This file is indexed.

/usr/share/pyshared/PyTrilinos/Amesos.py is in python-pytrilinos 10.4.0.dfsg-1ubuntu2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
# This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.


"""

PyTrilinos.Amesos is the python interface to the Trilinos direct
linear solver package Amesos:

    http://trilinos.sandia.gov/packages/amesos

The purpose of Amesos is to provide a common interface to a variety of
third-party direct solvers, made compatible with PyTrilinos.Epetra.
Note that the C++ version of Amesos uses the prefix 'Amesos_', which
has been stripped from the python implementation.

The most important classes of the Amesos module are:

    * Factory      - Factory class
    * Lapack       - LAPACK interface
    * Klu          - KLU interface
    * Umfpack      - UMFPACK interface
    * Scalapack    - SCALAPACK interface
    * Superlu      - SuperLU interface
    * Superludist  - SuperLU_DIST interface
    * Dscpack      - DSCPACK interface
    * Mumps        - MUMPS interface

Use dir(Amesos) to see what specific interfaces have been enabled on
your platform.  For examples of usage, please consult the examples
subdirectory of the PyTrilinos package, scripts exAmesos_Simple.py and
exAmesos_Factory.py.

"""


from sys import version_info
if version_info >= (2,6,0):
    def swig_import_helper():
        from os.path import dirname
        import imp
        fp = None
        try:
            fp, pathname, description = imp.find_module('_Amesos', [dirname(__file__)])
        except ImportError:
            import _Amesos
            return _Amesos
        if fp is not None:
            try:
                _mod = imp.load_module('_Amesos', fp, pathname, description)
            finally:
                fp.close()
            return _mod
    _Amesos = swig_import_helper()
    del swig_import_helper
else:
    import _Amesos
del version_info
try:
    _swig_property = property
except NameError:
    pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
    if (name == "thisown"): return self.this.own(value)
    if (name == "this"):
        if type(value).__name__ == 'SwigPyObject':
            self.__dict__[name] = value
            return
    method = class_type.__swig_setmethods__.get(name,None)
    if method: return method(self,value)
    if (not static):
        self.__dict__[name] = value
    else:
        raise AttributeError("You cannot add attributes to %s" % self)

def _swig_setattr(self,class_type,name,value):
    return _swig_setattr_nondynamic(self,class_type,name,value,0)

def _swig_getattr(self,class_type,name):
    if (name == "thisown"): return self.this.own()
    method = class_type.__swig_getmethods__.get(name,None)
    if method: return method(self)
    raise AttributeError(name)

def _swig_repr(self):
    try: strthis = "proxy of " + self.this.__repr__()
    except: strthis = ""
    return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)

try:
    _object = object
    _newclass = 1
except AttributeError:
    class _object : pass
    _newclass = 0


try:
    import weakref
    weakref_proxy = weakref.proxy
except:
    weakref_proxy = lambda x: x


class SwigPyIterator(_object):
    """Proxy of C++ swig::SwigPyIterator class"""
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Amesos.delete_SwigPyIterator
    __del__ = lambda self : None;
    def value(self):
        """value(self) -> PyObject"""
        return _Amesos.SwigPyIterator_value(self)

    def incr(self, n = 1):
        """
        incr(self, size_t n = 1) -> SwigPyIterator
        incr(self) -> SwigPyIterator
        """
        return _Amesos.SwigPyIterator_incr(self, n)

    def decr(self, n = 1):
        """
        decr(self, size_t n = 1) -> SwigPyIterator
        decr(self) -> SwigPyIterator
        """
        return _Amesos.SwigPyIterator_decr(self, n)

    def distance(self, *args):
        """distance(self, SwigPyIterator x) -> ptrdiff_t"""
        return _Amesos.SwigPyIterator_distance(self, *args)

    def equal(self, *args):
        """equal(self, SwigPyIterator x) -> bool"""
        return _Amesos.SwigPyIterator_equal(self, *args)

    def copy(self):
        """copy(self) -> SwigPyIterator"""
        return _Amesos.SwigPyIterator_copy(self)

    def next(self):
        """next(self) -> PyObject"""
        return _Amesos.SwigPyIterator_next(self)

    def __next__(self):
        """__next__(self) -> PyObject"""
        return _Amesos.SwigPyIterator___next__(self)

    def previous(self):
        """previous(self) -> PyObject"""
        return _Amesos.SwigPyIterator_previous(self)

    def advance(self, *args):
        """advance(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Amesos.SwigPyIterator_advance(self, *args)

    def __eq__(self, *args):
        """__eq__(self, SwigPyIterator x) -> bool"""
        return _Amesos.SwigPyIterator___eq__(self, *args)

    def __ne__(self, *args):
        """__ne__(self, SwigPyIterator x) -> bool"""
        return _Amesos.SwigPyIterator___ne__(self, *args)

