/usr/share/pyshared/pyx/normpath.py is in python-pyx 0.11.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 | # -*- encoding: utf-8 -*-
#
#
# Copyright (C) 2002-2011 Jörg Lehmann <joergl@users.sourceforge.net>
# Copyright (C) 2003-2006 Michael Schindler <m-schindler@users.sourceforge.net>
# Copyright (C) 2002-2011 André Wobst <wobsta@users.sourceforge.net>
#
# This file is part of PyX (http://pyx.sourceforge.net/).
#
# PyX is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PyX is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PyX; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
import math
import mathutils, path, trafo, unit
import bbox as bboxmodule
# use new style classes when possible
__metaclass__ = type
class _marker: pass
################################################################################
# specific exception for normpath-related problems
class NormpathException(Exception): pass
# invalid result marker
class _invalid:
"""invalid result marker class
The following norm(sub)path(item) methods:
- trafo
- rotation
- tangent_pt
- tangent
- curvature_pt
- curvradius_pt
return list of result values, which might contain the invalid instance
defined below to signal points, where the result is undefined due to
properties of the norm(sub)path(item). Accessing invalid leads to an
NormpathException, but you can test the result values by "is invalid".
"""
def invalid1(self):
raise NormpathException("invalid result (the requested value is undefined due to path properties)")
__str__ = __repr__ = __neg__ = invalid1
def invalid2(self, other):
self.invalid1()
__cmp__ = __add__ = __iadd__ = __sub__ = __isub__ = __mul__ = __imul__ = __div__ = __truediv__ = __idiv__ = invalid2
invalid = _invalid()
################################################################################
# global epsilon (default precision of normsubpaths)
_epsilon = 1e-5
# minimal relative speed (abort condition for tangent information)
_minrelspeed = 1e-5
def set(epsilon=None, minrelspeed=None):
global _epsilon
global _minrelspeed
if epsilon is not None:
_epsilon = epsilon
if minrelspeed is not None:
_minrelspeed = minrelspeed
################################################################################
# normsubpathitems
################################################################################
class normsubpathitem:
"""element of a normalized sub path
Various operations on normsubpathitems might be subject of
approximitions. Those methods get the finite precision epsilon,
which is the accuracy needed expressed as a length in pts.
normsubpathitems should never be modified inplace, since references
might be shared between several normsubpaths.
"""
def arclen_pt(self, epsilon):
"""return arc length in pts"""
pass
def _arclentoparam_pt(self, lengths_pt, epsilon):
"""return a tuple of params and the total length arc length in pts"""
pass
def arclentoparam_pt(self, lengths_pt, epsilon):
"""return a tuple of params"""
pass
def at_pt(self, params):
"""return coordinates at params in pts"""
pass
def atbegin_pt(self):
"""return coordinates of first point in pts"""
pass
def atend_pt(self):
"""return coordinates of last point in pts"""
pass
def bbox(self):
"""return bounding box of normsubpathitem"""
pass
def cbox(self):
"""return control box of normsubpathitem
The control box also fully encloses the normsubpathitem but in the case of a Bezier
curve it is not the minimal box doing so. On the other hand, it is much faster
to calculate.
"""
pass
def curvature_pt(self, params):
"""return the curvature at params in 1/pts
The result contains the invalid instance at positions, where the
curvature is undefined."""
pass
def curveradius_pt(self, params):
"""return the curvature radius at params in pts
The curvature radius is the inverse of the curvature. Where the
curvature is undefined, the invalid instance is returned. Note that
this radius can be negative or positive, depending on the sign of the
curvature."""
pass
def intersect(self, other, epsilon):
"""intersect self with other normsubpathitem"""
pass
def modifiedbegin_pt(self, x_pt, y_pt):
"""return a normsubpathitem with a modified beginning point"""
pass
def modifiedend_pt(self, x_pt, y_pt):
"""return a normsubpathitem with a modified end point"""
pass
def _paramtoarclen_pt(self, param, epsilon):
"""return a tuple of arc lengths and the total arc length in pts"""
pass
def pathitem(self):
"""return pathitem corresponding to normsubpathitem"""
def reversed(self):
"""return reversed normsubpathitem"""
pass
def rotation(self, params):
"""return rotation trafos (i.e. trafos without translations) at params"""
pass
def segments(self, params):
"""return segments of the normsubpathitem
The returned list of normsubpathitems for the segments between
the params. params needs to contain at least two values.
"""
pass
def trafo(self, params):
"""return transformations at params"""
def transformed(self, trafo):
"""return transformed normsubpathitem according to trafo"""
pass
def outputPS(self, file, writer):
"""write PS code corresponding to normsubpathitem to file"""
pass
def outputPDF(self, file, writer):
"""write PDF code corresponding to normsubpathitem to file"""
pass
class normline_pt(normsubpathitem):
"""Straight line from (x0_pt, y0_pt) to (x1_pt, y1_pt) (coordinates in pts)"""
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt"
def __init__(self, x0_pt, y0_pt, x1_pt, y1_pt):
self.x0_pt = x0_pt
self.y0_pt = y0_pt
self.x1_pt = x1_pt
self.y1_pt = y1_pt
def __str__(self):
return "normline_pt(%g, %g, %g, %g)" % (self.x0_pt, self.y0_pt, self.x1_pt, self.y1_pt)
def _arclentoparam_pt(self, lengths_pt, epsilon):
# do self.arclen_pt inplace for performance reasons
l_pt = math.hypot(self.x0_pt-self.x1_pt, self.y0_pt-self.y1_pt)
return [length_pt/l_pt for length_pt in lengths_pt], l_pt
def arclentoparam_pt(self, lengths_pt, epsilon):
"""return a tuple of params"""
return self._arclentoparam_pt(lengths_pt, epsilon)[0]
def arclen_pt(self, epsilon):
return math.hypot(self.x0_pt-self.x1_pt, self.y0_pt-self.y1_pt)
def at_pt(self, params):
return [(self.x0_pt+(self.x1_pt-self.x0_pt)*t, self.y0_pt+(self.y1_pt-self.y0_pt)*t)
for t in params]
def atbegin_pt(self):
return self.x0_pt, self.y0_pt
def atend_pt(self):
return self.x1_pt, self.y1_pt
def bbox(self):
return bboxmodule.bbox_pt(min(self.x0_pt, self.x1_pt), min(self.y0_pt, self.y1_pt),
max(self.x0_pt, self.x1_pt), max(self.y0_pt, self.y1_pt))
cbox = bbox
def curvature_pt(self, params):
return [0] * len(params)
def curveradius_pt(self, params):
return [invalid] * len(params)
def intersect(self, other, epsilon):
if isinstance(other, normline_pt):
a_deltax_pt = self.x1_pt - self.x0_pt
a_deltay_pt = self.y1_pt - self.y0_pt
b_deltax_pt = other.x1_pt - other.x0_pt
b_deltay_pt = other.y1_pt - other.y0_pt
try:
det = 1.0 / (b_deltax_pt * a_deltay_pt - b_deltay_pt * a_deltax_pt)
except ArithmeticError:
return []
