/usr/share/pyshared/pyx/deco.py is in python-pyx 0.11.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 | # -*- encoding: utf-8 -*-
#
#
# Copyright (C) 2002-2011 Jörg Lehmann <joergl@users.sourceforge.net>
# Copyright (C) 2003-2011 Michael Schindler <m-schindler@users.sourceforge.net>
# Copyright (C) 2002-2011 André Wobst <wobsta@users.sourceforge.net>
#
# This file is part of PyX (http://pyx.sourceforge.net/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
# TODO:
# - should we improve on the arc length -> arg parametrization routine or
# should we at least factor it out?
import sys, math
import attr, canvas, canvasitem, color, path, normpath, style, trafo, unit, deformer
_marker = object()
#
# Decorated path
#
class decoratedpath(canvasitem.canvasitem):
"""Decorated path
The main purpose of this class is during the drawing
(stroking/filling) of a path. It collects attributes for the
stroke and/or fill operations.
"""
def __init__(self, path, strokepath=None, fillpath=None,
styles=None, strokestyles=None, fillstyles=None,
ornaments=None, fillrule=style.fillrule.nonzero_winding):
self.path = path
# global style for stroking and filling and subdps
self.styles = styles
# styles which apply only for stroking and filling
self.strokestyles = strokestyles
self.fillstyles = fillstyles
# the decoratedpath can contain additional elements of the
# path (ornaments), e.g., arrowheads.
if ornaments is None:
self.ornaments = canvas.canvas()
else:
self.ornaments = ornaments
# the fillrule is either fillrule.nonzero_winding or fillrule.even_odd
self.fillrule = fillrule
self.nostrokeranges = None
def ensurenormpath(self):
"""convert self.path into a normpath"""
assert self.nostrokeranges is None or isinstance(self.path, path.normpath), "you don't understand what you are doing"
self.path = self.path.normpath()
def excluderange(self, begin, end):
assert isinstance(self.path, path.normpath), "you don't understand what this is about"
if self.nostrokeranges is None:
self.nostrokeranges = [(begin, end)]
else:
ibegin = 0
while ibegin < len(self.nostrokeranges) and self.nostrokeranges[ibegin][1] < begin:
ibegin += 1
if ibegin == len(self.nostrokeranges):
self.nostrokeranges.append((begin, end))
return
iend = len(self.nostrokeranges) - 1
while 0 <= iend and end < self.nostrokeranges[iend][0]:
iend -= 1
if iend == -1:
self.nostrokeranges.insert(0, (begin, end))
return
if self.nostrokeranges[ibegin][0] < begin:
begin = self.nostrokeranges[ibegin][0]
if end < self.nostrokeranges[iend][1]:
end = self.nostrokeranges[iend][1]
self.nostrokeranges[ibegin:iend+1] = [(begin, end)]
def bbox(self):
pathbbox = self.path.bbox()
ornamentsbbox = self.ornaments.bbox()
if ornamentsbbox is not None:
return ornamentsbbox + pathbbox
else:
return pathbbox
def strokepath(self):
if self.nostrokeranges:
splitlist = []
for begin, end in self.nostrokeranges:
splitlist.append(begin)
splitlist.append(end)
split = self.path.split(splitlist)
# XXX properly handle closed paths?
result = split[0]
for i in range(2, len(split), 2):
result += split[i]
return result
else:
return self.path
def processPS(self, file, writer, context, registry, bbox):
# draw (stroke and/or fill) the decoratedpath on the canvas
# while trying to produce an efficient output, e.g., by
# not writing one path two times
# small helper
def _writestyles(styles, context, registry, bbox):
for style in styles:
style.processPS(file, writer, context, registry, bbox)
if self.strokestyles is None and self.fillstyles is None:
if not len(self.ornaments):
raise RuntimeError("Path neither to be stroked nor filled nor decorated in another way")
# just draw additional elements of decoratedpath
self.ornaments.processPS(file, writer, context, registry, bbox)
return
strokepath = self.strokepath()
fillpath = self.path
# apply global styles
if self.styles:
file.write("gsave\n")
context = context()
_writestyles(self.styles, context, registry, bbox)
if self.fillstyles is not None:
file.write("newpath\n")
fillpath.outputPS(file, writer)
if self.strokestyles is not None and strokepath is fillpath:
# do efficient stroking + filling if respective paths are identical
file.write("gsave\n")
if self.fillstyles:
_writestyles(self.fillstyles, context(), registry, bbox)
if self.fillrule.even_odd:
file.write("eofill\n")
else:
file.write("fill\n")
file.write("grestore\n")
acontext = context()
if self.strokestyles:
file.write("gsave\n")
_writestyles(self.strokestyles, acontext, registry, bbox)
file.write("stroke\n")
# take linewidth into account for bbox when stroking a path
bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)
if self.strokestyles:
file.write("grestore\n")
else:
# only fill fillpath - for the moment
if self.fillstyles:
file.write("gsave\n")
_writestyles(self.fillstyles, context(), registry, bbox)
if self.fillrule.even_odd:
file.write("eofill\n")
else:
file.write("fill\n")
bbox += fillpath.bbox()
if self.fillstyles:
file.write("grestore\n")
if self.strokestyles is not None and (strokepath is not fillpath or self.fillstyles is None):