    def __iadd__(self, *args):
        """__iadd__(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Amesos.SwigPyIterator___iadd__(self, *args)

    def __isub__(self, *args):
        """__isub__(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Amesos.SwigPyIterator___isub__(self, *args)

    def __add__(self, *args):
        """__add__(self, ptrdiff_t n) -> SwigPyIterator"""
        return _Amesos.SwigPyIterator___add__(self, *args)

    def __sub__(self, *args):
        """
        __sub__(self, ptrdiff_t n) -> SwigPyIterator
        __sub__(self, SwigPyIterator x) -> ptrdiff_t
        """
        return _Amesos.SwigPyIterator___sub__(self, *args)

    def __iter__(self): return self
SwigPyIterator_swigregister = _Amesos.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)

import Teuchos
import Epetra
class Factory(_object):
    """Proxy of C++ Amesos class"""
    __swig_setmethods__ = {}
    __setattr__ = lambda self, name, value: _swig_setattr(self, Factory, name, value)
    __swig_getmethods__ = {}
    __getattr__ = lambda self, name: _swig_getattr(self, Factory, name)
    __repr__ = _swig_repr
    def Create(self, *args):
        """
        Create(self, char ClassType, LinearProblem LinearProblem) -> BaseSolver
        Create(self, string CT, LinearProblem LinearProblem) -> BaseSolver
        """
        return _Amesos.Factory_Create(self, *args)

    def Query(self, *args):
        """
        Query(self, char ClassType) -> bool
        Query(self, string CT) -> bool
        """
        return _Amesos.Factory_Query(self, *args)

    def GetValidParameters(*args):
        """GetValidParameters() -> ParameterList"""
        return _Amesos.Factory_GetValidParameters(*args)

    if _newclass:GetValidParameters = staticmethod(GetValidParameters)
    __swig_getmethods__["GetValidParameters"] = lambda x: GetValidParameters
    def __init__(self, *args): 
        """__init__(self) -> Factory"""
        this = _Amesos.new_Factory(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Amesos.delete_Factory
    __del__ = lambda self : None;
Factory_swigregister = _Amesos.Factory_swigregister
Factory_swigregister(Factory)

def Factory_GetValidParameters(*args):
  """Factory_GetValidParameters() -> ParameterList"""
  return _Amesos.Factory_GetValidParameters(*args)

class BaseSolver(Teuchos.ParameterListAcceptor):
    """
    Amesos_BaseSolver: A pure virtual class for direct solution of real-
    valued double- precision operators.

    Pure virtual class for all Amesos concrete implementions.

    The Amesos_BaseSolver class is a pure virtual class (that is, it
    specifies interface only) that enables the use of real-valued double-
    precision direct sparse solvers. Every Amesos class named Amesos_
    SolverName derives from Amesos_BaseSolver.

    Usage Examples

    Basic calling sequence

    The basic calling sequence solves A x = b or AT x = b without
    specifying how A has changed between each call to Solve().

    Re-using the symbolic factorization

    The following calling sequence performs multiple solves of A x = b or
    AT x = b in cases where the non-zero structure of A remains unchanged
    between each call to Solve().

    Re-using the numeric factorization

    The following calling sequence performs multiple solves of A x = b or
    AT x = b provided that A remains unchanged between each call to
    Solve().

    Constructor requirements

    Every Amesos_SolverName class should accept an Epetra_LinearProblem

    Mathematical methods

    Four mathematical methods are defined in the base class
    Amesos_BaseSolver: SymbolicFactorization(), NumericFactorization(),
    and Solve().

    Switching concrete classes

    Different concrete classes, each based on a different third party
    solver, will have different performance characteristics and will
    accept different parameters.

    Changing the values of the underlying matrix operator.

    Any changes to the values of a matrix must be accompanied by a call to
    NumericFactorization() before the next call to Solve() or the behavior
    of Solve() is undefined. Any changes to the numerical structure of the
    matrix must be followed by a call to SymbolicFactorization() and
    NumericalFactorization() before the next call to Solve().

    Once SymbolicFactorization() has been called, classes implementing
    this interface may assume that any change made to the non-zero
    structure of the underlying matrix will be accompanied by a call to
    SymbolicFactorization() prior to a subsequent call to
    NumericFactorization or Solve().

    Named Parameters

    Parameters can be changed or added at any time by calling
    SetParameters(ParamList) with the new parameters specified in
    ParamList.

    It is left to the user to be sure that changes made to the parameters
    are appropriate for the concrete class that they are using.

    Examples of appropriate changes in parameters include:  Changing
    iterative refinement rules between calls to Solve()

    Changing drop tolerance rules between calls to NumericFactorization()

    Examples of inappropriate changes in parameters include:  Changing
    drop tolerance rules between solve steps.
    Solver.NumericFactorization();
    Solver.getList()->set("DropTolerance",.001); Solver.Solve();
    Results of making inappropriate changes in parameters is unpredictable
    and could include an error return, a bogus result or ignoring the
    parameter change.