ba_deltax0_pt = other.x0_pt - self.x0_pt
ba_deltay0_pt = other.y0_pt - self.y0_pt
a_t = (b_deltax_pt * ba_deltay0_pt - b_deltay_pt * ba_deltax0_pt) * det
b_t = (a_deltax_pt * ba_deltay0_pt - a_deltay_pt * ba_deltax0_pt) * det
# check for intersections out of bound
# TODO: we might allow for a small out of bound errors.
if not (0<=a_t<=1 and 0<=b_t<=1):
return []
# return parameters of intersection
return [(a_t, b_t)]
else:
return [(s_t, o_t) for o_t, s_t in other.intersect(self, epsilon)]
def modifiedbegin_pt(self, x_pt, y_pt):
return normline_pt(x_pt, y_pt, self.x1_pt, self.y1_pt)
def modifiedend_pt(self, x_pt, y_pt):
return normline_pt(self.x0_pt, self.y0_pt, x_pt, y_pt)
def _paramtoarclen_pt(self, params, epsilon):
totalarclen_pt = self.arclen_pt(epsilon)
arclens_pt = [totalarclen_pt * param for param in params + [1]]
return arclens_pt[:-1], arclens_pt[-1]
def pathitem(self):
return path.lineto_pt(self.x1_pt, self.y1_pt)
def reversed(self):
return normline_pt(self.x1_pt, self.y1_pt, self.x0_pt, self.y0_pt)
def rotation(self, params):
return [trafo.rotate(math.degrees(math.atan2(self.y1_pt-self.y0_pt, self.x1_pt-self.x0_pt)))]*len(params)
def segments(self, params):
if len(params) < 2:
raise ValueError("at least two parameters needed in segments")
result = []
xl_pt = yl_pt = None
for t in params:
xr_pt = self.x0_pt + (self.x1_pt-self.x0_pt)*t
yr_pt = self.y0_pt + (self.y1_pt-self.y0_pt)*t
if xl_pt is not None:
result.append(normline_pt(xl_pt, yl_pt, xr_pt, yr_pt))
xl_pt = xr_pt
yl_pt = yr_pt
return result
def trafo(self, params):
rotate = trafo.rotate(math.degrees(math.atan2(self.y1_pt-self.y0_pt, self.x1_pt-self.x0_pt)))
return [trafo.translate_pt(*at_pt) * rotate
for param, at_pt in zip(params, self.at_pt(params))]
def transformed(self, trafo):
return normline_pt(*(trafo.apply_pt(self.x0_pt, self.y0_pt) + trafo.apply_pt(self.x1_pt, self.y1_pt)))
def outputPS(self, file, writer):
file.write("%g %g lineto\n" % (self.x1_pt, self.y1_pt))
def outputPDF(self, file, writer):
file.write("%f %f l\n" % (self.x1_pt, self.y1_pt))
class normcurve_pt(normsubpathitem):
"""Bezier curve with control points x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt (coordinates in pts)"""
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
def __init__(self, x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt):
self.x0_pt = x0_pt
self.y0_pt = y0_pt
self.x1_pt = x1_pt
self.y1_pt = y1_pt
self.x2_pt = x2_pt
self.y2_pt = y2_pt
self.x3_pt = x3_pt
self.y3_pt = y3_pt
def __str__(self):
return "normcurve_pt(%g, %g, %g, %g, %g, %g, %g, %g)" % (self.x0_pt, self.y0_pt, self.x1_pt, self.y1_pt,
self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt)
def _midpointsplit(self, epsilon):
"""split curve into two parts
Helper method to reduce the complexity of a problem by turning
a normcurve_pt into several normline_pt segments. This method
returns normcurve_pt instances only, when they are not yet straight
enough to be replaceable by normcurve_pt instances. Thus a recursive
midpointsplitting will turn a curve into line segments with the
given precision epsilon.
"""
# first, we have to calculate the midpoints between adjacent
# control points
x01_pt = 0.5*(self.x0_pt + self.x1_pt)
y01_pt = 0.5*(self.y0_pt + self.y1_pt)
x12_pt = 0.5*(self.x1_pt + self.x2_pt)
y12_pt = 0.5*(self.y1_pt + self.y2_pt)
x23_pt = 0.5*(self.x2_pt + self.x3_pt)
y23_pt = 0.5*(self.y2_pt + self.y3_pt)
# In the next iterative step, we need the midpoints between 01 and 12
# and between 12 and 23
x01_12_pt = 0.5*(x01_pt + x12_pt)
y01_12_pt = 0.5*(y01_pt + y12_pt)
x12_23_pt = 0.5*(x12_pt + x23_pt)
y12_23_pt = 0.5*(y12_pt + y23_pt)
# Finally the midpoint is given by
xmidpoint_pt = 0.5*(x01_12_pt + x12_23_pt)
ymidpoint_pt = 0.5*(y01_12_pt + y12_23_pt)
# Before returning the normcurves we check whether we can
# replace them by normlines within an error of epsilon pts.
# The maximal error value is given by the modulus of the
# difference between the length of the control polygon
# (i.e. |P1-P0|+|P2-P1|+|P3-P2|), which consitutes an upper
# bound for the length, and the length of the straight line
# between start and end point of the normcurve (i.e. |P3-P1|),
# which represents a lower bound.
l0_pt = math.hypot(xmidpoint_pt - self.x0_pt, ymidpoint_pt - self.y0_pt)
l1_pt = math.hypot(x01_pt - self.x0_pt, y01_pt - self.y0_pt)
l2_pt = math.hypot(x01_12_pt - x01_pt, y01_12_pt - y01_pt)
l3_pt = math.hypot(xmidpoint_pt - x01_12_pt, ymidpoint_pt - y01_12_pt)
if l1_pt+l2_pt+l3_pt-l0_pt < epsilon:
a = _leftnormline_pt(self.x0_pt, self.y0_pt, xmidpoint_pt, ymidpoint_pt, l1_pt, l2_pt, l3_pt)
else:
a = _leftnormcurve_pt(self.x0_pt, self.y0_pt,
x01_pt, y01_pt,
x01_12_pt, y01_12_pt,
xmidpoint_pt, ymidpoint_pt)
l0_pt = math.hypot(self.x3_pt - xmidpoint_pt, self.y3_pt - ymidpoint_pt)
l1_pt = math.hypot(x12_23_pt - xmidpoint_pt, y12_23_pt - ymidpoint_pt)
l2_pt = math.hypot(x23_pt - x12_23_pt, y23_pt - y12_23_pt)
l3_pt = math.hypot(self.x3_pt - x23_pt, self.y3_pt - y23_pt)
if l1_pt+l2_pt+l3_pt-l0_pt < epsilon:
b = _rightnormline_pt(xmidpoint_pt, ymidpoint_pt, self.x3_pt, self.y3_pt, l1_pt, l2_pt, l3_pt)
else:
b = _rightnormcurve_pt(xmidpoint_pt, ymidpoint_pt,
x12_23_pt, y12_23_pt,
x23_pt, y23_pt,
self.x3_pt, self.y3_pt)
return a, b
def _arclentoparam_pt(self, lengths_pt, epsilon):
a, b = self._midpointsplit(epsilon)
params_a, arclen_a_pt = a._arclentoparam_pt(lengths_pt, epsilon)
params_b, arclen_b_pt = b._arclentoparam_pt([length_pt - arclen_a_pt for length_pt in lengths_pt], epsilon)
params = []
for param_a, param_b, length_pt in zip(params_a, params_b, lengths_pt):
if length_pt > arclen_a_pt:
params.append(b.subparamtoparam(param_b))
else:
params.append(a.subparamtoparam(param_a))
return params, arclen_a_pt + arclen_b_pt
def arclentoparam_pt(self, lengths_pt, epsilon):
"""return a tuple of params"""
return self._arclentoparam_pt(lengths_pt, epsilon)[0]
def arclen_pt(self, epsilon):
a, b = self._midpointsplit(epsilon)
return a.arclen_pt(epsilon) + b.arclen_pt(epsilon)
def at_pt(self, params):
return [( (-self.x0_pt+3*self.x1_pt-3*self.x2_pt+self.x3_pt)*t*t*t +
(3*self.x0_pt-6*self.x1_pt+3*self.x2_pt )*t*t +
(-3*self.x0_pt+3*self.x1_pt )*t +
self.x0_pt,
(-self.y0_pt+3*self.y1_pt-3*self.y2_pt+self.y3_pt)*t*t*t +
(3*self.y0_pt-6*self.y1_pt+3*self.y2_pt )*t*t +
(-3*self.y0_pt+3*self.y1_pt )*t +
self.y0_pt )
for t in params]
def atbegin_pt(self):
return self.x0_pt, self.y0_pt
def atend_pt(self):
return self.x3_pt, self.y3_pt
def bbox(self):
xmin_pt, xmax_pt = path._bezierpolyrange(self.x0_pt, self.x1_pt, self.x2_pt, self.x3_pt)
ymin_pt, ymax_pt = path._bezierpolyrange(self.y0_pt, self.y1_pt, self.y2_pt, self.y3_pt)
return bboxmodule.bbox_pt(xmin_pt, ymin_pt, xmax_pt, ymax_pt)
def cbox(self):
return bboxmodule.bbox_pt(min(self.x0_pt, self.x1_pt, self.x2_pt, self.x3_pt),
min(self.y0_pt, self.y1_pt, self.y2_pt, self.y3_pt),
max(self.x0_pt, self.x1_pt, self.x2_pt, self.x3_pt),
max(self.y0_pt, self.y1_pt, self.y2_pt, self.y3_pt))
def curvature_pt(self, params):
result = []
# see notes in rotation
approxarclen = (math.hypot(self.x1_pt-self.x0_pt, self.y1_pt-self.y0_pt) +
math.hypot(self.x2_pt-self.x1_pt, self.y2_pt-self.y1_pt) +
math.hypot(self.x3_pt-self.x2_pt, self.y3_pt-self.y2_pt))
for param in params:
xdot = ( 3 * (1-param)*(1-param) * (-self.x0_pt + self.x1_pt) +
6 * (1-param)*param * (-self.x1_pt + self.x2_pt) +
3 * param*param * (-self.x2_pt + self.x3_pt) )
ydot = ( 3 * (1-param)*(1-param) * (-self.y0_pt + self.y1_pt) +
6 * (1-param)*param * (-self.y1_pt + self.y2_pt) +
3 * param*param * (-self.y2_pt + self.y3_pt) )
xddot = ( 6 * (1-param) * (self.x0_pt - 2*self.x1_pt + self.x2_pt) +
6 * param * (self.x1_pt - 2*self.x2_pt + self.x3_pt) )
yddot = ( 6 * (1-param) * (self.y0_pt - 2*self.y1_pt + self.y2_pt) +
6 * param * (self.y1_pt - 2*self.y2_pt + self.y3_pt) )
hypot = math.hypot(xdot, ydot)
if hypot/approxarclen > _minrelspeed:
result.append((xdot*yddot - ydot*xddot) / hypot**3)
else:
result.append(invalid)
return result
def curveradius_pt(self, params):
result = []
# see notes in rotation
approxarclen = (math.hypot(self.x1_pt-self.x0_pt, self.y1_pt-self.y0_pt) +
math.hypot(self.x2_pt-self.x1_pt, self.y2_pt-self.y1_pt) +
math.hypot(self.x3_pt-self.x2_pt, self.y3_pt-self.y2_pt))
for param in params:
xdot = ( 3 * (1-param)*(1-param) * (-self.x0_pt + self.x1_pt) +
6 * (1-param)*param * (-self.x1_pt + self.x2_pt) +
3 * param*param * (-self.x2_pt + self.x3_pt) )
ydot = ( 3 * (1-param)*(1-param) * (-self.y0_pt + self.y1_pt) +
6 * (1-param)*param * (-self.y1_pt + self.y2_pt) +
3 * param*param * (-self.y2_pt + self.y3_pt) )
xddot = ( 6 * (1-param) * (self.x0_pt - 2*self.x1_pt + self.x2_pt) +
6 * param * (self.x1_pt - 2*self.x2_pt + self.x3_pt) )
yddot = ( 6 * (1-param) * (self.y0_pt - 2*self.y1_pt + self.y2_pt) +
6 * param * (self.y1_pt - 2*self.y2_pt + self.y3_pt) )
hypot = math.hypot(xdot, ydot)
if hypot/approxarclen > _minrelspeed:
result.append(hypot**3 / (xdot*yddot - ydot*xddot))
else:
result.append(invalid)
return result
def intersect(self, other, epsilon):
