This file is indexed.

/usr/share/pyshared/pyx/mathutils.py is in python-pyx 0.11.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# -*- encoding: utf-8 -*-
#
#
# Copyright (C) 2005-2006 Michael Schindler <m-schindler@users.sourceforge.net>
# Copyright (C) 2006 André Wobst <wobsta@users.sourceforge.net>
#
# This file is part of PyX (http://pyx.sourceforge.net/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA

import math, types

# try:
#     import Numeric, LinearAlgebra
#     _has_numeric = 1
# except:
#     _has_numeric = 0


def sign(x):
    """sign of x, i.e. +1 or -1; returns 1 for x == 0"""
    if x >= 0:
        return 1
    return -1


def asinh(x):
    """Return the arc hyperbolic sine of x."""
    return math.log(x+math.sqrt(x*x+1))


def acosh(x):
    """Return the arc hyperbolic cosine of x."""
    return math.log(x+math.sqrt(x*x-1))


def _realroots_quadratic(a1, a0):
    """gives the real roots of x**2 + a1 * x + a0 = 0"""
    D = a1*a1 - 4*a0
    if D < 0:
        return []
    SD = math.sqrt(D)
    return [0.5 * (-a1 + SD), 0.5 * (-a1 - SD)]


def _realroots_cubic(a2, a1, a0):
    """gives the real roots of x**3 + a2 * x**2 + a1 * x + a0 = 0"""
    # see http://mathworld.wolfram.com/CubicFormula.html for details

    Q = (3*a1 - a2*a2) / 9.0
    R = (9*a2*a1 - 27*a0 - 2*a2*a2*a2) / 54.0
    D = Q*Q*Q + R*R

    if D > 0:         # one real and two complex roots
        SD = math.sqrt(D)
        if R + SD >= 0:
            S = (R + SD)**(1/3.0)
        else:
            S = -(-R - SD)**(1/3.0)
        if R - SD >= 0:
            T = (R - SD)**(1/3.0)
        else:
            T = -(SD - R)**(1/3.0)
        return [S + T - a2/3.0]
    elif D == 0:
        if Q == 0:    # one real root (R==0)
            return [-a2/3.0]
        else:         # two real roots (R>0, Q<0)
            S = -math.sqrt(-Q)
            return [2*S - a2/3.0, -S - a2/3.0]
    else:             # three real roots (Q<0)
        SQ = math.sqrt(-Q)
        arg = R / (SQ**3)
        if arg >= 1:
            theta = 0
        elif arg <= -1:
            theta = math.pi
        else:
            theta = math.acos(R/(SQ**3))
        return [2 * SQ * math.cos((theta + 2*2*i*math.pi)/3.0) - a2/3.0 for i in range(3)]


def _realroots_quartic(a3, a2, a1, a0):
    """gives the real roots of x**4 + a3 * x**3 + a2 * x**2 + a1 * x + a0 = 0"""
    # see http://mathworld.wolfram.com/QuarticEquation.html for details
    ys = _realroots_cubic(-a2, a1*a3 - 4*a0, 4*a0*a2 - a1*a1 - a0*a3*a3)
    ys = [y for y in ys if a3*a3-4*a2+4*y >= 0 and  y*y-4*a0 >= 0]
    if not ys:
        return []
    y1 = min(ys)
    if a3*y1-2*a1 < 0:
        return (_realroots_quadratic(0.5*(a3+math.sqrt(a3*a3-4*a2+4*y1)), 0.5*(y1-math.sqrt(y1*y1-4*a0))) +
                _realroots_quadratic(0.5*(a3-math.sqrt(a3*a3-4*a2+4*y1)), 0.5*(y1+math.sqrt(y1*y1-4*a0))))
    else:
        return (_realroots_quadratic(0.5*(a3+math.sqrt(a3*a3-4*a2+4*y1)), 0.5*(y1+math.sqrt(y1*y1-4*a0))) +
                _realroots_quadratic(0.5*(a3-math.sqrt(a3*a3-4*a2+4*y1)), 0.5*(y1-math.sqrt(y1*y1-4*a0))))


def realpolyroots(*cs):
    """returns the roots of a polynom with given coefficients

    polynomial with coefficients given in cs:
      0 = \sum_i  cs[i] * x^(len(cs)-i-1)
    """
    if not cs:
        return [0]
    try:
        f = 1.0/cs[0]
        cs = [f*c for c in cs[1:]]
    except ArithmeticError:
        return realpolyroots(*cs[1:])
    else:
        n = len(cs)
        if n == 0:
            return []
        elif n == 1:
            return [-cs[0]]
        elif n == 2:
            return _realroots_quadratic(*cs)
        elif n == 3:
            return _realroots_cubic(*cs)
        elif n == 4:
            return _realroots_quartic(*cs)
        else:
            raise RuntimeError("realpolyroots solver currently limited to polynoms up to the power of 4")


# def realpolyroots_eigenvalue(*cs):
#     # as realpolyroots but using an equivalent eigenvalue problem
#     # (this code is currently used for functional tests only)
#     if not _has_numeric:
#         raise RuntimeError("realpolyroots_eigenvalue depends on Numeric")
#     if not cs:
#         return [0]
#     try:
#         f = 1.0/cs[0]
#         cs = [f*c for c in cs[1:]]
#     except ArithmeticError:
#         return realpolyroots_eigenvalue(*cs[1:])
#     else:
#         if not cs:
#             return []
#         n = len(cs)
#         a = Numeric.zeros((n, n), Numeric.Float)
#         for i in range(n-1):
#             a[i+1][i] = 1
#         for i in range(n):
#             a[0][i] = -cs[i]
#         rs = []
#         for r in LinearAlgebra.eigenvalues(a):
#             if type(r) == types.ComplexType:
#                 if not r.imag:
#                     rs.append(r.real)
#             else:
#                 rs.append(r)
#         return rs
#