/usr/share/pyshared/PyTrilinos/Amesos.py is in python-pytrilinos 10.4.0.dfsg-1ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 | # This file was automatically generated by SWIG (http://www.swig.org).
# Version 2.0.4
#
# Do not make changes to this file unless you know what you are doing--modify
# the SWIG interface file instead.
"""
PyTrilinos.Amesos is the python interface to the Trilinos direct
linear solver package Amesos:
http://trilinos.sandia.gov/packages/amesos
The purpose of Amesos is to provide a common interface to a variety of
third-party direct solvers, made compatible with PyTrilinos.Epetra.
Note that the C++ version of Amesos uses the prefix 'Amesos_', which
has been stripped from the python implementation.
The most important classes of the Amesos module are:
* Factory - Factory class
* Lapack - LAPACK interface
* Klu - KLU interface
* Umfpack - UMFPACK interface
* Scalapack - SCALAPACK interface
* Superlu - SuperLU interface
* Superludist - SuperLU_DIST interface
* Dscpack - DSCPACK interface
* Mumps - MUMPS interface
Use dir(Amesos) to see what specific interfaces have been enabled on
your platform. For examples of usage, please consult the examples
subdirectory of the PyTrilinos package, scripts exAmesos_Simple.py and
exAmesos_Factory.py.
"""
from sys import version_info
if version_info >= (2,6,0):
def swig_import_helper():
from os.path import dirname
import imp
fp = None
try:
fp, pathname, description = imp.find_module('_Amesos', [dirname(__file__)])
except ImportError:
import _Amesos
return _Amesos
if fp is not None:
try:
_mod = imp.load_module('_Amesos', fp, pathname, description)
finally:
fp.close()
return _mod
_Amesos = swig_import_helper()
del swig_import_helper
else:
import _Amesos
del version_info
try:
_swig_property = property
except NameError:
pass # Python < 2.2 doesn't have 'property'.
def _swig_setattr_nondynamic(self,class_type,name,value,static=1):
if (name == "thisown"): return self.this.own(value)
if (name == "this"):
if type(value).__name__ == 'SwigPyObject':
self.__dict__[name] = value
return
method = class_type.__swig_setmethods__.get(name,None)
if method: return method(self,value)
if (not static):
self.__dict__[name] = value
else:
raise AttributeError("You cannot add attributes to %s" % self)
def _swig_setattr(self,class_type,name,value):
return _swig_setattr_nondynamic(self,class_type,name,value,0)
def _swig_getattr(self,class_type,name):
if (name == "thisown"): return self.this.own()
method = class_type.__swig_getmethods__.get(name,None)
if method: return method(self)
raise AttributeError(name)
def _swig_repr(self):
try: strthis = "proxy of " + self.this.__repr__()
except: strthis = ""
return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,)
try:
_object = object
_newclass = 1
except AttributeError:
class _object : pass
_newclass = 0
try:
import weakref
weakref_proxy = weakref.proxy
except:
weakref_proxy = lambda x: x
class SwigPyIterator(_object):
"""Proxy of C++ swig::SwigPyIterator class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, SwigPyIterator, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, SwigPyIterator, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _Amesos.delete_SwigPyIterator
__del__ = lambda self : None;
def value(self):
"""value(self) -> PyObject"""
return _Amesos.SwigPyIterator_value(self)
def incr(self, n = 1):
"""
incr(self, size_t n = 1) -> SwigPyIterator
incr(self) -> SwigPyIterator
"""
return _Amesos.SwigPyIterator_incr(self, n)
def decr(self, n = 1):
"""
decr(self, size_t n = 1) -> SwigPyIterator
decr(self) -> SwigPyIterator
"""
return _Amesos.SwigPyIterator_decr(self, n)
def distance(self, *args):
"""distance(self, SwigPyIterator x) -> ptrdiff_t"""
return _Amesos.SwigPyIterator_distance(self, *args)
def equal(self, *args):
"""equal(self, SwigPyIterator x) -> bool"""
return _Amesos.SwigPyIterator_equal(self, *args)
def copy(self):
"""copy(self) -> SwigPyIterator"""
return _Amesos.SwigPyIterator_copy(self)
def next(self):
"""next(self) -> PyObject"""
return _Amesos.SwigPyIterator_next(self)
def __next__(self):
"""__next__(self) -> PyObject"""
return _Amesos.SwigPyIterator___next__(self)
def previous(self):
"""previous(self) -> PyObject"""
return _Amesos.SwigPyIterator_previous(self)
def advance(self, *args):
"""advance(self, ptrdiff_t n) -> SwigPyIterator"""
return _Amesos.SwigPyIterator_advance(self, *args)
def __eq__(self, *args):
"""__eq__(self, SwigPyIterator x) -> bool"""
return _Amesos.SwigPyIterator___eq__(self, *args)
def __ne__(self, *args):