# There can be no intersection point, when the control boxes are not
# overlapping. Note that we use the control box instead of the bounding
# box here, because the former can be calculated more efficiently for
# Bezier curves.
if not self.cbox().intersects(other.cbox()):
return []
a, b = self._midpointsplit(epsilon)
# To improve the performance in the general case we alternate the
# splitting process between the two normsubpathitems
return ( [(a.subparamtoparam(a_t), o_t) for o_t, a_t in other.intersect(a, epsilon)] +
[(b.subparamtoparam(b_t), o_t) for o_t, b_t in other.intersect(b, epsilon)] )
def modifiedbegin_pt(self, x_pt, y_pt):
return normcurve_pt(x_pt, y_pt,
self.x1_pt, self.y1_pt,
self.x2_pt, self.y2_pt,
self.x3_pt, self.y3_pt)
def modifiedend_pt(self, x_pt, y_pt):
return normcurve_pt(self.x0_pt, self.y0_pt,
self.x1_pt, self.y1_pt,
self.x2_pt, self.y2_pt,
x_pt, y_pt)
def _paramtoarclen_pt(self, params, epsilon):
arclens_pt = [segment.arclen_pt(epsilon) for segment in self.segments([0] + list(params) + [1])]
for i in range(1, len(arclens_pt)):
arclens_pt[i] += arclens_pt[i-1]
return arclens_pt[:-1], arclens_pt[-1]
def pathitem(self):
return path.curveto_pt(self.x1_pt, self.y1_pt, self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt)
def reversed(self):
return normcurve_pt(self.x3_pt, self.y3_pt, self.x2_pt, self.y2_pt, self.x1_pt, self.y1_pt, self.x0_pt, self.y0_pt)
def rotation(self, params):
result = []
# We need to take care of the case of tdx_pt and tdy_pt close to zero.
# We should not compare those values to epsilon (which is a length) directly.
# Furthermore we want this "speed" in general and it's abort condition in
# particular to be invariant on the actual size of the normcurve. Hence we
# first calculate a crude approximation for the arclen.
approxarclen = (math.hypot(self.x1_pt-self.x0_pt, self.y1_pt-self.y0_pt) +
math.hypot(self.x2_pt-self.x1_pt, self.y2_pt-self.y1_pt) +
math.hypot(self.x3_pt-self.x2_pt, self.y3_pt-self.y2_pt))
for param in params:
tdx_pt = (3*( -self.x0_pt+3*self.x1_pt-3*self.x2_pt+self.x3_pt)*param*param +
2*( 3*self.x0_pt-6*self.x1_pt+3*self.x2_pt )*param +
(-3*self.x0_pt+3*self.x1_pt ))
tdy_pt = (3*( -self.y0_pt+3*self.y1_pt-3*self.y2_pt+self.y3_pt)*param*param +
2*( 3*self.y0_pt-6*self.y1_pt+3*self.y2_pt )*param +
(-3*self.y0_pt+3*self.y1_pt ))
# We scale the speed such the "relative speed" of a line is 1 independend of
# the length of the line. For curves we want this "relative speed" to be higher than
# _minrelspeed:
if math.hypot(tdx_pt, tdy_pt)/approxarclen > _minrelspeed:
result.append(trafo.rotate(math.degrees(math.atan2(tdy_pt, tdx_pt))))
else:
# Note that we can't use the rule of l'Hopital here, since it would
# not provide us with a sign for the tangent. Hence we wouldn't
# notice whether the sign changes (which is a typical case at cusps).
result.append(invalid)
return result
def segments(self, params):
if len(params) < 2:
raise ValueError("at least two parameters needed in segments")
# first, we calculate the coefficients corresponding to our
# original bezier curve. These represent a useful starting
# point for the following change of the polynomial parameter
a0x_pt = self.x0_pt
a0y_pt = self.y0_pt
a1x_pt = 3*(-self.x0_pt+self.x1_pt)
a1y_pt = 3*(-self.y0_pt+self.y1_pt)
a2x_pt = 3*(self.x0_pt-2*self.x1_pt+self.x2_pt)
a2y_pt = 3*(self.y0_pt-2*self.y1_pt+self.y2_pt)
a3x_pt = -self.x0_pt+3*(self.x1_pt-self.x2_pt)+self.x3_pt
a3y_pt = -self.y0_pt+3*(self.y1_pt-self.y2_pt)+self.y3_pt
result = []
for i in range(len(params)-1):
t1 = params[i]
dt = params[i+1]-t1
# [t1,t2] part
#
# the new coefficients of the [t1,t1+dt] part of the bezier curve
# are then given by expanding
# a0 + a1*(t1+dt*u) + a2*(t1+dt*u)**2 +
# a3*(t1+dt*u)**3 in u, yielding
#
# a0 + a1*t1 + a2*t1**2 + a3*t1**3 +
# ( a1 + 2*a2 + 3*a3*t1**2 )*dt * u +
# ( a2 + 3*a3*t1 )*dt**2 * u**2 +
# a3*dt**3 * u**3
#
# from this values we obtain the new control points by inversion
#
# TODO: we could do this more efficiently by reusing for
# (x0_pt, y0_pt) the control point (x3_pt, y3_pt) from the previous
# Bezier curve
x0_pt = a0x_pt + a1x_pt*t1 + a2x_pt*t1*t1 + a3x_pt*t1*t1*t1
y0_pt = a0y_pt + a1y_pt*t1 + a2y_pt*t1*t1 + a3y_pt*t1*t1*t1
x1_pt = (a1x_pt+2*a2x_pt*t1+3*a3x_pt*t1*t1)*dt/3.0 + x0_pt
y1_pt = (a1y_pt+2*a2y_pt*t1+3*a3y_pt*t1*t1)*dt/3.0 + y0_pt
x2_pt = (a2x_pt+3*a3x_pt*t1)*dt*dt/3.0 - x0_pt + 2*x1_pt
y2_pt = (a2y_pt+3*a3y_pt*t1)*dt*dt/3.0 - y0_pt + 2*y1_pt
x3_pt = a3x_pt*dt*dt*dt + x0_pt - 3*x1_pt + 3*x2_pt
y3_pt = a3y_pt*dt*dt*dt + y0_pt - 3*y1_pt + 3*y2_pt
result.append(normcurve_pt(x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt))
return result
def trafo(self, params):
result = []
for rotation, at_pt in zip(self.rotation(params), self.at_pt(params)):
if rotation is invalid:
result.append(rotation)
else:
result.append(trafo.translate_pt(*at_pt) * rotation)
return result
def transformed(self, trafo):
x0_pt, y0_pt = trafo.apply_pt(self.x0_pt, self.y0_pt)
x1_pt, y1_pt = trafo.apply_pt(self.x1_pt, self.y1_pt)
x2_pt, y2_pt = trafo.apply_pt(self.x2_pt, self.y2_pt)
x3_pt, y3_pt = trafo.apply_pt(self.x3_pt, self.y3_pt)
return normcurve_pt(x0_pt, y0_pt, x1_pt, y1_pt, x2_pt, y2_pt, x3_pt, y3_pt)
def outputPS(self, file, writer):
file.write("%g %g %g %g %g %g curveto\n" % (self.x1_pt, self.y1_pt, self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt))
def outputPDF(self, file, writer):
file.write("%f %f %f %f %f %f c\n" % (self.x1_pt, self.y1_pt, self.x2_pt, self.y2_pt, self.x3_pt, self.y3_pt))
def x_pt(self, t):
return ((( self.x3_pt-3*self.x2_pt+3*self.x1_pt-self.x0_pt)*t +
3*self.x0_pt-6*self.x1_pt+3*self.x2_pt)*t +
3*self.x1_pt-3*self.x0_pt)*t + self.x0_pt
def xdot_pt(self, t):