# this is the only relevant case still left
# Note that a possible stroking has already been done.
acontext = context()
if self.strokestyles:
file.write("gsave\n")
_writestyles(self.strokestyles, acontext, registry, bbox)
file.write("newpath\n")
strokepath.outputPS(file, writer)
file.write("stroke\n")
# take linewidth into account for bbox when stroking a path
bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)
if self.strokestyles:
file.write("grestore\n")
# now, draw additional elements of decoratedpath
self.ornaments.processPS(file, writer, context, registry, bbox)
# restore global styles
if self.styles:
file.write("grestore\n")
def processPDF(self, file, writer, context, registry, bbox):
# draw (stroke and/or fill) the decoratedpath on the canvas
def _writestyles(styles, context, registry, bbox):
for style in styles:
style.processPDF(file, writer, context, registry, bbox)
def _writestrokestyles(strokestyles, context, registry, bbox):
context.fillattr = 0
for style in strokestyles:
style.processPDF(file, writer, context, registry, bbox)
context.fillattr = 1
def _writefillstyles(fillstyles, context, registry, bbox):
context.strokeattr = 0
for style in fillstyles:
style.processPDF(file, writer, context, registry, bbox)
context.strokeattr = 1
if self.strokestyles is None and self.fillstyles is None:
if not len(self.ornaments):
raise RuntimeError("Path neither to be stroked nor filled nor decorated in another way")
# just draw additional elements of decoratedpath
self.ornaments.processPDF(file, writer, context, registry, bbox)
return
strokepath = self.strokepath()
fillpath = self.path
# apply global styles
if self.styles:
file.write("q\n") # gsave
context = context()
_writestyles(self.styles, context, registry, bbox)
if self.fillstyles is not None:
fillpath.outputPDF(file, writer)
if self.strokestyles is not None and strokepath is fillpath:
# do efficient stroking + filling
file.write("q\n") # gsave
acontext = context()
if self.fillstyles:
_writefillstyles(self.fillstyles, acontext, registry, bbox)
if self.strokestyles:
_writestrokestyles(self.strokestyles, acontext, registry, bbox)
if self.fillrule.even_odd:
file.write("B*\n")
else:
file.write("B\n") # both stroke and fill
# take linewidth into account for bbox when stroking a path
bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)
file.write("Q\n") # grestore
else:
# only fill fillpath - for the moment
if self.fillstyles:
file.write("q\n") # gsave
_writefillstyles(self.fillstyles, context(), registry, bbox)
if self.fillrule.even_odd:
file.write("f*\n")
else:
file.write("f\n") # fill
bbox += fillpath.bbox()
if self.fillstyles:
file.write("Q\n") # grestore
if self.strokestyles is not None and (strokepath is not fillpath or self.fillstyles is None):
# this is the only relevant case still left
# Note that a possible stroking has already been done.
acontext = context()
if self.strokestyles:
file.write("q\n") # gsave
_writestrokestyles(self.strokestyles, acontext, registry, bbox)
strokepath.outputPDF(file, writer)
file.write("S\n") # stroke
# take linewidth into account for bbox when stroking a path
bbox += strokepath.bbox().enlarged_pt(0.5*acontext.linewidth_pt)
if self.strokestyles:
file.write("Q\n") # grestore
# now, draw additional elements of decoratedpath
self.ornaments.processPDF(file, writer, context, registry, bbox)
# restore global styles
if self.styles:
file.write("Q\n") # grestore
#
# Path decorators
#
class deco:
"""decorators
In contrast to path styles, path decorators depend on the concrete
path to which they are applied. In particular, they don't make
sense without any path and can thus not be used in canvas.set!
"""
def decorate(self, dp, texrunner):
"""apply a style to a given decoratedpath object dp
decorate accepts a decoratedpath object dp, applies PathStyle
by modifying dp in place.
"""
pass
#
# stroked and filled: basic decos which stroked and fill,
# respectively the path
#
class _stroked(deco, attr.exclusiveattr):
"""stroked is a decorator, which draws the outline of the path"""
def __init__(self, styles=[]):
attr.exclusiveattr.__init__(self, _stroked)
self.styles = attr.mergeattrs(styles)
attr.checkattrs(self.styles, [style.strokestyle])
def __call__(self, styles=[]):
# XXX or should we also merge self.styles
return _stroked(styles)
def decorate(self, dp, texrunner):
if dp.strokestyles is not None:
raise RuntimeError("Cannot stroke an already stroked path")
dp.strokestyles = self.styles
stroked = _stroked()
stroked.clear = attr.clearclass(_stroked)
class _filled(deco, attr.exclusiveattr):
"""filled is a decorator, which fills the interior of the path"""
def __init__(self, styles=[]):
attr.exclusiveattr.__init__(self, _filled)
self.styles = attr.mergeattrs(styles)
attr.checkattrs(self.styles, [style.fillstyle])
def __call__(self, styles=[]):
# XXX or should we also merge self.styles
return _filled(styles)
def decorate(self, dp, texrunner):
if dp.fillstyles is not None:
raise RuntimeError("Cannot fill an already filled path")
dp.fillstyles = self.styles
filled = _filled()
filled.clear = attr.clearclass(_filled)
#
# Arrows
#
# helper function which constructs the arrowhead
def _arrowhead(anormpath, arclenfrombegin, direction, size, angle, constrictionlen):
"""helper routine, which returns an arrowhead from a given anormpath
- arclenfrombegin: position of arrow in arc length from the start of the path
- direction: +1 for an arrow pointing along the direction of anormpath or
-1 for an arrow pointing opposite to the direction of normpath
- size: size of the arrow as arc length
- angle. opening angle
- constrictionlen: None (no constriction) or arc length of constriction.