"""__ne__(self, SwigPyIterator x) -> bool"""
return _Amesos.SwigPyIterator___ne__(self, *args)
def __iadd__(self, *args):
"""__iadd__(self, ptrdiff_t n) -> SwigPyIterator"""
return _Amesos.SwigPyIterator___iadd__(self, *args)
def __isub__(self, *args):
"""__isub__(self, ptrdiff_t n) -> SwigPyIterator"""
return _Amesos.SwigPyIterator___isub__(self, *args)
def __add__(self, *args):
"""__add__(self, ptrdiff_t n) -> SwigPyIterator"""
return _Amesos.SwigPyIterator___add__(self, *args)
def __sub__(self, *args):
"""
__sub__(self, ptrdiff_t n) -> SwigPyIterator
__sub__(self, SwigPyIterator x) -> ptrdiff_t
"""
return _Amesos.SwigPyIterator___sub__(self, *args)
def __iter__(self): return self
SwigPyIterator_swigregister = _Amesos.SwigPyIterator_swigregister
SwigPyIterator_swigregister(SwigPyIterator)
import Teuchos
import Epetra
class Factory(_object):
"""Proxy of C++ Amesos class"""
__swig_setmethods__ = {}
__setattr__ = lambda self, name, value: _swig_setattr(self, Factory, name, value)
__swig_getmethods__ = {}
__getattr__ = lambda self, name: _swig_getattr(self, Factory, name)
__repr__ = _swig_repr
def Create(self, *args):
"""
Create(self, char ClassType, LinearProblem LinearProblem) -> BaseSolver
Create(self, string CT, LinearProblem LinearProblem) -> BaseSolver
"""
return _Amesos.Factory_Create(self, *args)
def Query(self, *args):
"""
Query(self, char ClassType) -> bool
Query(self, string CT) -> bool
"""
return _Amesos.Factory_Query(self, *args)
def GetValidParameters(*args):
"""GetValidParameters() -> ParameterList"""
return _Amesos.Factory_GetValidParameters(*args)
if _newclass:GetValidParameters = staticmethod(GetValidParameters)
__swig_getmethods__["GetValidParameters"] = lambda x: GetValidParameters
def __init__(self, *args):
"""__init__(self) -> Factory"""
this = _Amesos.new_Factory(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Amesos.delete_Factory
__del__ = lambda self : None;
Factory_swigregister = _Amesos.Factory_swigregister
Factory_swigregister(Factory)
def Factory_GetValidParameters(*args):
"""Factory_GetValidParameters() -> ParameterList"""
return _Amesos.Factory_GetValidParameters(*args)
class BaseSolver(Teuchos.ParameterListAcceptor):
"""
Amesos_BaseSolver: A pure virtual class for direct solution of real-
valued double- precision operators.
Pure virtual class for all Amesos concrete implementions.
The Amesos_BaseSolver class is a pure virtual class (that is, it
specifies interface only) that enables the use of real-valued double-
precision direct sparse solvers. Every Amesos class named Amesos_
SolverName derives from Amesos_BaseSolver.
Usage Examples
Basic calling sequence
The basic calling sequence solves A x = b or AT x = b without
specifying how A has changed between each call to Solve().
Re-using the symbolic factorization
The following calling sequence performs multiple solves of A x = b or
AT x = b in cases where the non-zero structure of A remains unchanged
between each call to Solve().
Re-using the numeric factorization
The following calling sequence performs multiple solves of A x = b or
AT x = b provided that A remains unchanged between each call to
Solve().
Constructor requirements
Every Amesos_SolverName class should accept an Epetra_LinearProblem
Mathematical methods
Four mathematical methods are defined in the base class
Amesos_BaseSolver: SymbolicFactorization(), NumericFactorization(),
and Solve().
Switching concrete classes
Different concrete classes, each based on a different third party
solver, will have different performance characteristics and will
accept different parameters.
Changing the values of the underlying matrix operator.
Any changes to the values of a matrix must be accompanied by a call to
NumericFactorization() before the next call to Solve() or the behavior
of Solve() is undefined. Any changes to the numerical structure of the
matrix must be followed by a call to SymbolicFactorization() and
NumericalFactorization() before the next call to Solve().
Once SymbolicFactorization() has been called, classes implementing
this interface may assume that any change made to the non-zero
structure of the underlying matrix will be accompanied by a call to
SymbolicFactorization() prior to a subsequent call to
NumericFactorization or Solve().
Named Parameters
Parameters can be changed or added at any time by calling
SetParameters(ParamList) with the new parameters specified in
ParamList.
It is left to the user to be sure that changes made to the parameters
are appropriate for the concrete class that they are using.