return ((3*self.x3_pt-9*self.x2_pt+9*self.x1_pt-3*self.x0_pt)*t +
6*self.x0_pt-12*self.x1_pt+6*self.x2_pt)*t + 3*self.x1_pt - 3*self.x0_pt
def xddot_pt(self, t):
return (6*self.x3_pt-18*self.x2_pt+18*self.x1_pt-6*self.x0_pt)*t + 6*self.x0_pt - 12*self.x1_pt + 6*self.x2_pt
def xdddot_pt(self, t):
return 6*self.x3_pt-18*self.x2_pt+18*self.x1_pt-6*self.x0_pt
def y_pt(self, t):
return ((( self.y3_pt-3*self.y2_pt+3*self.y1_pt-self.y0_pt)*t +
3*self.y0_pt-6*self.y1_pt+3*self.y2_pt)*t +
3*self.y1_pt-3*self.y0_pt)*t + self.y0_pt
def ydot_pt(self, t):
return ((3*self.y3_pt-9*self.y2_pt+9*self.y1_pt-3*self.y0_pt)*t +
6*self.y0_pt-12*self.y1_pt+6*self.y2_pt)*t + 3*self.y1_pt - 3*self.y0_pt
def yddot_pt(self, t):
return (6*self.y3_pt-18*self.y2_pt+18*self.y1_pt-6*self.y0_pt)*t + 6*self.y0_pt - 12*self.y1_pt + 6*self.y2_pt
def ydddot_pt(self, t):
return 6*self.y3_pt-18*self.y2_pt+18*self.y1_pt-6*self.y0_pt
# curve replacements used by midpointsplit:
# The replacements are normline_pt and normcurve_pt instances with an
# additional subparamtoparam function for proper conversion of the
# parametrization. Note that we only one direction (when a parameter
# gets calculated), since the other way around direction midpointsplit
# is not needed at all
class _leftnormline_pt(normline_pt):
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "l1_pt", "l2_pt", "l3_pt"
def __init__(self, x0_pt, y0_pt, x1_pt, y1_pt, l1_pt, l2_pt, l3_pt):
normline_pt.__init__(self, x0_pt, y0_pt, x1_pt, y1_pt)
self.l1_pt = l1_pt
self.l2_pt = l2_pt
self.l3_pt = l3_pt
def subparamtoparam(self, param):
if 0 <= param <= 1:
params = mathutils.realpolyroots(self.l1_pt-2*self.l2_pt+self.l3_pt,
-3*self.l1_pt+3*self.l2_pt,
3*self.l1_pt,
-param*(self.l1_pt+self.l2_pt+self.l3_pt))
# we might get several solutions and choose the one closest to 0.5
# (we want the solution to be in the range 0 <= param <= 1; in case
# we get several solutions in this range, they all will be close to
# each other since l1_pt+l2_pt+l3_pt-l0_pt < epsilon)
params.sort(lambda t1, t2: cmp(abs(t1-0.5), abs(t2-0.5)))
return 0.5*params[0]
else:
# when we are outside the proper parameter range, we skip the non-linear
# transformation, since it becomes slow and it might even start to be
# numerically instable
return 0.5*param
class _rightnormline_pt(_leftnormline_pt):
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "l1_pt", "l2_pt", "l3_pt"
def subparamtoparam(self, param):
return 0.5+_leftnormline_pt.subparamtoparam(self, param)
class _leftnormcurve_pt(normcurve_pt):
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
def subparamtoparam(self, param):
return 0.5*param
class _rightnormcurve_pt(normcurve_pt):
__slots__ = "x0_pt", "y0_pt", "x1_pt", "y1_pt", "x2_pt", "y2_pt", "x3_pt", "y3_pt"
def subparamtoparam(self, param):
return 0.5+0.5*param
################################################################################
# normsubpath
################################################################################
class normsubpath:
"""sub path of a normalized path
A subpath consists of a list of normsubpathitems, i.e., normlines_pt and
normcurves_pt and can either be closed or not.
Some invariants, which have to be obeyed:
- All normsubpathitems have to be longer than epsilon pts.
- At the end there may be a normline (stored in self.skippedline) whose
length is shorter than epsilon -- it has to be taken into account
when adding further normsubpathitems
- The last point of a normsubpathitem and the first point of the next
element have to be equal.
- When the path is closed, the last point of last normsubpathitem has
to be equal to the first point of the first normsubpathitem.
- epsilon might be none, disallowing any numerics, but allowing for
arbitrary short paths. This is used in pdf output, where all paths need
to be transformed to normpaths.
"""
__slots__ = "normsubpathitems", "closed", "epsilon", "skippedline"
def __init__(self, normsubpathitems=[], closed=0, epsilon=_marker):
"""construct a normsubpath"""
if epsilon is _marker:
epsilon = _epsilon
self.epsilon = epsilon
# If one or more items appended to the normsubpath have been
# skipped (because their total length was shorter than epsilon),
# we remember this fact by a line because we have to take it
# properly into account when appending further normsubpathitems
self.skippedline = None
self.normsubpathitems = []
self.closed = 0
# a test (might be temporary)
for anormsubpathitem in normsubpathitems:
assert isinstance(anormsubpathitem, normsubpathitem), "only list of normsubpathitem instances allowed"
self.extend(normsubpathitems)
if closed:
self.close()
def __getitem__(self, i):
"""return normsubpathitem i"""
return self.normsubpathitems[i]
def __len__(self):
"""return number of normsubpathitems"""
return len(self.normsubpathitems)
def __str__(self):
l = ", ".join(map(str, self.normsubpathitems))
if self.closed:
return "normsubpath([%s], closed=1)" % l
else:
return "normsubpath([%s])" % l
def _distributeparams(self, params):
"""return a dictionary mapping normsubpathitemindices to a tuple
of a paramindices and normsubpathitemparams.
normsubpathitemindex specifies a normsubpathitem containing
one or several positions. paramindex specify the index of the
param in the original list and normsubpathitemparam is the
parameter value in the normsubpathitem.
"""
result = {}
for i, param in enumerate(params):
if param > 0:
index = int(param)
if index > len(self.normsubpathitems) - 1:
index = len(self.normsubpathitems) - 1
else:
index = 0
result.setdefault(index, ([], []))
result[index][0].append(i)
result[index][1].append(param - index)
return result
def append(self, anormsubpathitem):
"""append normsubpathitem
Fails on closed normsubpath.