    Transpose solve

    Any class implementing Amesos_BaseSolver should handle calls to
    SetUseTranspose() at any point. However, the result of a call to
    SetUseTranspose() which is not followed by a call to
    SymbolicFactorization() and NumericFactorization() is implementation
    dependent. Some third party libraries are able to solve AT x = b and
    Ax = b using the same factorization. Others will require a new
    factorization anytime that a call to SetUseTranspose() changes the
    intended solve from AT x = b to Ax = b or vice-versa.

    Performance expectations

    The following is a list of performance guidelines that classes which
    implement the Amesos_BaseSolver class are expected to maintain.

    Memory usage:

    For serial codes, no more than one extra copy of the original matrix
    should be required. Except that some codes require matrix transpostion
    which requires additional copies of the input matrix.

    For distributed memory codes, no serial copies of the original matrix
    should be required.

    Robustness requirements

    Failures should be caught by AMESOS_CHK_ERR(). The following error
    codes should be used: 1: Singular matrix

    2: Non-symmetric matrix

    3: Matrix is not positive definite

    4: Insufficient memory

    Because we do not check to see if a matrix has changed between the
    call to SymbolicFactorization() and the call to
    NumericFactorization(), it is possible that a change to the matrix
    will cause a potentially catastrophic error.

    C++ includes: Amesos_BaseSolver.h 
    """
    __swig_setmethods__ = {}
    for _s in [Teuchos.ParameterListAcceptor]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, BaseSolver, name, value)
    __swig_getmethods__ = {}
    for _s in [Teuchos.ParameterListAcceptor]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, BaseSolver, name)
    def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
    __repr__ = _swig_repr
    __swig_destroy__ = _Amesos.delete_BaseSolver
    __del__ = lambda self : None;
    def SymbolicFactorization(self, *args):
        """
        SymbolicFactorization(self) -> int

        virtual int Amesos_BaseSolver::SymbolicFactorization()=0

        Performs SymbolicFactorization on the matrix A.

        In addition to performing symbolic factorization on the matrix A, the
        call to SymbolicFactorization() implies that no change will be made to
        the non-zero structure of the underlying matrix without a subsequent
        call to SymbolicFactorization().

        <br >Preconditions:  GetProblem().GetOperator() != 0 (return -1)

        MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)

        <br >Postconditions: Symbolic Factorization will be performed (or
        marked to be performed) allowing NumericFactorization() and Solve() to
        be called.

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.BaseSolver_SymbolicFactorization(self, *args)

    def NumericFactorization(self, *args):
        """
        NumericFactorization(self) -> int

        virtual int Amesos_BaseSolver::NumericFactorization()=0

        Performs NumericFactorization on the matrix A.

        In addition to performing numeric factorization on the matrix A, the
        call to NumericFactorization() implies that no change will be made to
        the underlying matrix without a subsequent call to
        NumericFactorization().

        <br >Preconditions:  GetProblem().GetOperator() != 0 (return -1)

        MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)

        The non-zero structure of the matrix should not have changed since the
        last call to SymbolicFactorization(). (return -2 if the number of non-
        zeros changes) Other changes can have arbitrary consequences.

        The distribution of the matrix should not have changed since the last
        call to SymbolicFactorization()

        The matrix should be indexed from 0 to n-1, unless the parameter
        "Reindex" was set to "true" prior to the call to
        SymbolicFactorization(). (return -3 - if caught)

        The paremeter "Reindex" should not be set to "true" except on
        CrsMatrices. (return -4)

        The paremeter "Reindex" should not be set to "true" unless Amesos
        was built with EpetraExt, i.e. with --enable-epetraext on the
        configure line. (return -4)

        Internal errors retur -5.

        <br >Postconditions: Numeric Factorization will be performed (or
        marked to be performed) allowing Solve() to be performed correctly
        despite a potential change in in the matrix values (though not in the
        non-zero structure).

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.BaseSolver_NumericFactorization(self, *args)

    def Solve(self, *args):
        """
        Solve(self) -> int

        virtual int
        Amesos_BaseSolver::Solve()=0

        Solves A X = B (or AT x = B).

        <br >Preconditions:  GetProblem().GetOperator() != 0 (return -1)

        MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)

        GetProblem()->CheckInput (see Epetra_LinearProblem::CheckInput() for
        return values)

        The non-zero structure of the matrix should not have changed since the
        last call to SymbolicFactorization().

        The distribution of the matrix should not have changed since the last
        call to SymbolicFactorization()

        The matrix should not have changed since the last call to
        NumericFactorization().

        <br >Postconditions: X will be set such that A X = B (or AT X = B),
        within the limits of the accuracy of the underlying solver.