Examples of appropriate changes in parameters include: Changing
iterative refinement rules between calls to Solve()
Changing drop tolerance rules between calls to NumericFactorization()
Examples of inappropriate changes in parameters include: Changing
drop tolerance rules between solve steps.
Solver.NumericFactorization();
Solver.getList()->set("DropTolerance",.001); Solver.Solve();
Results of making inappropriate changes in parameters is unpredictable
and could include an error return, a bogus result or ignoring the
parameter change.
Transpose solve
Any class implementing Amesos_BaseSolver should handle calls to
SetUseTranspose() at any point. However, the result of a call to
SetUseTranspose() which is not followed by a call to
SymbolicFactorization() and NumericFactorization() is implementation
dependent. Some third party libraries are able to solve AT x = b and
Ax = b using the same factorization. Others will require a new
factorization anytime that a call to SetUseTranspose() changes the
intended solve from AT x = b to Ax = b or vice-versa.
Performance expectations
The following is a list of performance guidelines that classes which
implement the Amesos_BaseSolver class are expected to maintain.
Memory usage:
For serial codes, no more than one extra copy of the original matrix
should be required. Except that some codes require matrix transpostion
which requires additional copies of the input matrix.
For distributed memory codes, no serial copies of the original matrix
should be required.
Robustness requirements
Failures should be caught by AMESOS_CHK_ERR(). The following error
codes should be used: 1: Singular matrix
2: Non-symmetric matrix
3: Matrix is not positive definite
4: Insufficient memory
Because we do not check to see if a matrix has changed between the
call to SymbolicFactorization() and the call to
NumericFactorization(), it is possible that a change to the matrix
will cause a potentially catastrophic error.
C++ includes: Amesos_BaseSolver.h
"""
__swig_setmethods__ = {}
for _s in [Teuchos.ParameterListAcceptor]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, BaseSolver, name, value)
__swig_getmethods__ = {}
for _s in [Teuchos.ParameterListAcceptor]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, BaseSolver, name)
def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract")
__repr__ = _swig_repr
__swig_destroy__ = _Amesos.delete_BaseSolver
__del__ = lambda self : None;
def SymbolicFactorization(self, *args):
"""
SymbolicFactorization(self) -> int
virtual int Amesos_BaseSolver::SymbolicFactorization()=0
Performs SymbolicFactorization on the matrix A.
In addition to performing symbolic factorization on the matrix A, the
call to SymbolicFactorization() implies that no change will be made to
the non-zero structure of the underlying matrix without a subsequent
call to SymbolicFactorization().
<br >Preconditions: GetProblem().GetOperator() != 0 (return -1)
MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)
<br >Postconditions: Symbolic Factorization will be performed (or
marked to be performed) allowing NumericFactorization() and Solve() to
be called.
Integer error code, set to 0 if successful.
"""
return _Amesos.BaseSolver_SymbolicFactorization(self, *args)
def NumericFactorization(self, *args):
"""
NumericFactorization(self) -> int
virtual int Amesos_BaseSolver::NumericFactorization()=0
Performs NumericFactorization on the matrix A.
In addition to performing numeric factorization on the matrix A, the
call to NumericFactorization() implies that no change will be made to
the underlying matrix without a subsequent call to
NumericFactorization().
<br >Preconditions: GetProblem().GetOperator() != 0 (return -1)
MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)
The non-zero structure of the matrix should not have changed since the
last call to SymbolicFactorization(). (return -2 if the number of non-
zeros changes) Other changes can have arbitrary consequences.
The distribution of the matrix should not have changed since the last
call to SymbolicFactorization()
The matrix should be indexed from 0 to n-1, unless the parameter
"Reindex" was set to "true" prior to the call to
SymbolicFactorization(). (return -3 - if caught)
The paremeter "Reindex" should not be set to "true" except on
CrsMatrices. (return -4)
The paremeter "Reindex" should not be set to "true" unless Amesos
was built with EpetraExt, i.e. with --enable-epetraext on the
configure line. (return -4)
Internal errors retur -5.
<br >Postconditions: Numeric Factorization will be performed (or
marked to be performed) allowing Solve() to be performed correctly
despite a potential change in in the matrix values (though not in the
non-zero structure).
Integer error code, set to 0 if successful.
"""
return _Amesos.BaseSolver_NumericFactorization(self, *args)
def Solve(self, *args):
"""
Solve(self) -> int
virtual int
Amesos_BaseSolver::Solve()=0
Solves A X = B (or AT x = B).
<br >Preconditions: GetProblem().GetOperator() != 0 (return -1)
MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)
GetProblem()->CheckInput (see Epetra_LinearProblem::CheckInput() for
return values)
The non-zero structure of the matrix should not have changed since the
last call to SymbolicFactorization().