"""
if self.epsilon is None:
self.normsubpathitems.append(anormsubpathitem)
else:
# consitency tests (might be temporary)
assert isinstance(anormsubpathitem, normsubpathitem), "only normsubpathitem instances allowed"
if self.skippedline:
assert math.hypot(*[x-y for x, y in zip(self.skippedline.atend_pt(), anormsubpathitem.atbegin_pt())]) < self.epsilon, "normsubpathitems do not match"
elif self.normsubpathitems:
assert math.hypot(*[x-y for x, y in zip(self.normsubpathitems[-1].atend_pt(), anormsubpathitem.atbegin_pt())]) < self.epsilon, "normsubpathitems do not match"
if self.closed:
raise NormpathException("Cannot append to closed normsubpath")
if self.skippedline:
xs_pt, ys_pt = self.skippedline.atbegin_pt()
else:
xs_pt, ys_pt = anormsubpathitem.atbegin_pt()
xe_pt, ye_pt = anormsubpathitem.atend_pt()
if (math.hypot(xe_pt-xs_pt, ye_pt-ys_pt) >= self.epsilon or
anormsubpathitem.arclen_pt(self.epsilon) >= self.epsilon):
if self.skippedline:
anormsubpathitem = anormsubpathitem.modifiedbegin_pt(xs_pt, ys_pt)
self.normsubpathitems.append(anormsubpathitem)
self.skippedline = None
else:
self.skippedline = normline_pt(xs_pt, ys_pt, xe_pt, ye_pt)
def arclen_pt(self):
"""return arc length in pts"""
return sum([npitem.arclen_pt(self.epsilon) for npitem in self.normsubpathitems])
def _arclentoparam_pt(self, lengths_pt):
"""return a tuple of params and the total length arc length in pts"""
# work on a copy which is counted down to negative values
lengths_pt = lengths_pt[:]
results = [None] * len(lengths_pt)
totalarclen = 0
for normsubpathindex, normsubpathitem in enumerate(self.normsubpathitems):
params, arclen = normsubpathitem._arclentoparam_pt(lengths_pt, self.epsilon)
for i in range(len(results)):
if results[i] is None:
lengths_pt[i] -= arclen
if lengths_pt[i] < 0 or normsubpathindex == len(self.normsubpathitems) - 1:
# overwrite the results until the length has become negative
results[i] = normsubpathindex + params[i]
totalarclen += arclen
return results, totalarclen
def arclentoparam_pt(self, lengths_pt):
"""return a tuple of params"""
return self._arclentoparam_pt(lengths_pt)[0]
def at_pt(self, params):
"""return coordinates at params in pts"""
if not self.normsubpathitems and self.skippedline:
return [self.skippedline.atbegin_pt()]*len(params)
result = [None] * len(params)
for normsubpathitemindex, (indices, params) in self._distributeparams(params).items():
for index, point_pt in zip(indices, self.normsubpathitems[normsubpathitemindex].at_pt(params)):
result[index] = point_pt
return result
def atbegin_pt(self):
"""return coordinates of first point in pts"""
if not self.normsubpathitems and self.skippedline:
return self.skippedline.atbegin_pt()
return self.normsubpathitems[0].atbegin_pt()
def atend_pt(self):
"""return coordinates of last point in pts"""
if self.skippedline:
return self.skippedline.atend_pt()
return self.normsubpathitems[-1].atend_pt()
def bbox(self):
"""return bounding box of normsubpath"""
if self.normsubpathitems:
abbox = self.normsubpathitems[0].bbox()
for anormpathitem in self.normsubpathitems[1:]:
abbox += anormpathitem.bbox()
return abbox
else:
return bboxmodule.empty()
def close(self):
"""close subnormpath
Fails on closed normsubpath.
"""
if self.closed:
raise NormpathException("Cannot close already closed normsubpath")
if not self.normsubpathitems:
if self.skippedline is None:
raise NormpathException("Cannot close empty normsubpath")
else:
raise NormpathException("Normsubpath too short, cannot be closed")
xs_pt, ys_pt = self.normsubpathitems[-1].atend_pt()
xe_pt, ye_pt = self.normsubpathitems[0].atbegin_pt()
self.append(normline_pt(xs_pt, ys_pt, xe_pt, ye_pt))
self.flushskippedline()
self.closed = 1
def copy(self):
"""return copy of normsubpath"""
# Since normsubpathitems are never modified inplace, we just
# need to copy the normsubpathitems list. We do not pass the
# normsubpathitems to the constructor to not repeat the checks
# for minimal length of each normsubpathitem.
result = normsubpath(epsilon=self.epsilon)
result.normsubpathitems = self.normsubpathitems[:]
result.closed = self.closed
# We can share the reference to skippedline, since it is a
# normsubpathitem as well and thus not modified in place either.
result.skippedline = self.skippedline
return result
def curvature_pt(self, params):
"""return the curvature at params in 1/pts
The result contain the invalid instance at positions, where the
curvature is undefined."""
result = [None] * len(params)
for normsubpathitemindex, (indices, params) in self._distributeparams(params).items():
for index, curvature_pt in zip(indices, self.normsubpathitems[normsubpathitemindex].curvature_pt(params)):
result[index] = curvature_pt
return result
def curveradius_pt(self, params):
"""return the curvature radius at params in pts
The curvature radius is the inverse of the curvature. When the
curvature is 0, the invalid instance is returned. Note that this radius can be negative
or positive, depending on the sign of the curvature."""
result = [None] * len(params)
for normsubpathitemindex, (indices, params) in self._distributeparams(params).items():
for index, radius_pt in zip(indices, self.normsubpathitems[normsubpathitemindex].curveradius_pt(params)):
result[index] = radius_pt
return result
def extend(self, normsubpathitems):
"""extend path by normsubpathitems
Fails on closed normsubpath.
"""
for normsubpathitem in normsubpathitems:
self.append(normsubpathitem)
def flushskippedline(self):
"""flush the skippedline, i.e. apply it to the normsubpath
remove the skippedline by modifying the end point of the existing normsubpath
"""
while self.skippedline:
try:
lastnormsubpathitem = self.normsubpathitems.pop()
except IndexError:
raise ValueError("normsubpath too short to flush the skippedline")
lastnormsubpathitem = lastnormsubpathitem.modifiedend_pt(*self.skippedline.atend_pt())
self.skippedline = None
self.append(lastnormsubpathitem)
def intersect(self, other):
"""intersect self with other normsubpath
Returns a tuple of lists consisting of the parameter values
of the intersection points of the corresponding normsubpath.
"""
intersections_a = []
intersections_b = []
epsilon = min(self.epsilon, other.epsilon)
# Intersect all subpaths of self with the subpaths of other, possibly including
# one intersection point several times
for t_a, pitem_a in enumerate(self.normsubpathitems):
for t_b, pitem_b in enumerate(other.normsubpathitems):
for intersection_a, intersection_b in pitem_a.intersect(pitem_b, epsilon):
intersections_a.append(intersection_a + t_a)
intersections_b.append(intersection_b + t_b)
# although intersectipns_a are sorted for the different normsubpathitems,
# within a normsubpathitem, the ordering has to be ensured separately:
intersections = zip(intersections_a, intersections_b)
intersections.sort()
intersections_a = [a for a, b in intersections]
intersections_b = [b for a, b in intersections]
# for symmetry reasons we enumerate intersections_a as well, although
# they are already sorted (note we do not need to sort intersections_a)
intersections_a = zip(intersections_a, range(len(intersections_a)))
intersections_b = zip(intersections_b, range(len(intersections_b)))
intersections_b.sort()
# now we search for intersections points which are closer together than epsilon
# This task is handled by the following function
def closepoints(normsubpath, intersections):
split = normsubpath.segments([0] + [intersection for intersection, index in intersections] + [len(normsubpath)])
result = []
if normsubpath.closed:
# note that the number of segments of a closed path is off by one
# compared to an open path
i = 0
while i < len(split):
splitnormsubpath = split[i]
j = i
while not splitnormsubpath.normsubpathitems: # i.e. while "is short"
ip1, ip2 = intersections[i-1][1], intersections[j][1]
if ip1<ip2:
result.append((ip1, ip2))
else:
result.append((ip2, ip1))
j += 1
if j == len(split):
j = 0
if j < len(split):
splitnormsubpath = splitnormsubpath.joined(split[j])
else:
break
i += 1
else:
i = 1
while i < len(split)-1:
splitnormsubpath = split[i]
j = i
while not splitnormsubpath.normsubpathitems: # i.e. while "is short"
ip1, ip2 = intersections[i-1][1], intersections[j][1]
if ip1<ip2:
result.append((ip1, ip2))
else:
result.append((ip2, ip1))
j += 1
if j < len(split)-1:
splitnormsubpath = splitnormsubpath.joined(split[j])
else:
break
i += 1
return result
closepoints_a = closepoints(self, intersections_a)
closepoints_b = closepoints(other, intersections_b)
# map intersection point to lowest point which is equivalent to the
# point
equivalentpoints = list(range(len(intersections_a)))
for closepoint_a in closepoints_a:
for closepoint_b in closepoints_b:
if closepoint_a == closepoint_b:
for i in range(closepoint_a[1], len(equivalentpoints)):
if equivalentpoints[i] == closepoint_a[1]:
equivalentpoints[i] = closepoint_a[0]
# determine the remaining intersection points
intersectionpoints = {}
for point in equivalentpoints:
intersectionpoints[point] = 1
# build result
result = []
intersectionpointskeys = intersectionpoints.keys()
intersectionpointskeys.sort()
for point in intersectionpointskeys:
for intersection_a, index_a in intersections_a:
if index_a == point:
result_a = intersection_a
for intersection_b, index_b in intersections_b:
if index_b == point:
result_b = intersection_b
result.append((result_a, result_b))
# note that the result is sorted in a, since we sorted
# intersections_a in the very beginning
return [x for x, y in result], [y for x, y in result]
def join(self, other):
"""join other normsubpath inplace
Fails on closed normsubpath. Fails to join closed normsubpath.
