/usr/lib/swi-prolog/doc/Manual/clpfd.html is in swi-prolog-nox 5.10.4-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<HTML>
<HEAD>
<TITLE>SWI-Prolog 5.11.18 Reference Manual: Section A.7</TITLE><LINK REL=home HREF="index.html">
<LINK REL=contents HREF="Contents.html">
<LINK REL=index HREF="DocIndex.html">
<LINK REL=summary HREF="summary.html">
<LINK REL=previous HREF="check.html">
<LINK REL=next HREF="clpqr.html">
<STYLE type="text/css">
/* Style sheet for SWI-Prolog latex2html
*/
dd.defbody
{ margin-bottom: 1em;
}
dt.pubdef
{ background-color: #c5e1ff;
}
dt.multidef
{ background-color: #c8ffc7;
}
.bib dd
{ margin-bottom: 1em;
}
.bib dt
{ float: left;
margin-right: 1.3ex;
}
pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}
div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}
div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}
div.author
{ text-align: center;
font-style: italic;
}
div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}
div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}
div.toc-h1
{ font-size: 200%;
font-weight: bold;
}
div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}
div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}
div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}
span.sec-nr
{
}
span.sec-title
{
}
span.pred-ext
{ font-weight: bold;
}
span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #202020;
}
/* Footnotes */
sup.fn { color: blue; text-decoration: underline; }
span.fn-text { display: none; }
sup.fn span {display: none;}
sup:hover span
{ display: block !important;
position: absolute; top: auto; left: auto; width: 80%;
color: #000; background: white;
border: 2px solid;
padding: 5px; margin: 10px; z-index: 100;
font-size: smaller;
}
</STYLE>
</HEAD>
<BODY BGCOLOR="white">
<DIV class="navigate"><A class="nav" href="index.html"><IMG SRC="home.gif" BORDER=0 ALT="Home"></A>
<A class="nav" href="Contents.html"><IMG SRC="index.gif" BORDER=0 ALT="Contents"></A>
<A class="nav" href="DocIndex.html"><IMG SRC="yellow_pages.gif" BORDER=0 ALT="Index"></A>
<A class="nav" href="summary.html"><IMG SRC="info.gif" BORDER=0 ALT="Summary"></A>
<A class="nav" href="check.html"><IMG SRC="prev.gif" BORDER=0 ALT="Previous"></A>
<A class="nav" href="clpqr.html"><IMG SRC="next.gif" BORDER=0 ALT="Next"></A>
</DIV>
<H2><A NAME="sec:A.7"><SPAN class="sec-nr">A.7</SPAN> <SPAN class="sec-title">library(clpfd):
Constraint Logic Programming over Finite Domains</SPAN></A></H2>
<P><A NAME="sec:clpfd"></A>
<DL>
<DT><B>author</B><DD> Markus Triska
</DL>
<P>Constraint programming is a declarative formalism that lets you
describe conditions a solution must satisfy. This library provides
CLP(FD), Constraint Logic Programming over Finite Domains. It can be
used to model and solve various combinatorial problems such as planning,
scheduling and allocation tasks.