The distribution of the matrix should not have changed since the last
call to SymbolicFactorization()
The matrix should not have changed since the last call to
NumericFactorization().
<br >Postconditions: X will be set such that A X = B (or AT X = B),
within the limits of the accuracy of the underlying solver.
Integer error code, set to 0 if successful.
"""
return _Amesos.BaseSolver_Solve(self, *args)
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool UseTranspose) -> int
virtual
int Amesos_BaseSolver::SetUseTranspose(bool UseTranspose)=0
If set true, X will be set to the solution of AT X = B (not A X = B).
If the implementation of this interface does not support transpose
use, this method should return a value of -1.
<br >Preconditions: SetUseTranspose() should be called prior to the
call to SymbolicFactorization() If NumericFactorization() or Solve()
is called after SetUseTranspose() without an intervening call to
SymbolicFactorization() the result is implementation dependent.
<br >Postconditions: The next factorization and solve will be
performed with the new value of UseTranspose.
Parameters:
-----------
UseTranspose: -- (In) If true, solve AT X = B, otherwise solve A X =
B.
Integer error code, set to 0 if successful. Set to -1 if this
implementation does not support transpose.
"""
return _Amesos.BaseSolver_SetUseTranspose(self, *args)
def UseTranspose(self, *args):
"""
UseTranspose(self) -> bool
virtual bool
Amesos_BaseSolver::UseTranspose() const =0
Returns the current UseTranspose setting.
"""
return _Amesos.BaseSolver_UseTranspose(self, *args)
def SetParameters(self, *args):
"""
SetParameters(self, ParameterList ParameterList) -> int
virtual int
Amesos_BaseSolver::SetParameters(Teuchos::ParameterList
&ParameterList)=0
Updates internal variables.
<br >Preconditions: None.
<br >Postconditions: Internal variables controlling the factorization
and solve will be updated and take effect on all subseuent calls to
NumericFactorization() and Solve().
All parameters whose value are to differ from the default values must
be included in ParameterList. Parameters not specified in
ParameterList revert to their default values.
Integer error code, set to 0 if successful.
"""
return _Amesos.BaseSolver_SetParameters(self, *args)
def GetProblem(self, *args):
"""
GetProblem(self) -> LinearProblem
virtual const
Epetra_LinearProblem* Amesos_BaseSolver::GetProblem() const =0
Returns the Epetra_LinearProblem.
Warning! Do not call return->SetOperator(...) to attempt to change the
Epetra_Operator object (even if the new matrix has the same
structure). This new operator matrix will be ignored!
"""
return _Amesos.BaseSolver_GetProblem(self, *args)
def MatrixShapeOK(self, *args):
"""
MatrixShapeOK(self) -> bool
virtual bool
Amesos_BaseSolver::MatrixShapeOK() const =0
Returns true if the solver can handle this matrix shape.
Returns true if the matrix shape is one that the underlying sparse
direct solver can handle. Classes that work only on square matrices
should return false for rectangular matrices. Classes that work only
on symmetric matrices whould return false for non-symmetric matrices.
"""
return _Amesos.BaseSolver_MatrixShapeOK(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
virtual const
Epetra_Comm& Amesos_BaseSolver::Comm() const =0
Returns a pointer to the Epetra_Comm communicator associated with this
operator.
"""
return _Amesos.BaseSolver_Comm(self, *args)
def NumSymbolicFact(self, *args):
"""
NumSymbolicFact(self) -> int
virtual
int Amesos_BaseSolver::NumSymbolicFact() const =0
Returns the number of symbolic factorizations performed by this
object.
"""
return _Amesos.BaseSolver_NumSymbolicFact(self, *args)
def NumNumericFact(self, *args):
"""
NumNumericFact(self) -> int
virtual int
Amesos_BaseSolver::NumNumericFact() const =0
Returns the number of numeric factorizations performed by this object.
"""
return _Amesos.BaseSolver_NumNumericFact(self, *args)
def NumSolve(self, *args):
"""
NumSolve(self) -> int
virtual int
Amesos_BaseSolver::NumSolve() const =0
Returns the number of solves performed by this object.
"""
return _Amesos.BaseSolver_NumSolve(self, *args)
def PrintStatus(self, *args):
"""
PrintStatus(self)
virtual void
Amesos_BaseSolver::PrintStatus() const =0
Prints status information about the current solver.
"""
return _Amesos.BaseSolver_PrintStatus(self, *args)
def PrintTiming(self, *args):
"""
PrintTiming(self)
virtual void
Amesos_BaseSolver::PrintTiming() const =0
Prints timing information about the current solver.