"""
# arc length and coordinates of tip
tx, ty = anormpath.at(arclenfrombegin)
# construct the template for the arrow by cutting the path at the
# corresponding length
arrowtemplate = anormpath.split([arclenfrombegin, arclenfrombegin - direction * size])[1]
# from this template, we construct the two outer curves of the arrow
arrowl = arrowtemplate.transformed(trafo.rotate(-angle/2.0, tx, ty))
arrowr = arrowtemplate.transformed(trafo.rotate( angle/2.0, tx, ty))
# now come the joining backward parts
if constrictionlen is not None:
# constriction point (cx, cy) lies on path
cx, cy = anormpath.at(arclenfrombegin - direction * constrictionlen)
arrowcr= path.line(*(arrowr.atend() + (cx,cy)))
arrow = arrowl.reversed() << arrowr << arrowcr
else:
arrow = arrowl.reversed() << arrowr
arrow[-1].close()
return arrow
_base = 6 * unit.v_pt
class arrow(deco, attr.attr):
"""arrow is a decorator which adds an arrow to either side of the path"""
def __init__(self, attrs=[], pos=1, reversed=0, size=_base, angle=45, constriction=0.8):
self.attrs = attr.mergeattrs([style.linestyle.solid, filled] + attrs)
attr.checkattrs(self.attrs, [deco, style.fillstyle, style.strokestyle])
self.pos = pos
self.reversed = reversed
self.size = size
self.angle = angle
self.constriction = constriction
def __call__(self, attrs=None, pos=None, reversed=None, size=None, angle=None, constriction=_marker):
if attrs is None:
attrs = self.attrs
if pos is None:
pos = self.pos
if reversed is None:
reversed = self.reversed
if size is None:
size = self.size
if angle is None:
angle = self.angle
if constriction is _marker:
constriction = self.constriction
return arrow(attrs=attrs, pos=pos, reversed=reversed, size=size, angle=angle, constriction=constriction)
def decorate(self, dp, texrunner):
dp.ensurenormpath()
anormpath = dp.path
# calculate absolute arc length of constricition
# Note that we have to correct this length because the arrowtemplates are rotated
# by self.angle/2 to the left and right. Hence, if we want no constriction, i.e., for
# self.constriction = 1, we actually have a length which is approximately shorter
# by the given geometrical factor.
if self.constriction is not None:
constrictionlen = arrowheadconstrictionlen = self.size * self.constriction * math.cos(math.radians(self.angle/2.0))
else:
# if we do not want a constriction, i.e. constriction is None, we still
# need constrictionlen for cutting the path
constrictionlen = self.size * 1 * math.cos(math.radians(self.angle/2.0))
arrowheadconstrictionlen = None
arclenfrombegin = (1-self.reversed)*constrictionlen + self.pos * (anormpath.arclen() - constrictionlen)
direction = self.reversed and -1 or 1
arrowhead = _arrowhead(anormpath, arclenfrombegin, direction, self.size, self.angle, arrowheadconstrictionlen)
# add arrowhead to decoratedpath
dp.ornaments.draw(arrowhead, self.attrs)
# exlude part of the path from stroking when the arrow is strictly at the begin or the end
if self.pos == 0 and self.reversed:
dp.excluderange(0, min(self.size, constrictionlen))
elif self.pos == 1 and not self.reversed:
dp.excluderange(anormpath.end() - min(self.size, constrictionlen), anormpath.end())
arrow.clear = attr.clearclass(arrow)
# arrows at begin of path
barrow = arrow(pos=0, reversed=1)
barrow.SMALL = barrow(size=_base/math.sqrt(64))
barrow.SMALl = barrow(size=_base/math.sqrt(32))
barrow.SMAll = barrow(size=_base/math.sqrt(16))
barrow.SMall = barrow(size=_base/math.sqrt(8))
barrow.Small = barrow(size=_base/math.sqrt(4))
barrow.small = barrow(size=_base/math.sqrt(2))
barrow.normal = barrow(size=_base)
barrow.large = barrow(size=_base*math.sqrt(2))
barrow.Large = barrow(size=_base*math.sqrt(4))
barrow.LArge = barrow(size=_base*math.sqrt(8))
barrow.LARge = barrow(size=_base*math.sqrt(16))
barrow.LARGe = barrow(size=_base*math.sqrt(32))
barrow.LARGE = barrow(size=_base*math.sqrt(64))
# arrows at end of path
earrow = arrow()
earrow.SMALL = earrow(size=_base/math.sqrt(64))
earrow.SMALl = earrow(size=_base/math.sqrt(32))
earrow.SMAll = earrow(size=_base/math.sqrt(16))
earrow.SMall = earrow(size=_base/math.sqrt(8))
earrow.Small = earrow(size=_base/math.sqrt(4))
earrow.small = earrow(size=_base/math.sqrt(2))
earrow.normal = earrow(size=_base)
earrow.large = earrow(size=_base*math.sqrt(2))
earrow.Large = earrow(size=_base*math.sqrt(4))
earrow.LArge = earrow(size=_base*math.sqrt(8))
earrow.LARge = earrow(size=_base*math.sqrt(16))
earrow.LARGe = earrow(size=_base*math.sqrt(32))
earrow.LARGE = earrow(size=_base*math.sqrt(64))
class text(deco, attr.attr):
"""a simple text decorator"""
def __init__(self, text, textattrs=[], angle=0, relangle=None, textdist=0.2,
relarclenpos=0.5, arclenfrombegin=None, arclenfromend=None,
texrunner=None):
if arclenfrombegin is not None and arclenfromend is not None:
raise ValueError("either set arclenfrombegin or arclenfromend")
self.text = text
self.textattrs = textattrs
self.angle = angle
self.relangle = relangle
self.textdist = textdist
self.relarclenpos = relarclenpos
self.arclenfrombegin = arclenfrombegin
self.arclenfromend = arclenfromend
self.texrunner = texrunner
def decorate(self, dp, texrunner):
if self.texrunner:
texrunner = self.texrunner
import text as textmodule
textattrs = attr.mergeattrs([textmodule.halign.center, textmodule.vshift.mathaxis] + self.textattrs)
dp.ensurenormpath()
if self.arclenfrombegin is not None:
param = dp.path.begin() + self.arclenfrombegin
elif self.arclenfromend is not None:
param = dp.path.end() - self.arclenfromend
else:
# relarcpos is used, when neither arcfrombegin nor arcfromend is given
param = self.relarclenpos * dp.path.arclen()
x, y = dp.path.at(param)
if self.relangle is not None:
a = dp.path.trafo(param).apply_pt(math.cos(self.relangle*math.pi/180), math.sin(self.relangle*math.pi/180))
b = dp.path.trafo(param).apply_pt(0, 0)
angle = math.atan2(a[1] - b[1], a[0] - b[0])
else:
angle = self.angle*math.pi/180
t = texrunner.text(x, y, self.text, textattrs)
t.linealign(self.textdist, math.cos(angle), math.sin(angle))
dp.ornaments.insert(t)
class shownormpath(deco, attr.attr):
def decorate(self, dp, texrunner):
r_pt = 2
dp.ensurenormpath()
for normsubpath in dp.path.normsubpaths:
for i, normsubpathitem in enumerate(normsubpath.normsubpathitems):
if isinstance(normsubpathitem, normpath.normcurve_pt):
dp.ornaments.stroke(normpath.normpath([normpath.normsubpath([normsubpathitem])]), [color.rgb.green])
else:
dp.ornaments.stroke(normpath.normpath([normpath.normsubpath([normsubpathitem])]), [color.rgb.blue])
for normsubpath in dp.path.normsubpaths:
for i, normsubpathitem in enumerate(normsubpath.normsubpathitems):
if isinstance(normsubpathitem, normpath.normcurve_pt):
dp.ornaments.stroke(path.line_pt(normsubpathitem.x0_pt, normsubpathitem.y0_pt, normsubpathitem.x1_pt, normsubpathitem.y1_pt), [style.linestyle.dashed, color.rgb.red])
dp.ornaments.stroke(path.line_pt(normsubpathitem.x2_pt, normsubpathitem.y2_pt, normsubpathitem.x3_pt, normsubpathitem.y3_pt), [style.linestyle.dashed, color.rgb.red])
dp.ornaments.draw(path.circle_pt(normsubpathitem.x1_pt, normsubpathitem.y1_pt, r_pt), [filled([color.rgb.red])])
dp.ornaments.draw(path.circle_pt(normsubpathitem.x2_pt, normsubpathitem.y2_pt, r_pt), [filled([color.rgb.red])])
for normsubpath in dp.path.normsubpaths:
for i, normsubpathitem in enumerate(normsubpath.normsubpathitems):
if not i:
x_pt, y_pt = normsubpathitem.atbegin_pt()
dp.ornaments.draw(path.circle_pt(x_pt, y_pt, r_pt), [filled])
x_pt, y_pt = normsubpathitem.atend_pt()
dp.ornaments.draw(path.circle_pt(x_pt, y_pt, r_pt), [filled])
class linehatched(deco, attr.exclusiveattr, attr.clearclass):
"""draws a pattern with explicit lines
This class acts as a drop-in replacement for postscript patterns
from the pattern module which are not understood by some printers"""
def __init__(self, dist, angle, strokestyles=[], cross=0):
attr.clearclass.__init__(self, _filled)
attr.exclusiveattr.__init__(self, linehatched)
self.dist = dist
self.angle = angle
self.strokestyles = attr.mergeattrs([style.linewidth.THIN] + strokestyles)
attr.checkattrs(self.strokestyles, [style.strokestyle])
self.cross = cross
def __call__(self, dist=None, angle=None, strokestyles=None, cross=None):
if dist is None:
dist = self.dist
if angle is None:
angle = self.angle
if strokestyles is None:
strokestyles = self.strokestyles
if cross is None:
cross = self.cross
return linehatched(dist, angle, strokestyles, cross)
def _decocanvas(self, angle, dp, texrunner):
dp.ensurenormpath()
dist_pt = unit.topt(self.dist)
c = canvas.canvas([canvas.clip(dp.path)])
llx_pt, lly_pt, urx_pt, ury_pt = dp.path.bbox().highrestuple_pt()
center_pt = 0.5*(llx_pt+urx_pt), 0.5*(lly_pt+ury_pt)
radius_pt = 0.5*math.hypot(urx_pt-llx_pt, ury_pt-lly_pt) + dist_pt
n = int(2*radius_pt / dist_pt) + 1
for i in range(n):
x_pt = center_pt[0] - radius_pt + i*dist_pt
c.stroke(path.line_pt(x_pt, center_pt[1]-radius_pt, x_pt, center_pt[1]+radius_pt),
[trafo.rotate_pt(angle, center_pt[0], center_pt[1])] + self.strokestyles)
return c
def decorate(self, dp, texrunner):
dp.ornaments.insert(self._decocanvas(self.angle, dp, texrunner))
if self.cross:
dp.ornaments.insert(self._decocanvas(self.angle+90, dp, texrunner))
def merge(self, attrs):
# act as attr.clearclass and as attr.exclusiveattr at the same time
newattrs = attr.exclusiveattr.merge(self, attrs)
return attr.clearclass.merge(self, newattrs)
linehatched.clear = attr.clearclass(linehatched)
_hatch_base = 0.1 * unit.v_cm
linehatched0 = linehatched(_hatch_base, 0)
linehatched0.SMALL = linehatched0(_hatch_base/math.sqrt(64))
linehatched0.SMALL = linehatched0(_hatch_base/math.sqrt(64))