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.BaseSolver_Solve(self, *args)

    def SetUseTranspose(self, *args):
        """
        SetUseTranspose(self, bool UseTranspose) -> int

        virtual
        int Amesos_BaseSolver::SetUseTranspose(bool UseTranspose)=0

        If set true, X will be set to the solution of AT X = B (not A X = B).

        If the implementation of this interface does not support transpose
        use, this method should return a value of -1.

        <br >Preconditions:  SetUseTranspose() should be called prior to the
        call to SymbolicFactorization() If NumericFactorization() or Solve()
        is called after SetUseTranspose() without an intervening call to
        SymbolicFactorization() the result is implementation dependent.

        <br >Postconditions: The next factorization and solve will be
        performed with the new value of UseTranspose.

        Parameters:
        -----------

        UseTranspose:  -- (In) If true, solve AT X = B, otherwise solve A X =
        B.

        Integer error code, set to 0 if successful. Set to -1 if this
        implementation does not support transpose. 
        """
        return _Amesos.BaseSolver_SetUseTranspose(self, *args)

    def UseTranspose(self, *args):
        """
        UseTranspose(self) -> bool

        virtual bool
        Amesos_BaseSolver::UseTranspose() const =0

        Returns the current UseTranspose setting. 
        """
        return _Amesos.BaseSolver_UseTranspose(self, *args)

    def SetParameters(self, *args):
        """
        SetParameters(self, ParameterList ParameterList) -> int

        virtual int
        Amesos_BaseSolver::SetParameters(Teuchos::ParameterList
        &ParameterList)=0

        Updates internal variables.

        <br >Preconditions: None.

        <br >Postconditions: Internal variables controlling the factorization
        and solve will be updated and take effect on all subseuent calls to
        NumericFactorization() and Solve().

        All parameters whose value are to differ from the default values must
        be included in ParameterList. Parameters not specified in
        ParameterList revert to their default values.

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.BaseSolver_SetParameters(self, *args)

    def GetProblem(self, *args):
        """
        GetProblem(self) -> LinearProblem

        virtual const
        Epetra_LinearProblem* Amesos_BaseSolver::GetProblem() const =0

        Returns the Epetra_LinearProblem.

        Warning! Do not call return->SetOperator(...) to attempt to change the
        Epetra_Operator object (even if the new matrix has the same
        structure). This new operator matrix will be ignored! 
        """
        return _Amesos.BaseSolver_GetProblem(self, *args)

    def MatrixShapeOK(self, *args):
        """
        MatrixShapeOK(self) -> bool

        virtual bool
        Amesos_BaseSolver::MatrixShapeOK() const =0

        Returns true if the solver can handle this matrix shape.

        Returns true if the matrix shape is one that the underlying sparse
        direct solver can handle. Classes that work only on square matrices
        should return false for rectangular matrices. Classes that work only
        on symmetric matrices whould return false for non-symmetric matrices.

        """
        return _Amesos.BaseSolver_MatrixShapeOK(self, *args)

    def Comm(self, *args):
        """
        Comm(self) -> Comm

        virtual const
        Epetra_Comm& Amesos_BaseSolver::Comm() const =0

        Returns a pointer to the Epetra_Comm communicator associated with this
        operator. 
        """
        return _Amesos.BaseSolver_Comm(self, *args)

    def NumSymbolicFact(self, *args):
        """
        NumSymbolicFact(self) -> int

        virtual
        int Amesos_BaseSolver::NumSymbolicFact() const =0

        Returns the number of symbolic factorizations performed by this
        object. 
        """
        return _Amesos.BaseSolver_NumSymbolicFact(self, *args)

    def NumNumericFact(self, *args):
        """
        NumNumericFact(self) -> int

        virtual int
        Amesos_BaseSolver::NumNumericFact() const =0

        Returns the number of numeric factorizations performed by this object.

        """
        return _Amesos.BaseSolver_NumNumericFact(self, *args)

    def NumSolve(self, *args):
        """
        NumSolve(self) -> int

        virtual int
        Amesos_BaseSolver::NumSolve() const =0

        Returns the number of solves performed by this object. 
        """
        return _Amesos.BaseSolver_NumSolve(self, *args)

    def PrintStatus(self, *args):
        """
        PrintStatus(self)

        virtual void
        Amesos_BaseSolver::PrintStatus() const =0

        Prints status information about the current solver. 
        """
        return _Amesos.BaseSolver_PrintStatus(self, *args)

    def PrintTiming(self, *args):
        """
        PrintTiming(self)

        virtual void
        Amesos_BaseSolver::PrintTiming() const =0

        Prints timing information about the current solver. 
        """
        return _Amesos.BaseSolver_PrintTiming(self, *args)

    def setParameterList(self, *args):
        """
        setParameterList(self, Teuchos::RCP<(Teuchos::ParameterList)> paramList)

        virtual
        void Amesos_BaseSolver::setParameterList(Teuchos::RCP<
        Teuchos::ParameterList > const &paramList)