<P>Most predicates of this library are finite domain <I>constraints</I>,
which are relations over integers. They generalise arithmetic evaluation
of integer expressions in that propagation can proceed in all
directions. This library also provides <I>enumeration</I> <I>predicates</I>,
which let you systematically search for solutions on variables whose
domains have become finite. A finite domain <I>expression</I> is one of:
<BLOCKQUOTE>
<TABLE BORDER=2 FRAME=box RULES=groups>
<TR VALIGN=top><TD>an integer</TD><TD>Given value </TD></TR>
<TR VALIGN=top><TD>a variable</TD><TD>Unknown value </TD></TR>
<TR VALIGN=top><TD>-Expr</TD><TD>Unary minus </TD></TR>
<TR VALIGN=top><TD>Expr + Expr</TD><TD>Addition </TD></TR>
<TR VALIGN=top><TD>Expr * Expr</TD><TD>Multiplication </TD></TR>
<TR VALIGN=top><TD>Expr - Expr</TD><TD>Subtraction </TD></TR>
<TR VALIGN=top><TD>Expr <CODE>^</CODE> Expr</TD><TD>Exponentiation </TD></TR>
<TR VALIGN=top><TD>min(Expr,Expr)</TD><TD>Minimum of two expressions </TD></TR>
<TR VALIGN=top><TD>max(Expr,Expr)</TD><TD>Maximum of two expressions </TD></TR>
<TR VALIGN=top><TD>Expr mod Expr</TD><TD>Modulo </TD></TR>
<TR VALIGN=top><TD>abs(Expr)</TD><TD>Absolute value </TD></TR>
<TR VALIGN=top><TD>Expr / Expr</TD><TD>Integer division </TD></TR>
</TABLE>
</BLOCKQUOTE>
<P>The most important finite domain constraints are:
<BLOCKQUOTE>
<TABLE BORDER=2 FRAME=box RULES=groups>
<TR VALIGN=top><TD>Expr1 <CODE>#>=</CODE> Expr2</TD><TD>Expr1 is
larger than or equal to Expr2 </TD></TR>
<TR VALIGN=top><TD>Expr1 <CODE>#=<</CODE> Expr2</TD><TD>Expr1 is
smaller than or equal to Expr2 </TD></TR>
<TR VALIGN=top><TD>Expr1 <CODE>#=</CODE> Expr2</TD><TD>Expr1 equals
Expr2 </TD></TR>
<TR VALIGN=top><TD>Expr1 <CODE>#\=</CODE> Expr2</TD><TD>Expr1 is not
equal to Expr2 </TD></TR>
<TR VALIGN=top><TD>Expr1 <CODE>#></CODE> Expr2</TD><TD>Expr1 is
strictly larger than Expr2 </TD></TR>
<TR VALIGN=top><TD>Expr1 <CODE>#<</CODE> Expr2</TD><TD>Expr1 is
strictly smaller than Expr2 </TD></TR>
</TABLE>
</BLOCKQUOTE>
<P>The constraints <A class="pred" href="clpfd.html#in/2">in/2</A>, <A class="pred" href="clpfd.html##=/2">#=/2</A>, <A class="pred" href="clpfd.html##\=/2">#\=/2</A>, <A class="pred" href="clpfd.html##</2">#</2</A>, <A class="pred" href="clpfd.html##>/2">#>/2</A>, <A class="pred" href="clpfd.html##=</2">#=</2</A>,
and <A class="pred" href="clpfd.html##>=/2">#>=/2</A> can be
<I>reified</I>, which means reflecting their truth values into Boolean
values represented by the integers 0 and 1. Let P and Q denote reifiable
constraints or Boolean variables, then:
<BLOCKQUOTE>
<TABLE BORDER=2 FRAME=box RULES=groups>
<TR VALIGN=top><TD><CODE>#\</CODE> Q</TD><TD>True iff Q is false </TD></TR>
<TR VALIGN=top><TD>P <CODE>#\/</CODE> Q</TD><TD>True iff either P or Q </TD></TR>
<TR VALIGN=top><TD>P <CODE>#/\</CODE> Q</TD><TD>True iff both P and Q </TD></TR>
<TR VALIGN=top><TD>P <CODE>#<==></CODE> Q</TD><TD>True iff P and Q
are equivalent </TD></TR>
<TR VALIGN=top><TD>P <CODE>#==></CODE> Q</TD><TD>True iff P implies Q </TD></TR>
<TR VALIGN=top><TD>P <CODE>#<==</CODE> Q</TD><TD>True iff Q implies P </TD></TR>
</TABLE>
</BLOCKQUOTE>
<P>The constraints of this table are reifiable as well. If a variable
occurs at the place of a constraint that is being reified, it is
implicitly constrained to the Boolean values 0 and 1. Therefore, the
following queries all fail: <CODE>?-</CODE> <CODE>#\</CODE> 2., <CODE>?-</CODE> <CODE>#\</CODE> <CODE>#\</CODE>
2. etc.
<P>Here is an example session with a few queries and their answers:
<PRE class="code">
?- [library(clpfd)].