"""
if other.closed:
raise NormpathException("Cannot join closed normsubpath")
if self.normsubpathitems:
# insert connection line
x0_pt, y0_pt = self.atend_pt()
x1_pt, y1_pt = other.atbegin_pt()
self.append(normline_pt(x0_pt, y0_pt, x1_pt, y1_pt))
# append other normsubpathitems
self.extend(other.normsubpathitems)
if other.skippedline:
self.append(other.skippedline)
def joined(self, other):
"""return joined self and other
Fails on closed normsubpath. Fails to join closed normsubpath.
"""
result = self.copy()
result.join(other)
return result
def _paramtoarclen_pt(self, params):
"""return a tuple of arc lengths and the total arc length in pts"""
if not self.normsubpathitems:
return [0] * len(params), 0
result = [None] * len(params)
totalarclen_pt = 0
distributeparams = self._distributeparams(params)
for normsubpathitemindex in range(len(self.normsubpathitems)):
if distributeparams.has_key(normsubpathitemindex):
indices, params = distributeparams[normsubpathitemindex]
arclens_pt, normsubpathitemarclen_pt = self.normsubpathitems[normsubpathitemindex]._paramtoarclen_pt(params, self.epsilon)
for index, arclen_pt in zip(indices, arclens_pt):
result[index] = totalarclen_pt + arclen_pt
totalarclen_pt += normsubpathitemarclen_pt
else:
totalarclen_pt += self.normsubpathitems[normsubpathitemindex].arclen_pt(self.epsilon)
return result, totalarclen_pt
def pathitems(self):
"""return list of pathitems"""
if not self.normsubpathitems:
return []
# remove trailing normline_pt of closed subpaths
if self.closed and isinstance(self.normsubpathitems[-1], normline_pt):
normsubpathitems = self.normsubpathitems[:-1]
else:
normsubpathitems = self.normsubpathitems
result = [path.moveto_pt(*self.atbegin_pt())]
for normsubpathitem in normsubpathitems:
result.append(normsubpathitem.pathitem())
if self.closed:
result.append(path.closepath())
return result
def reversed(self):
"""return reversed normsubpath"""
nnormpathitems = []
for i in range(len(self.normsubpathitems)):
nnormpathitems.append(self.normsubpathitems[-(i+1)].reversed())
return normsubpath(nnormpathitems, self.closed, self.epsilon)
def rotation(self, params):
"""return rotations at params"""
result = [None] * len(params)
for normsubpathitemindex, (indices, params) in self._distributeparams(params).items():
for index, rotation in zip(indices, self.normsubpathitems[normsubpathitemindex].rotation(params)):
result[index] = rotation
return result
def segments(self, params):
"""return segments of the normsubpath
The returned list of normsubpaths for the segments between
the params. params need to contain at least two values.
For a closed normsubpath the last segment result is joined to
the first one when params starts with 0 and ends with len(self).
or params starts with len(self) and ends with 0. Thus a segments
operation on a closed normsubpath might properly join those the
first and the last part to take into account the closed nature of
the normsubpath. However, for intermediate parameters, closepath
is not taken into account, i.e. when walking backwards you do not
loop over the closepath forwardly. The special values 0 and
len(self) for the first and the last parameter should be given as
integers, i.e. no finite precision is used when checking for
equality."""
if len(params) < 2:
raise ValueError("at least two parameters needed in segments")
result = [normsubpath(epsilon=self.epsilon)]
# instead of distribute the parameters, we need to keep their
# order and collect parameters for the needed segments of
# normsubpathitem with index collectindex
collectparams = []
collectindex = None
for param in params:
# calculate index and parameter for corresponding normsubpathitem
if param > 0:
index = int(param)
if index > len(self.normsubpathitems) - 1:
index = len(self.normsubpathitems) - 1
param -= index
else:
index = 0
if index != collectindex:
if collectindex is not None:
# append end point depening on the forthcoming index
if index > collectindex:
collectparams.append(1)
else:
collectparams.append(0)
# get segments of the normsubpathitem and add them to the result
segments = self.normsubpathitems[collectindex].segments(collectparams)
result[-1].append(segments[0])
result.extend([normsubpath([segment], epsilon=self.epsilon) for segment in segments[1:]])
# add normsubpathitems and first segment parameter to close the
# gap to the forthcoming index
if index > collectindex:
for i in range(collectindex+1, index):
result[-1].append(self.normsubpathitems[i])
collectparams = [0]
else:
for i in range(collectindex-1, index, -1):
result[-1].append(self.normsubpathitems[i].reversed())
collectparams = [1]
collectindex = index
collectparams.append(param)
# add remaining collectparams to the result
segments = self.normsubpathitems[collectindex].segments(collectparams)
result[-1].append(segments[0])
result.extend([normsubpath([segment], epsilon=self.epsilon) for segment in segments[1:]])
if self.closed:
# join last and first segment together if the normsubpath was
# originally closed and first and the last parameters are the
# beginning and end points of the normsubpath
if ( ( params[0] == 0 and params[-1] == len(self.normsubpathitems) ) or
( params[-1] == 0 and params[0] == len(self.normsubpathitems) ) ):
result[-1].normsubpathitems.extend(result[0].normsubpathitems)
result = result[-1:] + result[1:-1]
return result
def trafo(self, params):
"""return transformations at params"""
result = [None] * len(params)
for normsubpathitemindex, (indices, params) in self._distributeparams(params).items():
for index, trafo in zip(indices, self.normsubpathitems[normsubpathitemindex].trafo(params)):
result[index] = trafo
return result
def transformed(self, trafo):
"""return transformed path"""
nnormsubpath = normsubpath(epsilon=self.epsilon)
for pitem in self.normsubpathitems:
nnormsubpath.append(pitem.transformed(trafo))
if self.closed:
nnormsubpath.close()
elif self.skippedline is not None:
nnormsubpath.append(self.skippedline.transformed(trafo))
return nnormsubpath
def outputPS(self, file, writer):
# if the normsubpath is closed, we must not output a normline at
# the end
if not self.normsubpathitems:
return
if self.closed and isinstance(self.normsubpathitems[-1], normline_pt):
assert len(self.normsubpathitems) > 1, "a closed normsubpath should contain more than a single normline_pt"
normsubpathitems = self.normsubpathitems[:-1]
else:
normsubpathitems = self.normsubpathitems
file.write("%g %g moveto\n" % self.atbegin_pt())
for anormsubpathitem in normsubpathitems:
anormsubpathitem.outputPS(file, writer)
if self.closed:
file.write("closepath\n")
def outputPDF(self, file, writer):
# if the normsubpath is closed, we must not output a normline at
# the end
if not self.normsubpathitems:
return
if self.closed and isinstance(self.normsubpathitems[-1], normline_pt):
assert len(self.normsubpathitems) > 1, "a closed normsubpath should contain more than a single normline_pt"
normsubpathitems = self.normsubpathitems[:-1]
else:
normsubpathitems = self.normsubpathitems
file.write("%f %f m\n" % self.atbegin_pt())
for anormsubpathitem in normsubpathitems:
anormsubpathitem.outputPDF(file, writer)
if self.closed:
file.write("h\n")
################################################################################
# normpath
################################################################################
class normpathparam:
"""parameter of a certain point along a normpath"""
__slots__ = "normpath", "normsubpathindex", "normsubpathparam"
def __init__(self, normpath, normsubpathindex, normsubpathparam):
self.normpath = normpath
self.normsubpathindex = normsubpathindex
self.normsubpathparam = normsubpathparam
float(normsubpathparam)
def __str__(self):
return "normpathparam(%s, %s, %s)" % (self.normpath, self.normsubpathindex, self.normsubpathparam)
def __add__(self, other):
if isinstance(other, normpathparam):
assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) +
other.normpath.paramtoarclen_pt(other))
else:
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) + unit.topt(other))
__radd__ = __add__
def __sub__(self, other):
if isinstance(other, normpathparam):
assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) -
other.normpath.paramtoarclen_pt(other))
else:
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) - unit.topt(other))
def __rsub__(self, other):
# other has to be a length in this case
return self.normpath.arclentoparam_pt(-self.normpath.paramtoarclen_pt(self) + unit.topt(other))
def __mul__(self, factor):
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) * factor)
__rmul__ = __mul__
def __div__(self, divisor):
return self.normpath.arclentoparam_pt(self.normpath.paramtoarclen_pt(self) / divisor)
def __neg__(self):
return self.normpath.arclentoparam_pt(-self.normpath.paramtoarclen_pt(self))
def __cmp__(self, other):
if isinstance(other, normpathparam):
assert self.normpath is other.normpath, "normpathparams have to belong to the same normpath"
return cmp((self.normsubpathindex, self.normsubpathparam), (other.normsubpathindex, other.normsubpathparam))
else:
return cmp(self.normpath.paramtoarclen_pt(self), unit.topt(other))
def arclen_pt(self):
"""return arc length in pts corresponding to the normpathparam """
return self.normpath.paramtoarclen_pt(self)
def arclen(self):
"""return arc length corresponding to the normpathparam """
return self.normpath.paramtoarclen(self)
def _valueorlistmethod(method):
"""Creates a method which takes a single argument or a list and
returns a single value or a list out of method, which always
works on lists."""
def wrappedmethod(self, valueorlist, *args, **kwargs):
try:
for item in valueorlist:
break
except:
return method(self, [valueorlist], *args, **kwargs)[0]
return method(self, valueorlist, *args, **kwargs)
return wrappedmethod
class normpath:
"""normalized path
A normalized path consists of a list of normsubpaths.