linehatched0.SMALl = linehatched0(_hatch_base/math.sqrt(32))
linehatched0.SMAll = linehatched0(_hatch_base/math.sqrt(16))
linehatched0.SMall = linehatched0(_hatch_base/math.sqrt(8))
linehatched0.Small = linehatched0(_hatch_base/math.sqrt(4))
linehatched0.small = linehatched0(_hatch_base/math.sqrt(2))
linehatched0.normal = linehatched0(_hatch_base)
linehatched0.large = linehatched0(_hatch_base*math.sqrt(2))
linehatched0.Large = linehatched0(_hatch_base*math.sqrt(4))
linehatched0.LArge = linehatched0(_hatch_base*math.sqrt(8))
linehatched0.LARge = linehatched0(_hatch_base*math.sqrt(16))
linehatched0.LARGe = linehatched0(_hatch_base*math.sqrt(32))
linehatched0.LARGE = linehatched0(_hatch_base*math.sqrt(64))
linehatched45 = linehatched(_hatch_base, 45)
linehatched45.SMALL = linehatched45(_hatch_base/math.sqrt(64))
linehatched45.SMALl = linehatched45(_hatch_base/math.sqrt(32))
linehatched45.SMAll = linehatched45(_hatch_base/math.sqrt(16))
linehatched45.SMall = linehatched45(_hatch_base/math.sqrt(8))
linehatched45.Small = linehatched45(_hatch_base/math.sqrt(4))
linehatched45.small = linehatched45(_hatch_base/math.sqrt(2))
linehatched45.normal = linehatched45(_hatch_base)
linehatched45.large = linehatched45(_hatch_base*math.sqrt(2))
linehatched45.Large = linehatched45(_hatch_base*math.sqrt(4))
linehatched45.LArge = linehatched45(_hatch_base*math.sqrt(8))
linehatched45.LARge = linehatched45(_hatch_base*math.sqrt(16))
linehatched45.LARGe = linehatched45(_hatch_base*math.sqrt(32))
linehatched45.LARGE = linehatched45(_hatch_base*math.sqrt(64))
linehatched90 = linehatched(_hatch_base, 90)
linehatched90.SMALL = linehatched90(_hatch_base/math.sqrt(64))
linehatched90.SMALl = linehatched90(_hatch_base/math.sqrt(32))
linehatched90.SMAll = linehatched90(_hatch_base/math.sqrt(16))
linehatched90.SMall = linehatched90(_hatch_base/math.sqrt(8))
linehatched90.Small = linehatched90(_hatch_base/math.sqrt(4))
linehatched90.small = linehatched90(_hatch_base/math.sqrt(2))
linehatched90.normal = linehatched90(_hatch_base)
linehatched90.large = linehatched90(_hatch_base*math.sqrt(2))
linehatched90.Large = linehatched90(_hatch_base*math.sqrt(4))
linehatched90.LArge = linehatched90(_hatch_base*math.sqrt(8))
linehatched90.LARge = linehatched90(_hatch_base*math.sqrt(16))
linehatched90.LARGe = linehatched90(_hatch_base*math.sqrt(32))
linehatched90.LARGE = linehatched90(_hatch_base*math.sqrt(64))
linehatched135 = linehatched(_hatch_base, 135)
linehatched135.SMALL = linehatched135(_hatch_base/math.sqrt(64))
linehatched135.SMALl = linehatched135(_hatch_base/math.sqrt(32))
linehatched135.SMAll = linehatched135(_hatch_base/math.sqrt(16))
linehatched135.SMall = linehatched135(_hatch_base/math.sqrt(8))
linehatched135.Small = linehatched135(_hatch_base/math.sqrt(4))
linehatched135.small = linehatched135(_hatch_base/math.sqrt(2))
linehatched135.normal = linehatched135(_hatch_base)
linehatched135.large = linehatched135(_hatch_base*math.sqrt(2))
linehatched135.Large = linehatched135(_hatch_base*math.sqrt(4))
linehatched135.LArge = linehatched135(_hatch_base*math.sqrt(8))
linehatched135.LARge = linehatched135(_hatch_base*math.sqrt(16))
linehatched135.LARGe = linehatched135(_hatch_base*math.sqrt(32))
linehatched135.LARGE = linehatched135(_hatch_base*math.sqrt(64))
crosslinehatched0 = linehatched(_hatch_base, 0, cross=1)
crosslinehatched0.SMALL = crosslinehatched0(_hatch_base/math.sqrt(64))
crosslinehatched0.SMALl = crosslinehatched0(_hatch_base/math.sqrt(32))
crosslinehatched0.SMAll = crosslinehatched0(_hatch_base/math.sqrt(16))
crosslinehatched0.SMall = crosslinehatched0(_hatch_base/math.sqrt(8))
crosslinehatched0.Small = crosslinehatched0(_hatch_base/math.sqrt(4))
crosslinehatched0.small = crosslinehatched0(_hatch_base/math.sqrt(2))
crosslinehatched0.normal = crosslinehatched0
crosslinehatched0.large = crosslinehatched0(_hatch_base*math.sqrt(2))
crosslinehatched0.Large = crosslinehatched0(_hatch_base*math.sqrt(4))
crosslinehatched0.LArge = crosslinehatched0(_hatch_base*math.sqrt(8))
crosslinehatched0.LARge = crosslinehatched0(_hatch_base*math.sqrt(16))
crosslinehatched0.LARGe = crosslinehatched0(_hatch_base*math.sqrt(32))
crosslinehatched0.LARGE = crosslinehatched0(_hatch_base*math.sqrt(64))
crosslinehatched45 = linehatched(_hatch_base, 45, cross=1)
crosslinehatched45.SMALL = crosslinehatched45(_hatch_base/math.sqrt(64))
crosslinehatched45.SMALl = crosslinehatched45(_hatch_base/math.sqrt(32))
crosslinehatched45.SMAll = crosslinehatched45(_hatch_base/math.sqrt(16))
crosslinehatched45.SMall = crosslinehatched45(_hatch_base/math.sqrt(8))
crosslinehatched45.Small = crosslinehatched45(_hatch_base/math.sqrt(4))
crosslinehatched45.small = crosslinehatched45(_hatch_base/math.sqrt(2))
crosslinehatched45.normal = crosslinehatched45
crosslinehatched45.large = crosslinehatched45(_hatch_base*math.sqrt(2))
