/usr/share/pyshared/pyx/connector.py is in python-pyx 0.11.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | # -*- encoding: utf-8 -*-
#
#
# Copyright (C) 2003-2006 Michael Schindler <m-schindler@users.sourceforge.net>
#
# This file is part of PyX (http://pyx.sourceforge.net/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
import math
from math import degrees, radians, pi, sin, cos, atan2, tan, hypot, acos, sqrt
import path, unit, mathutils, normpath
#########################
## helpers
#########################
class connector_pt(normpath.normpath):
def omitends(self, box1, box2):
"""intersects a path with the boxes' paths"""
# cut off the start of self
# XXX how can decoration of this box1.path() be handled?
sp = self.intersect(box1.path())[0]
if sp:
self.normsubpaths = self.split(sp[-1:])[1].normsubpaths
# cut off the end of self
sp = self.intersect(box2.path())[0]
if sp:
self.normsubpaths = self.split(sp[:1])[0].normsubpaths
def shortenpath(self, dists):
"""shortens a path by the given distances"""
# XXX later, this should be done by extended boxes instead of intersecting with circles
# cut off the start of self
center = self.atbegin_pt()
cutpath = path.circle_pt(center[0], center[1], dists[0])
try:
cutpath = cutpath.normpath()
except normpath.NormpathException:
pass
else:
sp = self.intersect(cutpath)[0]
self.normsubpaths = self.split(sp[-1:])[1].normsubpaths
# cut off the end of self
center = self.atend_pt()
cutpath = path.circle_pt(center[0], center[1], dists[1])
try:
cutpath = cutpath.normpath()
except normpath.NormpathException:
pass
else:
sp = self.intersect(cutpath)[0]
if sp:
self.normsubpaths = self.split(sp[:1])[0].normsubpaths
################
## classes
################
class line_pt(connector_pt):
def __init__(self, box1, box2, boxdists=[0,0]):
self.box1 = box1
self.box2 = box2
connector_pt.__init__(self,
[path.normsubpath([path.normline_pt(self.box1.center[0], self.box1.center[1],
self.box2.center[0], self.box2.center[1])], closed=0)])
self.omitends(box1, box2)
self.shortenpath(boxdists)
class arc_pt(connector_pt):
def __init__(self, box1, box2, relangle=45,
absbulge=None, relbulge=None, boxdists=[0,0]):
# the deviation of arc from the straight line can be specified:
# 1. By an angle between a straight line and the arc
# This angle is measured at the centers of the box.
# 2. By the largest normal distance between line and arc: absbulge
# or, equivalently, by the bulge relative to the length of the
# straight line from center to center.
# Only one can be used.
self.box1 = box1
self.box2 = box2
tangent = (self.box2.center[0] - self.box1.center[0],
self.box2.center[1] - self.box1.center[1])
distance = hypot(*tangent)
tangent = tangent[0] / distance, tangent[1] / distance
if relbulge is not None or absbulge is not None:
# usage of bulge overrides the relangle parameter
bulge = 0
if absbulge is not None:
bulge += absbulge
if relbulge is not None:
bulge += relbulge*distance
else:
# otherwise use relangle, which should be present
bulge = 0.5 * distance * math.tan(0.5*radians(relangle))
if abs(bulge) < normpath._epsilon:
# fallback solution for too straight arcs
connector_pt.__init__(self,
[path.normsubpath([path.normline_pt(*(self.box1.center+self.box2.center))], closed=0)])
else:
radius = abs(0.5 * (bulge + 0.25 * distance**2 / bulge))
centerdist = mathutils.sign(bulge) * (radius - abs(bulge))
center = (0.5 * (self.box1.center[0] + self.box2.center[0]) + tangent[1]*centerdist,
0.5 * (self.box1.center[1] + self.box2.center[1]) - tangent[0]*centerdist)
angle1 = atan2(self.box1.center[1] - center[1], self.box1.center[0] - center[0])
angle2 = atan2(self.box2.center[1] - center[1], self.box2.center[0] - center[0])
if bulge > 0:
connectorpath = path.path(path.moveto_pt(*self.box1.center),
path.arcn_pt(center[0], center[1], radius, degrees(angle1), degrees(angle2)))
connector_pt.__init__(self, connectorpath.normpath().normsubpaths)
else:
connectorpath = path.path(path.moveto_pt(*self.box1.center),
path.arc_pt(center[0], center[1], radius, degrees(angle1), degrees(angle2)))
connector_pt.__init__(self, connectorpath.normpath().normsubpaths)
self.omitends(box1, box2)
self.shortenpath(boxdists)
class curve_pt(connector_pt):
def __init__(self, box1, box2,
relangle1=45, relangle2=45,
absangle1=None, absangle2=None,
absbulge=0, relbulge=0.39, boxdists=[0,0]):
