This file is indexed.

/usr/share/pyshared/ZODB/scripts/fsstats.py is in python-zodb 1:3.9.7-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#!/usr/bin/python

"""Print details statistics from fsdump output."""

import re
import sys

rx_txn = re.compile("tid=([0-9a-f]+).*size=(\d+)")
rx_data = re.compile("oid=([0-9a-f]+) class=(\S+) size=(\d+)")

def sort_byhsize(seq, reverse=False):
    L = [(v.size(), k, v) for k, v in seq]
    L.sort()
    if reverse:
        L.reverse()
    return [(k, v) for n, k, v in L]

class Histogram(dict):

    def add(self, size):
        self[size] = self.get(size, 0) + 1

    def size(self):
        return sum(self.itervalues())

    def mean(self):
        product = sum([k * v for k, v in self.iteritems()])
        return product / self.size()

    def median(self):
        # close enough?
        n = self.size() / 2
        L = self.keys()
        L.sort()
        L.reverse()
        while 1:
            k = L.pop()
            if self[k] > n:
                return k
            n -= self[k]

    def mode(self):
        mode = 0
        value = 0
        for k, v in self.iteritems():
            if v > value:
                value = v
                mode = k
        return mode

    def make_bins(self, binsize):
        maxkey = max(self.iterkeys())
        self.binsize = binsize
        self.bins = [0] * (1 + maxkey / binsize)
        for k, v in self.iteritems():
            b = k / binsize
            self.bins[b] += v

    def report(self, name, binsize=50, usebins=False, gaps=True, skip=True):
        if usebins:
            # Use existing bins with whatever size they have
            binsize = self.binsize
        else:
            # Make new bins
            self.make_bins(binsize)
        maxval = max(self.bins)
        # Print up to 40 dots for a value
        dot = max(maxval / 40, 1)
        tot = sum(self.bins)
        print name
        print "Total", tot,
        print "Median", self.median(),
        print "Mean", self.mean(),
        print "Mode", self.mode(),
        print "Max", max(self)
        print "One * represents", dot
        gap = False
        cum = 0
        for i, n in enumerate(self.bins):
            if gaps and (not n or (skip and not n / dot)):
                if not gap:
                    print "   ..."
                gap = True
                continue
            gap = False
            p = 100 * n / tot
            cum += n
            pc = 100 * cum / tot
            print "%6d %6d %3d%% %3d%% %s" % (
                i * binsize, n, p, pc, "*" * (n / dot))
        print

def class_detail(class_size):
    # summary of classes
    fmt = "%5s %6s %6s %6s   %-50.50s"
    labels = ["num", "median", "mean", "mode", "class"]
    print fmt % tuple(labels)
    print fmt % tuple(["-" * len(s) for s in labels])
    for klass, h in sort_byhsize(class_size.iteritems()):
        print fmt % (h.size(), h.median(), h.mean(), h.mode(), klass)
    print

    # per class details
    for klass, h in sort_byhsize(class_size.iteritems(), reverse=True):
        h.make_bins(50)
        if len(filter(None, h.bins)) == 1:
            continue
        h.report("Object size for %s" % klass, usebins=True)

def revision_detail(lifetimes, classes):
    # Report per-class details for any object modified more than once
    for name, oids in classes.iteritems():
        h = Histogram()
        keep = False
        for oid in dict.fromkeys(oids, 1):
            L = lifetimes.get(oid)
            n = len(L)
            h.add(n)
            if n > 1:
                keep = True
        if keep:
            h.report("Number of revisions for %s" % name, binsize=10)

def main(path=None):
    if path is None:
        path = sys.argv[1]
    txn_objects = Histogram() # histogram of txn size in objects
    txn_bytes = Histogram() # histogram of txn size in bytes
    obj_size = Histogram() # histogram of object size
    n_updates = Histogram() # oid -> num updates
    n_classes = Histogram() # class -> num objects
    lifetimes = {} # oid -> list of tids
    class_size = {} # class -> histogram of object size
    classes = {} # class -> list of oids

    MAX = 0
    objects = 0
    tid = None

    f = open(path, "rb")
    for i, line in enumerate(f):
        if MAX and i > MAX:
            break
        if line.startswith("  data"):
            m = rx_data.search(line)
            if not m:
                continue
            oid, klass, size = m.groups()
            size = int(size)

            obj_size.add(size)
            n_updates.add(oid)
            n_classes.add(klass)

            h = class_size.get(klass)
            if h is None:
                h = class_size[klass] = Histogram()
            h.add(size)

            L = lifetimes.setdefault(oid, [])
            L.append(tid)

            L = classes.setdefault(klass, [])
            L.append(oid)
            objects += 1

        elif line.startswith("Trans"):

            if tid is not None:
                txn_objects.add(objects)

            m = rx_txn.search(line)
            if not m:
                continue
            tid, size = m.groups()
            size = int(size)
            objects = 0

            txn_bytes.add(size)
    f.close()

    print "Summary: %d txns, %d objects, %d revisions" % (
        txn_objects.size(), len(n_updates), n_updates.size())
    print

    txn_bytes.report("Transaction size (bytes)", binsize=1024)
    txn_objects.report("Transaction size (objects)", binsize=10)
    obj_size.report("Object size", binsize=128)

    # object lifetime info
    h = Histogram()
    for k, v in lifetimes.items():
        h.add(len(v))
    h.report("Number of revisions", binsize=10, skip=False)

    # details about revisions
    revision_detail(lifetimes, classes)

    class_detail(class_size)

if __name__ == "__main__":
    main()