% library(clpfd) compiled into clpfd 0.06 sec, 3,308 bytes
true.
?- X #> 3.
X in 4..sup.
?- X #\= 20.
X in inf..19\/21..sup.
?- 2*X #= 10.
X = 5.
?- X*X #= 144.
X in -12\/12.
?- 4*X + 2*Y #= 24, X + Y #= 9, [X,Y] ins 0..sup.
X = 3,
Y = 6.
?- Vs = [X,Y,Z], Vs ins 1..3, all_different(Vs), X = 1, Y #\= 2.
Vs = [1, 3, 2],
X = 1,
Y = 3,
Z = 2.
?- X #= Y #<==> B, X in 0..3, Y in 4..5.
B = 0,
X in 0..3,
Y in 4..5.
</PRE>
<P>In each case (and as for all pure programs), the answer is
declaratively equivalent to the original query, and in many cases the
constraint solver has deduced additional domain restrictions.
<P>A common usage of this library is to first post the desired
constraints among the variables of a model, and then to use enumeration
predicates to search for solutions. As an example of a constraint
satisfaction problem, consider the cryptoarithmetic puzzle SEND + MORE =
MONEY, where different letters denote distinct integers between 0 and 9.
It can be modeled in CLP(FD) as follows:
<PRE class="code">
:- use_module(library(clpfd)).
puzzle([S,E,N,D] + [M,O,R,E] = [M,O,N,E,Y]) :-
Vars = [S,E,N,D,M,O,R,Y],
Vars ins 0..9,
all_different(Vars),
S*1000 + E*100 + N*10 + D +
M*1000 + O*100 + R*10 + E #=
M*10000 + O*1000 + N*100 + E*10 + Y,
M #\= 0, S #\= 0.
</PRE>
<P>Sample query and its result:
<PRE class="code">
?- puzzle(As+Bs=Cs).
As = [9, _G10107, _G10110, _G10113],
Bs = [1, 0, _G10128, _G10107],
Cs = [1, 0, _G10110, _G10107, _G10152],
_G10107 in 4..7,
1000*9+91*_G10107+ -90*_G10110+_G10113+ -9000*1+ -900*0+10*_G10128+ -1*_G10152#=0,
all_different([_G10107, _G10110, _G10113, _G10128, _G10152, 0, 1, 9]),
_G10110 in 5..8,
_G10113 in 2..8,
_G10128 in 2..8,
_G10152 in 2..8.
</PRE>
<P>Here, the constraint solver has deduced more stringent bounds for all
variables. Keeping the modeling part separate from the search lets you
view these residual goals, observe termination and determinism
properties of the modeling part in isolation from the search, and more
easily experiment with different search strategies. Labeling can then be
used to search for solutions:
<PRE class="code">
?- puzzle(As+Bs=Cs), label(As).
As = [9, 5, 6, 7],
Bs = [1, 0, 8, 5],
Cs = [1, 0, 6, 5, 2] ;
false.
</PRE>
<P>In this case, it suffices to label a subset of variables to find the
puzzle's unique solution, since the constraint solver is strong enough
to reduce the domains of remaining variables to singleton sets. In
general though, it is necessary to label all variables to obtain ground
solutions.
<P>You can also use CLP(FD) constraints as a more declarative
alternative for ordinary integer arithmetic with <A class="pred" href="arith.html#is/2">is/2</A>, <A class="pred" href="arith.html#>/2">>/2</A>
etc. For example:
<PRE class="code">
:- use_module(library(clpfd)).
n_factorial(0, 1).
n_factorial(N, F) :- N #> 0, N1 #= N - 1, F #= N * F1, n_factorial(N1, F1).
</PRE>
<P>This predicate can be used in all directions. For example:
<PRE class="code">
?- n_factorial(47, F).
F = 258623241511168180642964355153611979969197632389120000000000 ;
false.
?- n_factorial(N, 1).
N = 0 ;
N = 1 ;
false.
?- n_factorial(N, 3).
false.
</PRE>
<P>To make the predicate terminate if any argument is instantiated, add
the (implied) constraint F <CODE>#\=</CODE> 0 before the recursive call.