"""
return _Amesos.BaseSolver_PrintTiming(self, *args)
def setParameterList(self, *args):
"""
setParameterList(self, Teuchos::RCP<(Teuchos::ParameterList)> paramList)
virtual
void Amesos_BaseSolver::setParameterList(Teuchos::RCP<
Teuchos::ParameterList > const ¶mList)
Redefined from Teuchos::ParameterListAcceptor.
"""
return _Amesos.BaseSolver_setParameterList(self, *args)
def getNonconstParameterList(self, *args):
"""
getNonconstParameterList(self) -> Teuchos::RCP<(Teuchos::ParameterList)>
virtual Teuchos::RCP<Teuchos::ParameterList>
Amesos_BaseSolver::getNonconstParameterList()
This is an empty stub.
"""
return _Amesos.BaseSolver_getNonconstParameterList(self, *args)
def GetTiming(self, *args):
"""
GetTiming(self, ParameterList TimingParameterList)
virtual void
Amesos_BaseSolver::GetTiming(Teuchos::ParameterList
&TimingParameterList) const
Extracts timing information from the current solver and places it in
the parameter list.
"""
return _Amesos.BaseSolver_GetTiming(self, *args)
def __str__(self, *args):
"""__str__(self) -> string"""
return _Amesos.BaseSolver___str__(self, *args)
def __del__(self, *args):
"""__del__(self)"""
return _Amesos.BaseSolver___del__(self, *args)
BaseSolver_swigregister = _Amesos.BaseSolver_swigregister
BaseSolver_swigregister(BaseSolver)
cvar = _Amesos.cvar
StructurallySingularMatrixError = cvar.StructurallySingularMatrixError
NumericallySingularMatrixError = cvar.NumericallySingularMatrixError
class Lapack(BaseSolver):
"""
Amesos_Lapack: an interface to LAPACK.
Class Amesos_Lapack enables the solution of the distributed linear
system, defined by an Epetra_LinearProblem, using LAPACK.
Amesos_Lapack stores the lineaar system matrix as an
Epetra_SerialDensMatrix. The linear problem is an
Epetra_SerialDenseProblem. Amesos_Lapack factorizes the matrix using
DGETRF().
Marzio Sala, 9214.
C++ includes: Amesos_Lapack.h
"""
__swig_setmethods__ = {}
for _s in [BaseSolver]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Lapack, name, value)
__swig_getmethods__ = {}
for _s in [BaseSolver]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Lapack, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, LinearProblem LinearProblem) -> Lapack
Amesos_Lapack::Amesos_Lapack(const Epetra_LinearProblem
&LinearProblem)
Amesos_Lapack Constructor.
Creates an Amesos_Lapack instance, using an Epetra_LinearProblem,
passing in an already- defined Epetra_LinearProblem object.
Note: The operator in LinearProblem must be an Epetra_RowMatrix.
"""
this = _Amesos.new_Lapack(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Amesos.delete_Lapack
__del__ = lambda self : None;
def SymbolicFactorization(self, *args):
"""
SymbolicFactorization(self) -> int
int
Amesos_Lapack::SymbolicFactorization()
Performs SymbolicFactorization on the matrix A.
In addition to performing symbolic factorization on the matrix A, the
call to SymbolicFactorization() implies that no change will be made to
the non-zero structure of the underlying matrix without a subsequent
call to SymbolicFactorization().
<br >Preconditions: GetProblem().GetOperator() != 0 (return -1)
MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)
<br >Postconditions: Symbolic Factorization will be performed (or
marked to be performed) allowing NumericFactorization() and Solve() to
be called.
Integer error code, set to 0 if successful.
"""
return _Amesos.Lapack_SymbolicFactorization(self, *args)
def NumericFactorization(self, *args):
"""
NumericFactorization(self) -> int
int
Amesos_Lapack::NumericFactorization()
Performs NumericFactorization on the matrix A.
In addition to performing numeric factorization on the matrix A, the
call to NumericFactorization() implies that no change will be made to
the underlying matrix without a subsequent call to
NumericFactorization().
<br >Preconditions: GetProblem().GetOperator() != 0 (return -1)
MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)
The non-zero structure of the matrix should not have changed since the
last call to SymbolicFactorization(). (return -2 if the number of non-
zeros changes) Other changes can have arbitrary consequences.
The distribution of the matrix should not have changed since the last
call to SymbolicFactorization()
The matrix should be indexed from 0 to n-1, unless the parameter
"Reindex" was set to "true" prior to the call to
SymbolicFactorization(). (return -3 - if caught)
The paremeter "Reindex" should not be set to "true" except on
CrsMatrices. (return -4)
The paremeter "Reindex" should not be set to "true" unless Amesos
was built with EpetraExt, i.e. with --enable-epetraext on the
configure line. (return -4)
Internal errors retur -5.