crosslinehatched45.Large = crosslinehatched45(_hatch_base*math.sqrt(4))
crosslinehatched45.LArge = crosslinehatched45(_hatch_base*math.sqrt(8))
crosslinehatched45.LARge = crosslinehatched45(_hatch_base*math.sqrt(16))
crosslinehatched45.LARGe = crosslinehatched45(_hatch_base*math.sqrt(32))
crosslinehatched45.LARGE = crosslinehatched45(_hatch_base*math.sqrt(64))
class colorgradient(deco, attr.attr):
"""inserts pieces of the path in different colors"""
def __init__(self, grad, attrs=[], steps=20):
self.attrs = attrs
self.grad = grad
self.steps = steps
def decorate(self, dp, texrunner):
dp.ensurenormpath()
l = dp.path.arclen()
colors = [self.grad.select(n, self.steps) for n in range(self.steps)]
colors.reverse()
params = dp.path.arclentoparam([l*i/float(self.steps) for i in range(self.steps)])
params.reverse()
c = canvas.canvas()
# treat the end pieces separately
c.stroke(dp.path.split(params[1])[1], attr.mergeattrs([colors[0]] + self.attrs))
for n in range(1,self.steps-1):
c.stroke(dp.path.split([params[n-1],params[n+1]])[1], attr.mergeattrs([colors[n]] + self.attrs))
c.stroke(dp.path.split(params[-2])[0], attr.mergeattrs([colors[-1]] + self.attrs))
dp.ornaments.insert(c)
class brace(deco, attr.attr):
r"""draws a nicely curled brace
In most cases, the original line is not wanted use canvas.canvas.draw(..) for it
Geometrical parameters:
inner /\ strokes
____________/ \__________
/ bar bar \ outer
/ \ strokes
totalheight distance from the jaws to the middle cap
barthickness thickness of the main bars
innerstrokesthickness thickness of the two ending strokes
outerstrokesthickness thickness of the inner strokes at the middle cap
innerstrokesrelheight height of the inner/outer strokes, relative to the total height
outerstrokesrelheight this determines the angle of the main bars!
should be around 0.5
Note: if innerstrokesrelheight + outerstrokesrelheight == 1 then the main bars
will be aligned parallel to the connecting line between the endpoints
outerstrokesangle angle of the two ending strokes
innerstrokesangle angle between the inner strokes at the middle cap
slantstrokesangle extra slanting of the inner/outer strokes
innerstrokessmoothness smoothing parameter for the inner + outer strokes
outerstrokessmoothness should be around 1 (allowed: [0,infty))
middlerelpos position of the middle cap (0 == left, 1 == right)
"""
# This code is experimental because it is unclear
# how the brace fits into the concepts of PyX
#
# Some thoughts:
# - a brace needs to be decoratable with text
# it needs stroking and filling attributes
# - the brace is not really a box:
# it has two "anchor" points that are important for aligning it to other things
# and one "anchor" point (plus direction) for aligning other things
# - a brace is not a deformer:
# it does not look at anything else than begin/endpoint of a path
# - a brace might be a connector (which is to be dissolved into the box concept later?)
def __init__(self, reverse=1, stretch=None, dist=None, fillattrs=[],
totalheight=12*unit.x_pt,
barthickness=0.5*unit.x_pt, innerstrokesthickness=0.25*unit.x_pt, outerstrokesthickness=0.25*unit.x_pt,
innerstrokesrelheight=0.6, outerstrokesrelheight=0.7,
innerstrokesangle=30, outerstrokesangle=25, slantstrokesangle=5,
innerstrokessmoothness=2.0, outerstrokessmoothness=2.5,
middlerelpos=0.5):
self.fillattrs = fillattrs
self.reverse = reverse
self.stretch = stretch
self.dist = dist
self.totalheight = totalheight
self.barthickness = barthickness
self.innerstrokesthickness = innerstrokesthickness
self.outerstrokesthickness = outerstrokesthickness
self.innerstrokesrelheight = innerstrokesrelheight
self.outerstrokesrelheight = outerstrokesrelheight
self.innerstrokesangle = innerstrokesangle
self.outerstrokesangle = outerstrokesangle
self.slantstrokesangle = slantstrokesangle
self.innerstrokessmoothness = innerstrokessmoothness
self.outerstrokessmoothness = outerstrokessmoothness
self.middlerelpos = middlerelpos
def __call__(self, **kwargs):
for name in ["reverse", "stretch", "dist", "fillattrs",
"totalheight", "barthickness", "innerstrokesthickness", "outerstrokesthickness",
"innerstrokesrelheight", "outerstrokesrelheight", "innerstrokesangle", "outerstrokesangle", "slantstrokesangle",
"innerstrokessmoothness", "outerstrokessmoothness", "middlerelpos"]:
if not kwargs.has_key(name):
kwargs[name] = self.__dict__[name]
return brace(**kwargs)
def _halfbracepath_pt(self, length_pt, height_pt, ilength_pt, olength_pt, # <<<
ithick_pt, othick_pt, bthick_pt, cos_iangle, sin_iangle, cos_oangle,
sin_oangle, cos_slangle, sin_slangle):
ismooth = self.innerstrokessmoothness
osmooth = self.outerstrokessmoothness
# these two parameters are not important enough to be seen outside
inner_cap_param = 1.5
outer_cap_param = 2.5
outerextracurved = 0.6 # in (0, 1]