        Redefined from Teuchos::ParameterListAcceptor. 
        """
        return _Amesos.BaseSolver_setParameterList(self, *args)

    def getNonconstParameterList(self, *args):
        """
        getNonconstParameterList(self) -> Teuchos::RCP<(Teuchos::ParameterList)>

        virtual Teuchos::RCP<Teuchos::ParameterList>
        Amesos_BaseSolver::getNonconstParameterList()

        This is an empty stub. 
        """
        return _Amesos.BaseSolver_getNonconstParameterList(self, *args)

    def GetTiming(self, *args):
        """
        GetTiming(self, ParameterList TimingParameterList)

        virtual void
        Amesos_BaseSolver::GetTiming(Teuchos::ParameterList
        &TimingParameterList) const

        Extracts timing information from the current solver and places it in
        the parameter list. 
        """
        return _Amesos.BaseSolver_GetTiming(self, *args)

    def __str__(self, *args):
        """__str__(self) -> string"""
        return _Amesos.BaseSolver___str__(self, *args)

    def __del__(self, *args):
        """__del__(self)"""
        return _Amesos.BaseSolver___del__(self, *args)

BaseSolver_swigregister = _Amesos.BaseSolver_swigregister
BaseSolver_swigregister(BaseSolver)
cvar = _Amesos.cvar
StructurallySingularMatrixError = cvar.StructurallySingularMatrixError
NumericallySingularMatrixError = cvar.NumericallySingularMatrixError

class Lapack(BaseSolver):
    """
    Amesos_Lapack: an interface to LAPACK.

    Class Amesos_Lapack enables the solution of the distributed linear
    system, defined by an Epetra_LinearProblem, using LAPACK.

    Amesos_Lapack stores the lineaar system matrix as an
    Epetra_SerialDensMatrix. The linear problem is an
    Epetra_SerialDenseProblem. Amesos_Lapack factorizes the matrix using
    DGETRF().

    Marzio Sala, 9214.

    C++ includes: Amesos_Lapack.h 
    """
    __swig_setmethods__ = {}
    for _s in [BaseSolver]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, Lapack, name, value)
    __swig_getmethods__ = {}
    for _s in [BaseSolver]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, Lapack, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, LinearProblem LinearProblem) -> Lapack

        Amesos_Lapack::Amesos_Lapack(const Epetra_LinearProblem
        &LinearProblem)

        Amesos_Lapack Constructor.

        Creates an Amesos_Lapack instance, using an Epetra_LinearProblem,
        passing in an already- defined Epetra_LinearProblem object.

        Note: The operator in LinearProblem must be an Epetra_RowMatrix. 
        """
        this = _Amesos.new_Lapack(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Amesos.delete_Lapack
    __del__ = lambda self : None;
    def SymbolicFactorization(self, *args):
        """
        SymbolicFactorization(self) -> int

        int
        Amesos_Lapack::SymbolicFactorization()

        Performs SymbolicFactorization on the matrix A.

        In addition to performing symbolic factorization on the matrix A, the
        call to SymbolicFactorization() implies that no change will be made to
        the non-zero structure of the underlying matrix without a subsequent
        call to SymbolicFactorization().

        <br >Preconditions:  GetProblem().GetOperator() != 0 (return -1)

        MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)

        <br >Postconditions: Symbolic Factorization will be performed (or
        marked to be performed) allowing NumericFactorization() and Solve() to
        be called.

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.Lapack_SymbolicFactorization(self, *args)

    def NumericFactorization(self, *args):
        """
        NumericFactorization(self) -> int

        int
        Amesos_Lapack::NumericFactorization()

        Performs NumericFactorization on the matrix A.

        In addition to performing numeric factorization on the matrix A, the
        call to NumericFactorization() implies that no change will be made to
        the underlying matrix without a subsequent call to
        NumericFactorization().

        <br >Preconditions:  GetProblem().GetOperator() != 0 (return -1)

        MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)

        The non-zero structure of the matrix should not have changed since the
        last call to SymbolicFactorization(). (return -2 if the number of non-
        zeros changes) Other changes can have arbitrary consequences.

        The distribution of the matrix should not have changed since the last
        call to SymbolicFactorization()

        The matrix should be indexed from 0 to n-1, unless the parameter
        "Reindex" was set to "true" prior to the call to
        SymbolicFactorization(). (return -3 - if caught)

        The paremeter "Reindex" should not be set to "true" except on
        CrsMatrices. (return -4)

        The paremeter "Reindex" should not be set to "true" unless Amesos
        was built with EpetraExt, i.e. with --enable-epetraext on the
        configure line. (return -4)

        Internal errors retur -5.

        <br >Postconditions: Numeric Factorization will be performed (or
        marked to be performed) allowing Solve() to be performed correctly
        despite a potential change in in the matrix values (though not in the
        non-zero structure).