<br >Postconditions: Numeric Factorization will be performed (or
marked to be performed) allowing Solve() to be performed correctly
despite a potential change in in the matrix values (though not in the
non-zero structure).
Integer error code, set to 0 if successful.
"""
return _Amesos.Lapack_NumericFactorization(self, *args)
def Solve(self, *args):
"""
Solve(self) -> int
int
Amesos_Lapack::Solve()
Solves A X = B (or AT x = B).
<br >Preconditions: GetProblem().GetOperator() != 0 (return -1)
MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)
GetProblem()->CheckInput (see Epetra_LinearProblem::CheckInput() for
return values)
The non-zero structure of the matrix should not have changed since the
last call to SymbolicFactorization().
The distribution of the matrix should not have changed since the last
call to SymbolicFactorization()
The matrix should not have changed since the last call to
NumericFactorization().
<br >Postconditions: X will be set such that A X = B (or AT X = B),
within the limits of the accuracy of the underlying solver.
Integer error code, set to 0 if successful.
"""
return _Amesos.Lapack_Solve(self, *args)
def GetProblem(self, *args):
"""
GetProblem(self) -> LinearProblem
const
Epetra_LinearProblem* Amesos_Lapack::GetProblem() const
Returns the Epetra_LinearProblem.
Warning! Do not call return->SetOperator(...) to attempt to change the
Epetra_Operator object (even if the new matrix has the same
structure). This new operator matrix will be ignored!
"""
return _Amesos.Lapack_GetProblem(self, *args)
def MatrixShapeOK(self, *args):
"""
MatrixShapeOK(self) -> bool
bool
Amesos_Lapack::MatrixShapeOK() const
Returns true if the solver can handle this matrix shape.
Returns true if the matrix shape is one that the underlying sparse
direct solver can handle. Classes that work only on square matrices
should return false for rectangular matrices. Classes that work only
on symmetric matrices whould return false for non-symmetric matrices.
"""
return _Amesos.Lapack_MatrixShapeOK(self, *args)
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool UseTranspose_in) -> int
int
Amesos_Lapack::SetUseTranspose(bool UseTranspose_in)
If set true, X will be set to the solution of AT X = B (not A X = B).
If the implementation of this interface does not support transpose
use, this method should return a value of -1.
<br >Preconditions: SetUseTranspose() should be called prior to the
call to SymbolicFactorization() If NumericFactorization() or Solve()
is called after SetUseTranspose() without an intervening call to
SymbolicFactorization() the result is implementation dependent.
<br >Postconditions: The next factorization and solve will be
performed with the new value of UseTranspose.
Parameters:
-----------
UseTranspose: -- (In) If true, solve AT X = B, otherwise solve A X =
B.
Integer error code, set to 0 if successful. Set to -1 if this
implementation does not support transpose.
"""
return _Amesos.Lapack_SetUseTranspose(self, *args)
def UseTranspose(self, *args):
"""
UseTranspose(self) -> bool
bool
Amesos_Lapack::UseTranspose() const
Returns the current UseTranspose setting.
"""
return _Amesos.Lapack_UseTranspose(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
const Epetra_Comm&
Amesos_Lapack::Comm() const
Returns a pointer to the Epetra_Comm communicator associated with this
operator.
"""
return _Amesos.Lapack_Comm(self, *args)
def setParameterList(self, *args):
"""
setParameterList(self, Teuchos::RCP<(Teuchos::ParameterList)> paramList)
void
Amesos_Lapack::setParameterList(Teuchos::RCP< Teuchos::ParameterList >
const ¶mList)
Use this parameter list to read values from.
Redefined from Teuchos::ParameterListAcceptor
"""
return _Amesos.Lapack_setParameterList(self, *args)
def SetParameters(self, *args):
"""
SetParameters(self, ParameterList ParameterList) -> int
int
Amesos_Lapack::SetParameters(Teuchos::ParameterList &ParameterList)
Deprecated - Sets parameters.
"""
return _Amesos.Lapack_SetParameters(self, *args)
def GEEV(self, *args):
"""
GEEV(self, Epetra_Vector Er, Epetra_Vector Ei) -> int
int
Amesos_Lapack::GEEV(Epetra_Vector &Er, Epetra_Vector &Ei)
Computes the eigenvalues of the linear system matrix using DGEEV.
Parameters:
-----------
Er: - (Out) On processor zero only, it will contain the real
component of the eigenvalues.
Ei: - (Out) On processor zero only, it will contain the imaginary
component of the eigenvalues.
Er and Ei must have been allocated so that the local length on
processor 0 equals the global size of the matrix.
"""
return _Amesos.Lapack_GEEV(self, *args)
def NumSymbolicFact(self, *args):
"""
NumSymbolicFact(self) -> int
int
Amesos_Lapack::NumSymbolicFact() const
Returns the number of symbolic factorizations performed by this
object.