# 1.0 will lead to F=G, the outer strokes will not be curved at their ends.
# The smaller, the more curvature
# build an orientation path (three straight lines)
#
# \q1
# / \
# / \
# _/ \______________________________________q5
# q2 q3 q4 \
# \
# \
# \q6
#
# get the points for that:
q1 = (0, height_pt - inner_cap_param * ithick_pt + 0.5*ithick_pt/sin_iangle)
q2 = (q1[0] + ilength_pt * sin_iangle,
q1[1] - ilength_pt * cos_iangle)
q6 = (length_pt, 0)
q5 = (q6[0] - olength_pt * sin_oangle,
q6[1] + olength_pt * cos_oangle)
bardir = (q5[0] - q2[0], q5[1] - q2[1])
bardirnorm = math.hypot(*bardir)
bardir = (bardir[0]/bardirnorm, bardir[1]/bardirnorm)
ismoothlength_pt = ilength_pt * ismooth
osmoothlength_pt = olength_pt * osmooth
if bardirnorm < ismoothlength_pt + osmoothlength_pt:
ismoothlength_pt = bardirnorm * ismoothlength_pt / (ismoothlength_pt + osmoothlength_pt)
osmoothlength_pt = bardirnorm * osmoothlength_pt / (ismoothlength_pt + osmoothlength_pt)
q3 = (q2[0] + ismoothlength_pt * bardir[0],
q2[1] + ismoothlength_pt * bardir[1])
q4 = (q5[0] - osmoothlength_pt * bardir[0],
q5[1] - osmoothlength_pt * bardir[1])
#
# P _O
# / | \A2
# / A1\ \
# / \ B2C2________D2___________E2_______F2___G2
# \______________________________________ \
# B1,C1 D1 E1 F1 G1 \
# \ \
# \ \H2
# H1\_/I2
# I1
#
# the halfbraces meet in P and A1:
P = (0, height_pt)
A1 = (0, height_pt - inner_cap_param * ithick_pt)
# A2 is A1, shifted by the inner thickness
A2 = (A1[0] + ithick_pt * cos_iangle,
A1[1] + ithick_pt * sin_iangle)
s, t = deformer.intersection(P, A2, (cos_slangle, sin_slangle), (sin_iangle, -cos_iangle))
O = (P[0] + s * cos_slangle,
P[1] + s * sin_slangle)
# from D1 to E1 is the straight part of the brace
# also back from E2 to D1
D1 = (q3[0] + bthick_pt * bardir[1],
q3[1] - bthick_pt * bardir[0])
D2 = (q3[0] - bthick_pt * bardir[1],
q3[1] + bthick_pt * bardir[0])
E1 = (q4[0] + bthick_pt * bardir[1],
q4[1] - bthick_pt * bardir[0])
E2 = (q4[0] - bthick_pt * bardir[1],
q4[1] + bthick_pt * bardir[0])
# I1, I2 are the control points at the outer stroke
I1 = (q6[0] - 0.5 * othick_pt * cos_oangle,
q6[1] - 0.5 * othick_pt * sin_oangle)
I2 = (q6[0] + 0.5 * othick_pt * cos_oangle,
q6[1] + 0.5 * othick_pt * sin_oangle)
# get the control points for the curved parts of the brace
s, t = deformer.intersection(A1, D1, (sin_iangle, -cos_iangle), bardir)
B1 = (D1[0] + t * bardir[0],
D1[1] + t * bardir[1])
s, t = deformer.intersection(A2, D2, (sin_iangle, -cos_iangle), bardir)
B2 = (D2[0] + t * bardir[0],
D2[1] + t * bardir[1])
s, t = deformer.intersection(E1, I1, bardir, (-sin_oangle, cos_oangle))
G1 = (E1[0] + s * bardir[0],
E1[1] + s * bardir[1])
s, t = deformer.intersection(E2, I2, bardir, (-sin_oangle, cos_oangle))
G2 = (E2[0] + s * bardir[0],
E2[1] + s * bardir[1])
# at the inner strokes: use curvature zero at both ends
C1 = B1
C2 = B2
# at the outer strokes: use curvature zero only at the connection to
# the straight part
F1 = (outerextracurved * G1[0] + (1 - outerextracurved) * E1[0],
outerextracurved * G1[1] + (1 - outerextracurved) * E1[1])
F2 = (outerextracurved * G2[0] + (1 - outerextracurved) * E2[0],
outerextracurved * G2[1] + (1 - outerextracurved) * E2[1])
# the tip of the outer stroke, endpoints of the bezier curve
H1 = (I1[0] - outer_cap_param * othick_pt * sin_oangle,
I1[1] + outer_cap_param * othick_pt * cos_oangle)
H2 = (I2[0] - outer_cap_param * othick_pt * sin_oangle,
I2[1] + outer_cap_param * othick_pt * cos_oangle)
#for qq in [A1,B1,C1,D1,E1,F1,G1,H1,I1,
# A2,B2,C2,D2,E2,F2,G2,H2,I2,
# O,P
# ]:
# cc.fill(path.circle(qq[0], qq[1], 0.5), [color.rgb.green])
# now build the right halfbrace
bracepath = path.path(path.moveto_pt(*A1))
bracepath.append(path.curveto_pt(B1[0], B1[1], C1[0], C1[1], D1[0], D1[1]))
bracepath.append(path.lineto_pt(E1[0], E1[1]))
bracepath.append(path.curveto_pt(F1[0], F1[1], G1[0], G1[1], H1[0], H1[1]))
# the tip of the right halfbrace
bracepath.append(path.curveto_pt(I1[0], I1[1], I2[0], I2[1], H2[0], H2[1]))
# the rest of the right halfbrace
bracepath.append(path.curveto_pt(G2[0], G2[1], F2[0], F2[1], E2[0], E2[1]))
bracepath.append(path.lineto_pt(D2[0], D2[1]))
