has_c = True
            else:
                return [vmin, vmax]
        else:
            has_c = True

        def get_log_range(lo, hi):
            lo = np.floor(np.log(lo) / np.log(b))
            hi = np.ceil(np.log(hi) / np.log(b))
            return lo, hi

        # First, calculate all the ranges, so we can determine striding
        if has_a:
            if has_b:
                a_range = get_log_range(t, -vmin + 1)
            else:
                a_range = get_log_range(-vmax, -vmin + 1)
        else:
            a_range = (0, 0)

        if has_c:
            if has_b:
                c_range = get_log_range(t, vmax + 1)
            else:
                c_range = get_log_range(vmin, vmax + 1)
        else:
            c_range = (0, 0)

        total_ticks = (a_range[1] - a_range[0]) + (c_range[1] - c_range[0])
        if has_b:
            total_ticks += 1
        stride = max(np.floor(float(total_ticks) / (self.numticks - 1)), 1)
        
        decades = []
        if has_a:
            decades.extend(-1 * (b ** (np.arange(a_range[0], a_range[1], stride)[::-1])))
        
        if has_b:
            decades.append(0.0)

        if has_c:
            decades.extend(b ** (np.arange(c_range[0], c_range[1], stride)))

        # Add the subticks if requested
        if self._subs is None:
            subs = np.arange(2.0, b)
        else:
            subs = np.asarray(self._subs)

        if len(subs) > 1 or subs[0] != 1.0:
            ticklocs = []
            for decade in decades:
                ticklocs.extend(subs * decade)
        else:
            ticklocs = decades
            
        return self.raise_if_exceeds(np.array(ticklocs))

    def view_limits(self, vmin, vmax):
        'Try to choose the view limits intelligently'
        b = self._transform.base
        if vmax<vmin:
            vmin, vmax = vmax, vmin

        if not is_decade(abs(vmin), b):
            if vmin < 0:
                vmin = -decade_up(-vmin, b)
            else:
                vmin = decade_down(vmin, b)
        if not is_decade(abs(vmax), b):
            if vmax < 0:
                vmax = -decade_down(-vmax, b)
            else:
                vmax = decade_up(vmax, b)

        if vmin == vmax:
            if vmin < 0:
                vmin = -decade_up(-vmin, b)
                vmax = -decade_down(-vmax, b)
            else:
                vmin = decade_down(vmin, b)
                vmax = decade_up(vmax, b)
        result = mtransforms.nonsingular(vmin, vmax)
        return result

class AutoLocator(MaxNLocator):
    def __init__(self):
        MaxNLocator.__init__(self, nbins=9, steps=[1, 2, 5, 10])

class AutoMinorLocator(Locator):
    """
    Dynamically find minor tick positions based on the positions of
    major ticks. Assumes the scale is linear and major ticks are
    evenly spaced.
    """
    def __init__(self, n=None):
        """
        *n* is the number of subdivisions of the interval between
        major ticks; e.g., n=2 will place a single minor tick midway
        between major ticks.

        If *n* is omitted or None, it will be set to 5 or 4.
        """
        self.ndivs = n

    def __call__(self):
        'Return the locations of the ticks'
        majorlocs = self.axis.get_majorticklocs()
        try:
            majorstep = majorlocs[1] - majorlocs[0]
        except IndexError:
            raise ValueError('Need at least two major ticks to find minor '
                             'tick locations')

        if self.ndivs is None:
            x = int(round(10 ** (np.log10(majorstep) % 1)))
            if x in [1, 5, 10]:
                ndivs = 5
            else:
                ndivs = 4
        else:
            ndivs = self.ndivs

        minorstep = majorstep / ndivs

        vmin, vmax = self.axis.get_view_interval()
        if vmin > vmax:
            vmin,vmax = vmax,vmin

        t0 = majorlocs[0]
        tmin = np.ceil((vmin - t0) / minorstep) * minorstep
        tmax = np.floor((vmax - t0) / minorstep) * minorstep
        locs = np.arange(tmin, tmax, minorstep) + t0
        cond = np.abs((locs - t0) % majorstep) > minorstep/10.0
        locs = locs.compress(cond)

        return self.raise_if_exceeds(np.array(locs))


class OldAutoLocator(Locator):
    """
    On autoscale this class picks the best MultipleLocator to set the
    view limits and the tick locs.

    """
    def __init__(self):
        self._locator = LinearLocator()

    def __call__(self):
        'Return the locations of the ticks'
        self.refresh()
        return self.raise_if_exceeds(self._locator())

    def refresh(self):
        'refresh internal information based on current lim'
        vmin, vmax = self.axis.get_view_interval()
        vmin, vmax = mtransforms.nonsingular(vmin, vmax, expander = 0.05)
        d = abs(vmax-vmin)
        self._locator = self.get_locator(d)

    def view_limits(self, vmin, vmax):
        'Try to choose the view limits intelligently'

        d = abs(vmax-vmin)
        self._locator = self.get_locator(d)
        return self._locator.view_limits(vmin, vmax)

    def get_locator(self, d):
        'pick the best locator based on a distance'
        d = abs(d)
        if d<=0:
            locator = MultipleLocator(0.2)
        else:

            try: ld = math.log10(d)
            except OverflowError:
                raise RuntimeError('AutoLocator illegal data interval range')


            fld = math.floor(ld)
            base = 10**fld

            #if ld==fld:  base = 10**(fld-1)
            #else:        base = 10**fld

            if   d >= 5*base : ticksize = base
            elif d >= 2*base : ticksize = base/2.0
            else             : ticksize = base/5.0
            locator = MultipleLocator(ticksize)


        return locator



__all__ = ('TickHelper', 'Formatter', 'FixedFormatter',
           'NullFormatter', 'FuncFormatter', 'FormatStrFormatter',
           'ScalarFormatter', 'LogFormatter', 'LogFormatterExponent',
           'LogFormatterMathtext', 'Locator', 'IndexLocator',
           'FixedLocator', 'NullLocator', 'LinearLocator',
           'LogLocator', 'AutoLocator', 'MultipleLocator',
           'MaxNLocator', 'AutoMinorLocator',)