"""
return _Amesos.Lapack_NumSymbolicFact(self, *args)
def NumNumericFact(self, *args):
"""
NumNumericFact(self) -> int
int
Amesos_Lapack::NumNumericFact() const
Returns the number of numeric factorizations performed by this object.
"""
return _Amesos.Lapack_NumNumericFact(self, *args)
def NumSolve(self, *args):
"""
NumSolve(self) -> int
int
Amesos_Lapack::NumSolve() const
Returns the number of solves performed by this object.
"""
return _Amesos.Lapack_NumSolve(self, *args)
def PrintTiming(self, *args):
"""
PrintTiming(self)
void
Amesos_Lapack::PrintTiming() const
Print timing information.
"""
return _Amesos.Lapack_PrintTiming(self, *args)
def PrintStatus(self, *args):
"""
PrintStatus(self)
void
Amesos_Lapack::PrintStatus() const
Print information about the factorization and solution phases.
"""
return _Amesos.Lapack_PrintStatus(self, *args)
def GetTiming(self, *args):
"""
GetTiming(self, ParameterList TimingParameterList)
void
Amesos_Lapack::GetTiming(Teuchos::ParameterList &TimingParameterList)
const
Extracts timing information from the current solver and places it in
the parameter list.
"""
return _Amesos.Lapack_GetTiming(self, *args)
Lapack_swigregister = _Amesos.Lapack_swigregister
Lapack_swigregister(Lapack)
class Klu(BaseSolver):
"""
Interface to KLU internal solver.
Interface to UMFPACK.
C++ includes: Amesos_Umfpack.h
"""
__swig_setmethods__ = {}
for _s in [BaseSolver]: __swig_setmethods__.update(getattr(_s,'__swig_setmethods__',{}))
__setattr__ = lambda self, name, value: _swig_setattr(self, Klu, name, value)
__swig_getmethods__ = {}
for _s in [BaseSolver]: __swig_getmethods__.update(getattr(_s,'__swig_getmethods__',{}))
__getattr__ = lambda self, name: _swig_getattr(self, Klu, name)
__repr__ = _swig_repr
def __init__(self, *args):
"""
__init__(self, LinearProblem LinearProblem) -> Klu
Amesos_Klu::Amesos_Klu(const Epetra_LinearProblem &LinearProblem)
Amesos_Klu Constructor.
Creates an Amesos_Klu instance, using an Epetra_LinearProblem, passing
in an already- defined Epetra_LinearProblem object.
Note: The operator in LinearProblem must be an Epetra_RowMatrix.
"""
this = _Amesos.new_Klu(*args)
try: self.this.append(this)
except: self.this = this
__swig_destroy__ = _Amesos.delete_Klu
__del__ = lambda self : None;
def SymbolicFactorization(self, *args):
"""
SymbolicFactorization(self) -> int
int
Amesos_Klu::SymbolicFactorization()
Performs SymbolicFactorization on the matrix A.
In addition to performing symbolic factorization on the matrix A, the
call to SymbolicFactorization() implies that no change will be made to
the non-zero structure of the underlying matrix without a subsequent
call to SymbolicFactorization().
<br >Preconditions: GetProblem().GetOperator() != 0 (return -1)
MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)
<br >Postconditions: Symbolic Factorization will be performed (or
marked to be performed) allowing NumericFactorization() and Solve() to
be called.
Integer error code, set to 0 if successful.
"""
return _Amesos.Klu_SymbolicFactorization(self, *args)
def NumericFactorization(self, *args):
"""
NumericFactorization(self) -> int
int
Amesos_Klu::NumericFactorization()
Performs NumericFactorization on the matrix A.
In addition to performing numeric factorization on the matrix A, the
call to NumericFactorization() implies that no change will be made to
the underlying matrix without a subsequent call to
NumericFactorization().
<br >Preconditions: GetProblem().GetOperator() != 0 (return -1)
MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)
The non-zero structure of the matrix should not have changed since the
last call to SymbolicFactorization(). (return -2 if the number of non-
zeros changes) Other changes can have arbitrary consequences.
The distribution of the matrix should not have changed since the last
call to SymbolicFactorization()
The matrix should be indexed from 0 to n-1, unless the parameter
"Reindex" was set to "true" prior to the call to
SymbolicFactorization(). (return -3 - if caught)
The paremeter "Reindex" should not be set to "true" except on
CrsMatrices. (return -4)
The paremeter "Reindex" should not be set to "true" unless Amesos
was built with EpetraExt, i.e. with --enable-epetraext on the
configure line. (return -4)
Internal errors retur -5.
<br >Postconditions: Numeric Factorization will be performed (or
marked to be performed) allowing Solve() to be performed correctly
despite a potential change in in the matrix values (though not in the
non-zero structure).