"""
def __init__(self, normsubpaths=None):
"""construct a normpath from a list of normsubpaths"""
if normsubpaths is None:
self.normsubpaths = [] # make a fresh list
else:
self.normsubpaths = normsubpaths
for subpath in normsubpaths:
assert isinstance(subpath, normsubpath), "only list of normsubpath instances allowed"
def __add__(self, other):
"""create new normpath out of self and other"""
result = self.copy()
result += other
return result
def __iadd__(self, other):
"""add other inplace"""
for normsubpath in other.normpath().normsubpaths:
self.normsubpaths.append(normsubpath.copy())
return self
def __getitem__(self, i):
"""return normsubpath i"""
return self.normsubpaths[i]
def __len__(self):
"""return the number of normsubpaths"""
return len(self.normsubpaths)
def __str__(self):
return "normpath([%s])" % ", ".join(map(str, self.normsubpaths))
def _convertparams(self, params, convertmethod):
"""return params with all non-normpathparam arguments converted by convertmethod
usecases:
- self._convertparams(params, self.arclentoparam_pt)
- self._convertparams(params, self.arclentoparam)
"""
converttoparams = []
convertparamindices = []
for i, param in enumerate(params):
if not isinstance(param, normpathparam):
converttoparams.append(param)
convertparamindices.append(i)
if converttoparams:
params = params[:]
for i, param in zip(convertparamindices, convertmethod(converttoparams)):
params[i] = param
return params
def _distributeparams(self, params):
"""return a dictionary mapping subpathindices to a tuple of a paramindices and subpathparams
subpathindex specifies a subpath containing one or several positions.
paramindex specify the index of the normpathparam in the original list and
subpathparam is the parameter value in the subpath.
"""
result = {}
for i, param in enumerate(params):
assert param.normpath is self, "normpathparam has to belong to this path"
result.setdefault(param.normsubpathindex, ([], []))
result[param.normsubpathindex][0].append(i)
result[param.normsubpathindex][1].append(param.normsubpathparam)
return result
def append(self, item):
"""append a normpath by a normsubpath or a pathitem"""
if isinstance(item, normsubpath):
# the normsubpaths list can be appended by a normsubpath only
self.normsubpaths.append(item)
elif isinstance(item, path.pathitem):
# ... but we are kind and allow for regular path items as well
# in order to make a normpath to behave more like a regular path
if self.normsubpaths:
context = path.context(*(self.normsubpaths[-1].atend_pt() +
self.normsubpaths[-1].atbegin_pt()))
item.updatenormpath(self, context)
else:
self.normsubpaths = item.createnormpath(self).normsubpaths
def arclen_pt(self):
"""return arc length in pts"""
return sum([normsubpath.arclen_pt() for normsubpath in self.normsubpaths])
def arclen(self):
"""return arc length"""
return self.arclen_pt() * unit.t_pt
def _arclentoparam_pt(self, lengths_pt):
"""return the params matching the given lengths_pt"""
# work on a copy which is counted down to negative values
lengths_pt = lengths_pt[:]
results = [None] * len(lengths_pt)
for normsubpathindex, normsubpath in enumerate(self.normsubpaths):
params, arclen = normsubpath._arclentoparam_pt(lengths_pt)
done = 1
for i, result in enumerate(results):
if results[i] is None:
lengths_pt[i] -= arclen
if lengths_pt[i] < 0 or normsubpathindex == len(self.normsubpaths) - 1:
# overwrite the results until the length has become negative
results[i] = normpathparam(self, normsubpathindex, params[i])
done = 0
if done:
break
return results
def arclentoparam_pt(self, lengths_pt):
"""return the param(s) matching the given length(s)_pt in pts"""
pass
arclentoparam_pt = _valueorlistmethod(_arclentoparam_pt)
def arclentoparam(self, lengths):
"""return the param(s) matching the given length(s)"""
return self._arclentoparam_pt([unit.topt(l) for l in lengths])
arclentoparam = _valueorlistmethod(arclentoparam)
def _at_pt(self, params):
"""return coordinates of normpath in pts at params"""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, point_pt in zip(indices, self.normsubpaths[normsubpathindex].at_pt(params)):
result[index] = point_pt
return result
def at_pt(self, params):
"""return coordinates of normpath in pts at param(s) or lengths in pts"""
return self._at_pt(self._convertparams(params, self.arclentoparam_pt))
at_pt = _valueorlistmethod(at_pt)
def at(self, params):
"""return coordinates of normpath at param(s) or arc lengths"""
return [(x_pt * unit.t_pt, y_pt * unit.t_pt)
for x_pt, y_pt in self._at_pt(self._convertparams(params, self.arclentoparam))]
at = _valueorlistmethod(at)
def atbegin_pt(self):
"""return coordinates of the beginning of first subpath in normpath in pts"""
if self.normsubpaths:
return self.normsubpaths[0].atbegin_pt()
else:
raise NormpathException("cannot return first point of empty path")
def atbegin(self):
"""return coordinates of the beginning of first subpath in normpath"""
x, y = self.atbegin_pt()
return x * unit.t_pt, y * unit.t_pt
def atend_pt(self):
"""return coordinates of the end of last subpath in normpath in pts"""
if self.normsubpaths:
return self.normsubpaths[-1].atend_pt()
else:
raise NormpathException("cannot return last point of empty path")
def atend(self):
"""return coordinates of the end of last subpath in normpath"""
x, y = self.atend_pt()
return x * unit.t_pt, y * unit.t_pt
def bbox(self):
"""return bbox of normpath"""
abbox = bboxmodule.empty()
for normsubpath in self.normsubpaths:
abbox += normsubpath.bbox()
return abbox
def begin(self):
"""return param corresponding of the beginning of the normpath"""
if self.normsubpaths:
return normpathparam(self, 0, 0)
else:
raise NormpathException("empty path")
def copy(self):
"""return copy of normpath"""
result = normpath()
for normsubpath in self.normsubpaths:
result.append(normsubpath.copy())
return result
def _curvature_pt(self, params):
"""return the curvature in 1/pts at params
When the curvature is undefined, the invalid instance is returned."""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, curvature_pt in zip(indices, self.normsubpaths[normsubpathindex].curvature_pt(params)):
result[index] = curvature_pt
return result
def curvature_pt(self, params):
"""return the curvature in 1/pt at params
The curvature radius is the inverse of the curvature. When the
curvature is undefined, the invalid instance is returned. Note that
this radius can be negative or positive, depending on the sign of the
curvature."""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, curv_pt in zip(indices, self.normsubpaths[normsubpathindex].curvature_pt(params)):
result[index] = curv_pt
return result
curvature_pt = _valueorlistmethod(curvature_pt)
def _curveradius_pt(self, params):
"""return the curvature radius at params in pts
The curvature radius is the inverse of the curvature. When the
curvature is 0, None is returned. Note that this radius can be negative
or positive, depending on the sign of the curvature."""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, radius_pt in zip(indices, self.normsubpaths[normsubpathindex].curveradius_pt(params)):
result[index] = radius_pt
return result
def curveradius_pt(self, params):
"""return the curvature radius in pts at param(s) or arc length(s) in pts
The curvature radius is the inverse of the curvature. When the
curvature is 0, None is returned. Note that this radius can be negative
or positive, depending on the sign of the curvature."""
return self._curveradius_pt(self._convertparams(params, self.arclentoparam_pt))
curveradius_pt = _valueorlistmethod(curveradius_pt)
def curveradius(self, params):
"""return the curvature radius at param(s) or arc length(s)
The curvature radius is the inverse of the curvature. When the
curvature is 0, None is returned. Note that this radius can be negative
or positive, depending on the sign of the curvature."""
result = []
for radius_pt in self._curveradius_pt(self._convertparams(params, self.arclentoparam)):
if radius_pt is not invalid:
result.append(radius_pt * unit.t_pt)
else:
result.append(invalid)
return result
curveradius = _valueorlistmethod(curveradius)
def end(self):
"""return param corresponding of the end of the path"""
if self.normsubpaths:
return normpathparam(self, len(self)-1, len(self.normsubpaths[-1]))
else:
raise NormpathException("empty path")
def extend(self, normsubpaths):
"""extend path by normsubpaths or pathitems"""
for anormsubpath in normsubpaths:
# use append to properly handle regular path items as well as normsubpaths
self.append(anormsubpath)
def intersect(self, other):
"""intersect self with other path
Returns a tuple of lists consisting of the parameter values
of the intersection points of the corresponding normpath.