bracepath.append(path.curveto_pt(C2[0], C2[1], B2[0], B2[1], A2[0], A2[1]))
# the tip in the middle of the brace
bracepath.append(path.curveto_pt(O[0], O[1], O[0], O[1], P[0], P[1]))
return bracepath
# >>>
def _bracepath(self, x0_pt, y0_pt, x1_pt, y1_pt): # <<<
height_pt = unit.topt(self.totalheight)
totallength_pt = math.hypot(x1_pt - x0_pt, y1_pt - y0_pt)
leftlength_pt = self.middlerelpos * totallength_pt
rightlength_pt = totallength_pt - leftlength_pt
ithick_pt = unit.topt(self.innerstrokesthickness)
othick_pt = unit.topt(self.outerstrokesthickness)
bthick_pt = unit.topt(self.barthickness)
# create the left halfbrace with positive slanting
# because we will mirror this part
cos_iangle = math.cos(math.radians(0.5*self.innerstrokesangle - self.slantstrokesangle))
sin_iangle = math.sin(math.radians(0.5*self.innerstrokesangle - self.slantstrokesangle))
cos_oangle = math.cos(math.radians(self.outerstrokesangle - self.slantstrokesangle))
sin_oangle = math.sin(math.radians(self.outerstrokesangle - self.slantstrokesangle))
cos_slangle = math.cos(math.radians(-self.slantstrokesangle))
sin_slangle = math.sin(math.radians(-self.slantstrokesangle))
ilength_pt = self.innerstrokesrelheight * height_pt / cos_iangle
olength_pt = self.outerstrokesrelheight * height_pt / cos_oangle
bracepath = self._halfbracepath_pt(leftlength_pt, height_pt,
ilength_pt, olength_pt, ithick_pt, othick_pt, bthick_pt, cos_iangle,
sin_iangle, cos_oangle, sin_oangle, cos_slangle,
sin_slangle).reversed().transformed(trafo.mirror(90))
# create the right halfbrace with negative slanting
cos_iangle = math.cos(math.radians(0.5*self.innerstrokesangle + self.slantstrokesangle))
sin_iangle = math.sin(math.radians(0.5*self.innerstrokesangle + self.slantstrokesangle))
cos_oangle = math.cos(math.radians(self.outerstrokesangle + self.slantstrokesangle))
sin_oangle = math.sin(math.radians(self.outerstrokesangle + self.slantstrokesangle))
cos_slangle = math.cos(math.radians(-self.slantstrokesangle))
sin_slangle = math.sin(math.radians(-self.slantstrokesangle))
ilength_pt = self.innerstrokesrelheight * height_pt / cos_iangle
olength_pt = self.outerstrokesrelheight * height_pt / cos_oangle
bracepath = bracepath << self._halfbracepath_pt(rightlength_pt, height_pt,
ilength_pt, olength_pt, ithick_pt, othick_pt, bthick_pt, cos_iangle,
sin_iangle, cos_oangle, sin_oangle, cos_slangle,
sin_slangle)
return bracepath.transformed(
# two trafos for matching the given endpoints
trafo.translate_pt(x0_pt, y0_pt) *
trafo.rotate_pt(math.degrees(math.atan2(y1_pt-y0_pt, x1_pt-x0_pt))) *
# one trafo to move the brace's left outer stroke to zero
trafo.translate_pt(leftlength_pt, 0))
# >>>
def decorate(self, dp, texrunner):
dp.ensurenormpath()
x0_pt, y0_pt = dp.path.atbegin_pt()
x1_pt, y1_pt = dp.path.atend_pt()
if self.reverse:
x0_pt, y0_pt, x1_pt, y1_pt = x1_pt, y1_pt, x0_pt, y0_pt
if self.stretch is not None:
xm, ym = 0.5*(x0_pt+x1_pt), 0.5*(y0_pt+y1_pt)
x0_pt, y0_pt = xm + self.stretch*(x0_pt-xm), ym + self.stretch*(y0_pt-ym)
x1_pt, y1_pt = xm + self.stretch*(x1_pt-xm), ym + self.stretch*(y1_pt-ym)
if self.dist is not None:
d = unit.topt(self.dist)
dx, dy = dp.path.rotation_pt(dp.path.begin()).apply_pt(0, 1)
x0_pt += d*dx; y0_pt += d*dy
dx, dy = dp.path.rotation_pt(dp.path.end()).apply_pt(0, 1)
x1_pt += d*dx; y1_pt += d*dy
dp.ornaments.fill(self._bracepath(x0_pt, y0_pt, x1_pt, y1_pt), self.fillattrs)
brace.clear = attr.clearclass(brace)
leftbrace = brace(reverse=0, middlerelpos=0.55, innerstrokesrelheight=0.6, outerstrokesrelheight=0.7, slantstrokesangle=-10)
rightbrace = brace(reverse=1, middlerelpos=0.45, innerstrokesrelheight=0.6, outerstrokesrelheight=0.7, slantstrokesangle=10)
belowbrace = brace(reverse=1, middlerelpos=0.55, innerstrokesrelheight=0.7, outerstrokesrelheight=0.9, slantstrokesangle=-10)
abovebrace = brace(reverse=0, middlerelpos=0.45, innerstrokesrelheight=0.7, outerstrokesrelheight=0.9, slantstrokesangle=-10)
straightbrace = brace(innerstrokesrelheight=0.5, outerstrokesrelheight=0.5,
innerstrokesangle=30, outerstrokesangle=30, slantstrokesangle=0,
innerstrokessmoothness=1.0, outerstrokessmoothness=1.0)
|