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.Lapack_NumericFactorization(self, *args)

    def Solve(self, *args):
        """
        Solve(self) -> int

        int
        Amesos_Lapack::Solve()

        Solves A X = B (or AT x = B).

        <br >Preconditions:  GetProblem().GetOperator() != 0 (return -1)

        MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)

        GetProblem()->CheckInput (see Epetra_LinearProblem::CheckInput() for
        return values)

        The non-zero structure of the matrix should not have changed since the
        last call to SymbolicFactorization().

        The distribution of the matrix should not have changed since the last
        call to SymbolicFactorization()

        The matrix should not have changed since the last call to
        NumericFactorization().

        <br >Postconditions: X will be set such that A X = B (or AT X = B),
        within the limits of the accuracy of the underlying solver.

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.Lapack_Solve(self, *args)

    def GetProblem(self, *args):
        """
        GetProblem(self) -> LinearProblem

        const
        Epetra_LinearProblem* Amesos_Lapack::GetProblem() const

        Returns the Epetra_LinearProblem.

        Warning! Do not call return->SetOperator(...) to attempt to change the
        Epetra_Operator object (even if the new matrix has the same
        structure). This new operator matrix will be ignored! 
        """
        return _Amesos.Lapack_GetProblem(self, *args)

    def MatrixShapeOK(self, *args):
        """
        MatrixShapeOK(self) -> bool

        bool
        Amesos_Lapack::MatrixShapeOK() const

        Returns true if the solver can handle this matrix shape.

        Returns true if the matrix shape is one that the underlying sparse
        direct solver can handle. Classes that work only on square matrices
        should return false for rectangular matrices. Classes that work only
        on symmetric matrices whould return false for non-symmetric matrices.

        """
        return _Amesos.Lapack_MatrixShapeOK(self, *args)

    def SetUseTranspose(self, *args):
        """
        SetUseTranspose(self, bool UseTranspose_in) -> int

        int
        Amesos_Lapack::SetUseTranspose(bool UseTranspose_in)

        If set true, X will be set to the solution of AT X = B (not A X = B).

        If the implementation of this interface does not support transpose
        use, this method should return a value of -1.

        <br >Preconditions:  SetUseTranspose() should be called prior to the
        call to SymbolicFactorization() If NumericFactorization() or Solve()
        is called after SetUseTranspose() without an intervening call to
        SymbolicFactorization() the result is implementation dependent.

        <br >Postconditions: The next factorization and solve will be
        performed with the new value of UseTranspose.

        Parameters:
        -----------

        UseTranspose:  -- (In) If true, solve AT X = B, otherwise solve A X =
        B.

        Integer error code, set to 0 if successful. Set to -1 if this
        implementation does not support transpose. 
        """
        return _Amesos.Lapack_SetUseTranspose(self, *args)

    def UseTranspose(self, *args):
        """
        UseTranspose(self) -> bool

        bool
        Amesos_Lapack::UseTranspose() const

        Returns the current UseTranspose setting. 
        """
        return _Amesos.Lapack_UseTranspose(self, *args)

    def Comm(self, *args):
        """
        Comm(self) -> Comm

        const Epetra_Comm&
        Amesos_Lapack::Comm() const

        Returns a pointer to the Epetra_Comm communicator associated with this
        operator. 
        """
        return _Amesos.Lapack_Comm(self, *args)

    def setParameterList(self, *args):
        """
        setParameterList(self, Teuchos::RCP<(Teuchos::ParameterList)> paramList)

        void
        Amesos_Lapack::setParameterList(Teuchos::RCP< Teuchos::ParameterList >
        const &paramList)

        Use this parameter list to read values from.

        Redefined from Teuchos::ParameterListAcceptor 
        """
        return _Amesos.Lapack_setParameterList(self, *args)

    def SetParameters(self, *args):
        """
        SetParameters(self, ParameterList ParameterList) -> int

        int
        Amesos_Lapack::SetParameters(Teuchos::ParameterList &ParameterList)

        Deprecated - Sets parameters. 
        """
        return _Amesos.Lapack_SetParameters(self, *args)

    def GEEV(self, *args):
        """
        GEEV(self, Epetra_Vector Er, Epetra_Vector Ei) -> int

        int
        Amesos_Lapack::GEEV(Epetra_Vector &Er, Epetra_Vector &Ei)

        Computes the eigenvalues of the linear system matrix using DGEEV.

        Parameters:
        -----------

        Er:  - (Out) On processor zero only, it will contain the real
        component of the eigenvalues.

        Ei:  - (Out) On processor zero only, it will contain the imaginary
        component of the eigenvalues.