# The deviation of the curve from a straight line can be specified:
# A. By an angle at each center
# These angles are either absolute angles with origin at the positive x-axis
# or the relative angle with origin at the straight connection line
# B. By the (expected) largest normal distance between line and arc: absbulge
# and/or by the (expected) bulge relative to the length of the
# straight line from center to center.
# Here, we need both informations.
#
# a curve with relbulge=0.39 and relangle1,2=45 leads
# approximately to the arc with angle=45
self.box1 = box1
self.box2 = box2
rel = (self.box2.center[0] - self.box1.center[0],
self.box2.center[1] - self.box1.center[1])
distance = hypot(*rel)
# absolute angle of the straight connection
dangle = atan2(rel[1], rel[0])
# calculate the armlength and absolute angles for the control points:
# absolute and relative bulges are added
bulge = abs(distance*relbulge + absbulge)
if absangle1 is not None:
angle1 = radians(absangle1)
else:
angle1 = dangle + radians(relangle1)
if absangle2 is not None:
angle2 = radians(absangle2)
else:
angle2 = dangle + radians(relangle2)
# get the control points
control1 = (cos(angle1), sin(angle1))
control2 = (cos(angle2), sin(angle2))
control1 = (self.box1.center[0] + control1[0] * bulge, self.box1.center[1] + control1[1] * bulge)
control2 = (self.box2.center[0] - control2[0] * bulge, self.box2.center[1] - control2[1] * bulge)
connector_pt.__init__(self,
[path.normsubpath([path.normcurve_pt(*(self.box1.center +
control1 +
control2 + self.box2.center))], 0)])
self.omitends(box1, box2)
self.shortenpath(boxdists)
class twolines_pt(connector_pt):
def __init__(self, box1, box2,
absangle1=None, absangle2=None,
relangle1=None, relangle2=None, relangleM=None,
length1=None, length2=None,
bezierradius=None, beziersoftness=1,
arcradius=None,
boxdists=[0,0]):
# The connection with two lines can be done in the following ways:
# 1. an angle at each box-center
# 2. two armlengths (if they are long enough)
# 3. angle and armlength at the same box
# 4. angle and armlength at different boxes
# 5. one armlength and the angle between the arms
#
# Angles at the box-centers can be relative or absolute
# The angle in the middle is always relative
# lengths are always absolute
self.box1 = box1
self.box2 = box2
begin = self.box1.center
end = self.box2.center
rel = (self.box2.center[0] - self.box1.center[0],
self.box2.center[1] - self.box1.center[1])
distance = hypot(*rel)
dangle = atan2(rel[1], rel[0])
# find out what arguments are given:
if relangle1 is not None: relangle1 = radians(relangle1)
if relangle2 is not None: relangle2 = radians(relangle2)
if relangleM is not None: relangleM = radians(relangleM)
# absangle has priority over relangle:
if absangle1 is not None: relangle1 = dangle - radians(absangle1)
if absangle2 is not None: relangle2 = math.pi - dangle + radians(absangle2)
# check integrity of arguments
no_angles, no_lengths=0,0
for anangle in (relangle1, relangle2, relangleM):
if anangle is not None: no_angles += 1
for alength in (length1, length2):
if alength is not None: no_lengths += 1
if no_angles + no_lengths != 2:
raise NotImplementedError, "Please specify exactly two angles or lengths"
# calculate necessary angles and armlengths
# always length1 and relangle1
# the case with two given angles
# use the "sine-theorem" for calculating length1
if no_angles == 2:
if relangle1 is None: relangle1 = math.pi - relangle2 - relangleM
elif relangle2 is None: relangle2 = math.pi - relangle1 - relangleM
elif relangleM is None: relangleM = math.pi - relangle1 - relangle2
length1 = distance * abs(sin(relangle2)/sin(relangleM))
middle = self._middle_a(begin, dangle, length1, relangle1)
# the case with two given lengths
# uses the "cosine-theorem" for calculating length1
elif no_lengths == 2:
relangle1 = acos((distance**2 + length1**2 - length2**2) / (2.0*distance*length1))
middle = self._middle_a(begin, dangle, length1, relangle1)
# the case with one length and one angle
else:
if relangle1 is not None:
if length1 is not None:
middle = self._middle_a(begin, dangle, length1, relangle1)
elif length2 is not None:
length1 = self._missinglength(length2, distance, relangle1)
middle = self._middle_a(begin, dangle, length1, relangle1)
elif relangle2 is not None:
if length1 is not None:
length2 = self._missinglength(length1, distance, relangle2)
middle = self._middle_b(end, dangle, length2, relangle2)
elif length2 is not None:
middle = self._middle_b(end, dangle, length2, relangle2)
elif relangleM is not None:
if length1 is not None:
length2 = self._missinglength(distance, length1, relangleM)
relangle1 = acos((distance**2 + length1**2 - length2**2) / (2.0*distance*length1))
middle = self._middle_a(begin, dangle, length1, relangle1)
elif length2 is not None:
length1 = self._missinglength(distance, length2, relangleM)
relangle1 = acos((distance**2 + length1**2 - length2**2) / (2.0*distance*length1))
middle = self._middle_a(begin, dangle, length1, relangle1)
else:
raise NotImplementedError, "I found a strange combination of arguments"
connectorpath = path.path(path.moveto_pt(*self.box1.center),
path.lineto_pt(*middle),
path.lineto_pt(*self.box2.center))
connector_pt.__init__(self, connectorpath.normpath().normsubpaths)
self.omitends(box1, box2)
self.shortenpath(boxdists)
def _middle_a(self, begin, dangle, length1, angle1):
a = dangle - angle1
dir = cos(a), sin(a)
return begin[0] + length1*dir[0], begin[1] + length1*dir[1]
def _middle_b(self, end, dangle, length2, angle2):
# a = -math.pi + dangle + angle2
return self._middle_a(end, -math.pi+dangle, length2, -angle2)
def _missinglength(self, lenA, lenB, angleA):
# calculate lenC, where side A and angleA are opposite
tmp1 = lenB * cos(angleA)
tmp2 = sqrt(tmp1**2 - lenB**2 + lenA**2)
if tmp1 > tmp2: return tmp1 - tmp2
return tmp1 + tmp2
class line(line_pt):
"""a line is the straight connector between the centers of two boxes"""
def __init__(self, box1, box2, boxdists=(0,0)):
line_pt.__init__(self, box1, box2, boxdists=map(unit.topt, boxdists))
class curve(curve_pt):
"""a curve is the curved connector between the centers of two boxes.
The constructor needs both angle and bulge"""
def __init__(self, box1, box2,
relangle1=45, relangle2=45,
absangle1=None, absangle2=None,
absbulge=0, relbulge=0.39,
boxdists=[0,0]):
curve_pt.__init__(self, box1, box2,
relangle1=relangle1, relangle2=relangle2,
absangle1=absangle1, absangle2=absangle2,
absbulge=unit.topt(absbulge), relbulge=relbulge,
boxdists=map(unit.topt, boxdists))
class arc(arc_pt):
"""an arc is a round connector between the centers of two boxes.
The constructor gets
either an angle in (-pi,pi)
or a bulge parameter in (-distance, distance)
(relbulge and absbulge are added)"""
def __init__(self, box1, box2, relangle=45,
absbulge=None, relbulge=None, boxdists=[0,0]):
if absbulge is not None:
absbulge = unit.topt(absbulge)
arc_pt.__init__(self, box1, box2,
relangle=relangle,
absbulge=absbulge, relbulge=relbulge,
boxdists=map(unit.topt, boxdists))
class twolines(twolines_pt):
"""a twolines is a connector consisting of two straight lines.
The construcor takes a combination of angles and lengths:
either two angles (relative or absolute)
or two lenghts
or one length and one angle"""
def __init__(self, box1, box2,
absangle1=None, absangle2=None,
relangle1=None, relangle2=None, relangleM=None,
length1=None, length2=None,
bezierradius=None, beziersoftness=1,
arcradius=None,
boxdists=[0,0]):
if length1 is not None:
length1 = unit.topt(length1)
if length2 is not None:
length2 = unit.topt(length2)
if bezierradius is not None:
bezierradius = unit.topt(bezierradius)
if arcradius is not None:
arcradius = unit.topt(arcradius)
twolines_pt.__init__(self, box1, box2,
absangle1=absangle1, absangle2=absangle2,
relangle1=relangle1, relangle2=relangle2,
relangleM=relangleM,
length1=length1, length2=length2,
bezierradius=bezierradius, beziersoftness=1,
arcradius=arcradius,
boxdists=map(unit.topt, boxdists))
|