"""
other = other.normpath()
# here we build up the result
intersections = ([], [])
# Intersect all normsubpaths of self with the normsubpaths of
# other.
for ia, normsubpath_a in enumerate(self.normsubpaths):
for ib, normsubpath_b in enumerate(other.normsubpaths):
for intersection in zip(*normsubpath_a.intersect(normsubpath_b)):
intersections[0].append(normpathparam(self, ia, intersection[0]))
intersections[1].append(normpathparam(other, ib, intersection[1]))
return intersections
def join(self, other):
"""join other normsubpath inplace
Both normpaths must contain at least one normsubpath.
The last normsubpath of self will be joined to the first
normsubpath of other.
"""
other = other.normpath()
if not self.normsubpaths:
raise NormpathException("cannot join to empty path")
if not other.normsubpaths:
raise NormpathException("cannot join empty path")
self.normsubpaths[-1].join(other.normsubpaths[0])
self.normsubpaths.extend(other.normsubpaths[1:])
def joined(self, other):
"""return joined self and other
Both normpaths must contain at least one normsubpath.
The last normsubpath of self will be joined to the first
normsubpath of other.
"""
result = self.copy()
result.join(other.normpath())
return result
# << operator also designates joining
__lshift__ = joined
def normpath(self):
"""return a normpath, i.e. self"""
return self
def _paramtoarclen_pt(self, params):
"""return arc lengths in pts matching the given params"""
result = [None] * len(params)
totalarclen_pt = 0
distributeparams = self._distributeparams(params)
for normsubpathindex in range(max(distributeparams.keys()) + 1):
if distributeparams.has_key(normsubpathindex):
indices, params = distributeparams[normsubpathindex]
arclens_pt, normsubpatharclen_pt = self.normsubpaths[normsubpathindex]._paramtoarclen_pt(params)
for index, arclen_pt in zip(indices, arclens_pt):
result[index] = totalarclen_pt + arclen_pt
totalarclen_pt += normsubpatharclen_pt
else:
totalarclen_pt += self.normsubpaths[normsubpathindex].arclen_pt()
return result
def paramtoarclen_pt(self, params):
"""return arc length(s) in pts matching the given param(s)"""
paramtoarclen_pt = _valueorlistmethod(_paramtoarclen_pt)
def paramtoarclen(self, params):
"""return arc length(s) matching the given param(s)"""
return [arclen_pt * unit.t_pt for arclen_pt in self._paramtoarclen_pt(params)]
paramtoarclen = _valueorlistmethod(paramtoarclen)
def path(self):
"""return path corresponding to normpath"""
pathitems = []
for normsubpath in self.normsubpaths:
pathitems.extend(normsubpath.pathitems())
return path.path(*pathitems)
def reversed(self):
"""return reversed path"""
nnormpath = normpath()
for i in range(len(self.normsubpaths)):
nnormpath.normsubpaths.append(self.normsubpaths[-(i+1)].reversed())
return nnormpath
def _rotation(self, params):
"""return rotation at params"""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, rotation in zip(indices, self.normsubpaths[normsubpathindex].rotation(params)):
result[index] = rotation
return result
def rotation_pt(self, params):
"""return rotation at param(s) or arc length(s) in pts"""
return self._rotation(self._convertparams(params, self.arclentoparam_pt))
rotation_pt = _valueorlistmethod(rotation_pt)
def rotation(self, params):
"""return rotation at param(s) or arc length(s)"""
return self._rotation(self._convertparams(params, self.arclentoparam))
rotation = _valueorlistmethod(rotation)
def _split_pt(self, params):
"""split path at params and return list of normpaths"""
if not params:
return [self.copy()]
# instead of distributing the parameters, we need to keep their
# order and collect parameters for splitting of normsubpathitem
# with index collectindex
collectindex = None
for param in params:
if param.normsubpathindex != collectindex:
if collectindex is not None:
# append end point depening on the forthcoming index
if param.normsubpathindex > collectindex:
collectparams.append(len(self.normsubpaths[collectindex]))
else:
collectparams.append(0)
# get segments of the normsubpath and add them to the result
segments = self.normsubpaths[collectindex].segments(collectparams)
result[-1].append(segments[0])
result.extend([normpath([segment]) for segment in segments[1:]])
# add normsubpathitems and first segment parameter to close the
# gap to the forthcoming index
if param.normsubpathindex > collectindex:
for i in range(collectindex+1, param.normsubpathindex):
result[-1].append(self.normsubpaths[i])
collectparams = [0]
else:
for i in range(collectindex-1, param.normsubpathindex, -1):
result[-1].append(self.normsubpaths[i].reversed())
collectparams = [len(self.normsubpaths[param.normsubpathindex])]
else:
result = [normpath(self.normsubpaths[:param.normsubpathindex])]
collectparams = [0]
collectindex = param.normsubpathindex
collectparams.append(param.normsubpathparam)
# add remaining collectparams to the result
collectparams.append(len(self.normsubpaths[collectindex]))
segments = self.normsubpaths[collectindex].segments(collectparams)
result[-1].append(segments[0])
result.extend([normpath([segment]) for segment in segments[1:]])
result[-1].extend(self.normsubpaths[collectindex+1:])
return result
def split_pt(self, params):
"""split path at param(s) or arc length(s) in pts and return list of normpaths"""
try:
for param in params:
break
except:
params = [params]
return self._split_pt(self._convertparams(params, self.arclentoparam_pt))
def split(self, params):
"""split path at param(s) or arc length(s) and return list of normpaths"""
try:
for param in params:
break
except:
params = [params]
return self._split_pt(self._convertparams(params, self.arclentoparam))
def _tangent(self, params, length_pt):
"""return tangent vector of path at params
If length_pt in pts is not None, the tangent vector will be scaled to
the desired length.
"""
result = [None] * len(params)
tangenttemplate = path.line_pt(0, 0, length_pt, 0).normpath()
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, atrafo in zip(indices, self.normsubpaths[normsubpathindex].trafo(params)):
if atrafo is invalid:
result[index] = invalid
else:
result[index] = tangenttemplate.transformed(atrafo)
return result
def tangent_pt(self, params, length_pt):
"""return tangent vector of path at param(s) or arc length(s) in pts
If length in pts is not None, the tangent vector will be scaled to
the desired length.
"""
return self._tangent(self._convertparams(params, self.arclentoparam_pt), length_pt)
tangent_pt = _valueorlistmethod(tangent_pt)
def tangent(self, params, length=1):
"""return tangent vector of path at param(s) or arc length(s)
If length is not None, the tangent vector will be scaled to
the desired length.
"""
return self._tangent(self._convertparams(params, self.arclentoparam), unit.topt(length))
tangent = _valueorlistmethod(tangent)
def _trafo(self, params):
"""return transformation at params"""
result = [None] * len(params)
for normsubpathindex, (indices, params) in self._distributeparams(params).items():
for index, trafo in zip(indices, self.normsubpaths[normsubpathindex].trafo(params)):
result[index] = trafo
return result
def trafo_pt(self, params):
"""return transformation at param(s) or arc length(s) in pts"""
return self._trafo(self._convertparams(params, self.arclentoparam_pt))
trafo_pt = _valueorlistmethod(trafo_pt)
def trafo(self, params):
"""return transformation at param(s) or arc length(s)"""
return self._trafo(self._convertparams(params, self.arclentoparam))
trafo = _valueorlistmethod(trafo)
def transformed(self, trafo):
"""return transformed normpath"""
return normpath([normsubpath.transformed(trafo) for normsubpath in self.normsubpaths])
def outputPS(self, file, writer):
for normsubpath in self.normsubpaths:
normsubpath.outputPS(file, writer)
def outputPDF(self, file, writer):
for normsubpath in self.normsubpaths:
normsubpath.outputPDF(file, writer)
|