        Er and Ei must have been allocated so that the local length on
        processor 0 equals the global size of the matrix. 
        """
        return _Amesos.Lapack_GEEV(self, *args)

    def NumSymbolicFact(self, *args):
        """
        NumSymbolicFact(self) -> int

        int
        Amesos_Lapack::NumSymbolicFact() const

        Returns the number of symbolic factorizations performed by this
        object. 
        """
        return _Amesos.Lapack_NumSymbolicFact(self, *args)

    def NumNumericFact(self, *args):
        """
        NumNumericFact(self) -> int

        int
        Amesos_Lapack::NumNumericFact() const

        Returns the number of numeric factorizations performed by this object.

        """
        return _Amesos.Lapack_NumNumericFact(self, *args)

    def NumSolve(self, *args):
        """
        NumSolve(self) -> int

        int
        Amesos_Lapack::NumSolve() const

        Returns the number of solves performed by this object. 
        """
        return _Amesos.Lapack_NumSolve(self, *args)

    def PrintTiming(self, *args):
        """
        PrintTiming(self)

        void
        Amesos_Lapack::PrintTiming() const

        Print timing information. 
        """
        return _Amesos.Lapack_PrintTiming(self, *args)

    def PrintStatus(self, *args):
        """
        PrintStatus(self)

        void
        Amesos_Lapack::PrintStatus() const

        Print information about the factorization and solution phases. 
        """
        return _Amesos.Lapack_PrintStatus(self, *args)

    def GetTiming(self, *args):
        """
        GetTiming(self, ParameterList TimingParameterList)

        void
        Amesos_Lapack::GetTiming(Teuchos::ParameterList &TimingParameterList)
        const

        Extracts timing information from the current solver and places it in
        the parameter list. 
        """
        return _Amesos.Lapack_GetTiming(self, *args)

Lapack_swigregister = _Amesos.Lapack_swigregister
Lapack_swigregister(Lapack)

class Klu(BaseSolver):
    """
    Interface to KLU internal solver.

    Interface to UMFPACK.

    C++ includes: Amesos_Umfpack.h 
    """
    __swig_setmethods__ = {}
    for _s in [BaseSolver]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
    __setattr__ = lambda self, name, value: _swig_setattr(self, Klu, name, value)
    __swig_getmethods__ = {}
    for _s in [BaseSolver]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
    __getattr__ = lambda self, name: _swig_getattr(self, Klu, name)
    __repr__ = _swig_repr
    def __init__(self, *args): 
        """
        __init__(self, LinearProblem LinearProblem) -> Klu

        Amesos_Klu::Amesos_Klu(const Epetra_LinearProblem &LinearProblem)

        Amesos_Klu Constructor.

        Creates an Amesos_Klu instance, using an Epetra_LinearProblem, passing
        in an already- defined Epetra_LinearProblem object.

        Note: The operator in LinearProblem must be an Epetra_RowMatrix. 
        """
        this = _Amesos.new_Klu(*args)
        try: self.this.append(this)
        except: self.this = this
    __swig_destroy__ = _Amesos.delete_Klu
    __del__ = lambda self : None;
    def SymbolicFactorization(self, *args):
        """
        SymbolicFactorization(self) -> int

        int
        Amesos_Klu::SymbolicFactorization()

        Performs SymbolicFactorization on the matrix A.

        In addition to performing symbolic factorization on the matrix A, the
        call to SymbolicFactorization() implies that no change will be made to
        the non-zero structure of the underlying matrix without a subsequent
        call to SymbolicFactorization().

        <br >Preconditions:  GetProblem().GetOperator() != 0 (return -1)

        MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)

        <br >Postconditions: Symbolic Factorization will be performed (or
        marked to be performed) allowing NumericFactorization() and Solve() to
        be called.

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.Klu_SymbolicFactorization(self, *args)

    def NumericFactorization(self, *args):
        """
        NumericFactorization(self) -> int

        int
        Amesos_Klu::NumericFactorization()

        Performs NumericFactorization on the matrix A.

        In addition to performing numeric factorization on the matrix A, the
        call to NumericFactorization() implies that no change will be made to
        the underlying matrix without a subsequent call to
        NumericFactorization().

        <br >Preconditions:  GetProblem().GetOperator() != 0 (return -1)

        MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)

        The non-zero structure of the matrix should not have changed since the
        last call to SymbolicFactorization(). (return -2 if the number of non-
        zeros changes) Other changes can have arbitrary consequences.

        The distribution of the matrix should not have changed since the last
        call to SymbolicFactorization()

        The matrix should be indexed from 0 to n-1, unless the parameter
        "Reindex" was set to "true" prior to the call to
        SymbolicFactorization(). (return -3 - if caught)

        The paremeter "Reindex" should not be set to "true" except on
        CrsMatrices. (return -4)

        The paremeter "Reindex" should not be set to "true" unless Amesos
        was built with EpetraExt, i.e. with --enable-epetraext on the
        configure line. (return -4)

        Internal errors retur -5.

        <br >Postconditions: Numeric Factorization will be performed (or
        marked to be performed) allowing Solve() to be performed correctly
        despite a potential change in in the matrix values (though not in the
        non-zero structure).