Integer error code, set to 0 if successful.
"""
return _Amesos.Klu_NumericFactorization(self, *args)
def Solve(self, *args):
"""
Solve(self) -> int
int Amesos_Klu::Solve()
Solves A X = B (or AT x = B).
<br >Preconditions: GetProblem().GetOperator() != 0 (return -1)
MatrixShapeOk( GetProblem().GetOperator()) == true (return -6)
GetProblem()->CheckInput (see Epetra_LinearProblem::CheckInput() for
return values)
The non-zero structure of the matrix should not have changed since the
last call to SymbolicFactorization().
The distribution of the matrix should not have changed since the last
call to SymbolicFactorization()
The matrix should not have changed since the last call to
NumericFactorization().
<br >Postconditions: X will be set such that A X = B (or AT X = B),
within the limits of the accuracy of the underlying solver.
Integer error code, set to 0 if successful.
"""
return _Amesos.Klu_Solve(self, *args)
def GetProblem(self, *args):
"""
GetProblem(self) -> LinearProblem
const
Epetra_LinearProblem* Amesos_Klu::GetProblem() const
Get a pointer to the Problem.
"""
return _Amesos.Klu_GetProblem(self, *args)
def MatrixShapeOK(self, *args):
"""
MatrixShapeOK(self) -> bool
bool
Amesos_Klu::MatrixShapeOK() const
Returns true if KLU can handle this matrix shape.
Returns true if the matrix shape is one that KLU can handle. KLU only
works with square matrices.
"""
return _Amesos.Klu_MatrixShapeOK(self, *args)
def SetUseTranspose(self, *args):
"""
SetUseTranspose(self, bool UseTranspose_in) -> int
int
Amesos_Klu::SetUseTranspose(bool UseTranspose_in)
SetUseTranpose(true) is more efficient in Amesos_Klu.
If SetUseTranspose() is set to true, $A^T X = B$ is computed.
"""
return _Amesos.Klu_SetUseTranspose(self, *args)
def UseTranspose(self, *args):
"""
UseTranspose(self) -> bool
bool
Amesos_Klu::UseTranspose() const
Returns the current UseTranspose setting.
"""
return _Amesos.Klu_UseTranspose(self, *args)
def Comm(self, *args):
"""
Comm(self) -> Comm
const Epetra_Comm&
Amesos_Klu::Comm() const
Returns a pointer to the Epetra_Comm communicator associated with this
operator.
"""
return _Amesos.Klu_Comm(self, *args)
def SetParameters(self, *args):
"""
SetParameters(self, ParameterList ParameterList) -> int
int
Amesos_Klu::SetParameters(Teuchos::ParameterList &ParameterList)
Updates internal variables.
<br >Preconditions: None.
<br >Postconditions: Internal variables controlling the factorization
and solve will be updated and take effect on all subseuent calls to
NumericFactorization() and Solve().
All parameters whose value are to differ from the default values must
be included in ParameterList. Parameters not specified in
ParameterList revert to their default values.
Integer error code, set to 0 if successful.
"""
return _Amesos.Klu_SetParameters(self, *args)
def NumSymbolicFact(self, *args):
"""
NumSymbolicFact(self) -> int
int
Amesos_Klu::NumSymbolicFact() const
Returns the number of symbolic factorizations performed by this
object.
"""
return _Amesos.Klu_NumSymbolicFact(self, *args)
def NumNumericFact(self, *args):
"""
NumNumericFact(self) -> int
int
Amesos_Klu::NumNumericFact() const
Returns the number of numeric factorizations performed by this object.
"""
return _Amesos.Klu_NumNumericFact(self, *args)
def NumSolve(self, *args):
"""
NumSolve(self) -> int
int
Amesos_Klu::NumSolve() const
Returns the number of solves performed by this object.
"""
return _Amesos.Klu_NumSolve(self, *args)
def PrintTiming(self, *args):
"""
PrintTiming(self)
void
Amesos_Klu::PrintTiming() const
Prints timing information.
"""
return _Amesos.Klu_PrintTiming(self, *args)
def PrintStatus(self, *args):
"""
PrintStatus(self)
void
Amesos_Klu::PrintStatus() const
Prints information about the factorization and solution phases.
"""
return _Amesos.Klu_PrintStatus(self, *args)
def GetTiming(self, *args):
"""
GetTiming(self, ParameterList TimingParameterList)
void
Amesos_Klu::GetTiming(Teuchos::ParameterList &TimingParameterList)
const
Extracts timing information and places in parameter list.
"""
return _Amesos.Klu_GetTiming(self, *args)
Klu_swigregister = _Amesos.Klu_swigregister
Klu_swigregister(Klu)
# This file is compatible with both classic and new-style classes.
|