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.Klu_NumericFactorization(self, *args)

    def Solve(self, *args):
        """
        Solve(self) -> int

        int Amesos_Klu::Solve()

        Solves A X = B (or AT x = B).

        <br >Preconditions:  GetProblem().GetOperator() != 0 (return -1)

        MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)

        GetProblem()->CheckInput (see Epetra_LinearProblem::CheckInput() for
        return values)

        The non-zero structure of the matrix should not have changed since the
        last call to SymbolicFactorization().

        The distribution of the matrix should not have changed since the last
        call to SymbolicFactorization()

        The matrix should not have changed since the last call to
        NumericFactorization().

        <br >Postconditions: X will be set such that A X = B (or AT X = B),
        within the limits of the accuracy of the underlying solver.

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.Klu_Solve(self, *args)

    def GetProblem(self, *args):
        """
        GetProblem(self) -> LinearProblem

        const
        Epetra_LinearProblem* Amesos_Klu::GetProblem() const

        Get a pointer to the Problem. 
        """
        return _Amesos.Klu_GetProblem(self, *args)

    def MatrixShapeOK(self, *args):
        """
        MatrixShapeOK(self) -> bool

        bool
        Amesos_Klu::MatrixShapeOK() const

        Returns true if KLU can handle this matrix shape.

        Returns true if the matrix shape is one that KLU can handle. KLU only
        works with square matrices. 
        """
        return _Amesos.Klu_MatrixShapeOK(self, *args)

    def SetUseTranspose(self, *args):
        """
        SetUseTranspose(self, bool UseTranspose_in) -> int

        int
        Amesos_Klu::SetUseTranspose(bool UseTranspose_in)

        SetUseTranpose(true) is more efficient in Amesos_Klu.

        If SetUseTranspose() is set to true, $A^T X = B$ is computed. 
        """
        return _Amesos.Klu_SetUseTranspose(self, *args)

    def UseTranspose(self, *args):
        """
        UseTranspose(self) -> bool

        bool
        Amesos_Klu::UseTranspose() const

        Returns the current UseTranspose setting. 
        """
        return _Amesos.Klu_UseTranspose(self, *args)

    def Comm(self, *args):
        """
        Comm(self) -> Comm

        const Epetra_Comm&
        Amesos_Klu::Comm() const

        Returns a pointer to the Epetra_Comm communicator associated with this
        operator. 
        """
        return _Amesos.Klu_Comm(self, *args)

    def SetParameters(self, *args):
        """
        SetParameters(self, ParameterList ParameterList) -> int

        int
        Amesos_Klu::SetParameters(Teuchos::ParameterList &ParameterList)

        Updates internal variables.

        <br >Preconditions: None.

        <br >Postconditions: Internal variables controlling the factorization
        and solve will be updated and take effect on all subseuent calls to
        NumericFactorization() and Solve().

        All parameters whose value are to differ from the default values must
        be included in ParameterList. Parameters not specified in
        ParameterList revert to their default values.

        Integer error code, set to 0 if successful. 
        """
        return _Amesos.Klu_SetParameters(self, *args)

    def NumSymbolicFact(self, *args):
        """
        NumSymbolicFact(self) -> int

        int
        Amesos_Klu::NumSymbolicFact() const

        Returns the number of symbolic factorizations performed by this
        object. 
        """
        return _Amesos.Klu_NumSymbolicFact(self, *args)

    def NumNumericFact(self, *args):
        """
        NumNumericFact(self) -> int

        int
        Amesos_Klu::NumNumericFact() const

        Returns the number of numeric factorizations performed by this object.

        """
        return _Amesos.Klu_NumNumericFact(self, *args)

    def NumSolve(self, *args):
        """
        NumSolve(self) -> int

        int
        Amesos_Klu::NumSolve() const

        Returns the number of solves performed by this object. 
        """
        return _Amesos.Klu_NumSolve(self, *args)

    def PrintTiming(self, *args):
        """
        PrintTiming(self)

        void
        Amesos_Klu::PrintTiming() const

        Prints timing information. 
        """
        return _Amesos.Klu_PrintTiming(self, *args)

    def PrintStatus(self, *args):
        """
        PrintStatus(self)

        void
        Amesos_Klu::PrintStatus() const

        Prints information about the factorization and solution phases. 
        """
        return _Amesos.Klu_PrintStatus(self, *args)

    def GetTiming(self, *args):
        """
        GetTiming(self, ParameterList TimingParameterList)

        void
        Amesos_Klu::GetTiming(Teuchos::ParameterList &TimingParameterList)
        const

        Extracts timing information and places in parameter list. 
        """
        return _Amesos.Klu_GetTiming(self, *args)

Klu_swigregister = _Amesos.Klu_swigregister
Klu_swigregister(Klu)

# This file is compatible with both classic and new-style classes.