Otherwise, the query n_factorial(N, 0) is the only non-terminating case
of this kind.
<P>This library uses <A class="pred" href="consulting.html#goal_expansion/2">goal_expansion/2</A>
to rewrite constraints at compilation time. The expansion's aim is to
transparently bring the performance of CLP(FD) constraints close to that
of conventional arithmetic predicates (<A class="pred" href="arith.html#</2"></2</A>, <A class="pred" href="arith.html#=:=/2">=:=/2</A>, <A class="pred" href="arith.html#is/2">is/2</A>
etc.) when the constraints are used in modes that can also be handled by
built-in arithmetic. To disable the expansion, set the flag
clpfd_goal_expansion to false.
<P>Use <A class="pred" href="coroutining.html#call_residue_vars/2">call_residue_vars/2</A>
and <A class="pred" href="attvar.html#copy_term/3">copy_term/3</A> to
inspect residual goals and the constraints in which a variable is
involved. This library also provides <I>reflection</I> predicates (like <A class="pred" href="clpfd.html#fd_dom/2">fd_dom/2</A>, <A class="pred" href="clpfd.html#fd_size/2">fd_size/2</A>
etc.) with which you can inspect a variable's current domain. These
predicates can be useful if you want to implement your own labeling
strategies.
<P>You can also define custom constraints. The mechanism to do this is
not yet finalised, and we welcome suggestions and descriptions of use
cases that are important to you. As an example of how it can be done
currently, let us define a new custom constraint "oneground(X,Y,Z)",
where Z shall be 1 if at least one of X and Y is instantiated:
<PRE class="code">
:- use_module(library(clpfd)).
:- multifile clpfd:run_propagator/2.
oneground(X, Y, Z) :-
clpfd:make_propagator(oneground(X, Y, Z), Prop),
clpfd:init_propagator(X, Prop),
clpfd:init_propagator(Y, Prop),
clpfd:trigger_once(Prop).
clpfd:run_propagator(oneground(X, Y, Z), MState) :-
( integer(X) -> clpfd:kill(MState), Z = 1
; integer(Y) -> clpfd:kill(MState), Z = 1
; true
).
</PRE>
<P>First, <SPAN class="pred-ext">clpfd:make_propagator/2</SPAN> is used
to transform a user-defined representation of the new constraint to an
internal form. With
<SPAN class="pred-ext">clpfd:init_propagator/2</SPAN>, this internal
form is then attached to X and Y. From now on, the propagator will be
invoked whenever the domains of X or Y are changed. Then, <SPAN class="pred-ext">clpfd:trigger_once/1</SPAN>
is used to give the propagator its first chance for propagation even
though the variables' domains have not yet changed. Finally, <SPAN class="pred-ext">clpfd:run_propagator/2</SPAN>
is extended to define the actual propagator. As explained, this
predicate is automatically called by the constraint solver. The first
argument is the user-defined representation of the constraint as used in
<SPAN class="pred-ext">clpfd:make_propagator/2</SPAN>, and the second
argument is a mutable state that can be used to prevent further
invocations of the propagator when the constraint has become entailed,
by using <SPAN class="pred-ext">clpfd:kill/1</SPAN>. An example of using
the new constraint:
<PRE class="code">
?- oneground(X, Y, Z), Y = 5.
Y = 5,
Z = 1,
X in inf..sup.
</PRE>
<DL class="latex">
<DT class="pubdef"><A NAME="in/2"><VAR>?Var</VAR> <STRONG>in</STRONG> <VAR>+Domain</VAR></A></DT>
<DD class="defbody">
<VAR>Var</VAR> is an element of <VAR>Domain</VAR>. <VAR>Domain</VAR> is
one of:
<DL class="latex">
<DT><STRONG><VAR>Integer</VAR></STRONG></DT>
<DD class="defbody">
Singleton set consisting only of <I>Integer</I>.
</DD>
<DT><VAR><VAR>Lower</VAR></VAR> <STRONG>..</STRONG> <VAR><VAR>Upper</VAR></VAR></DT>
<DD class="defbody">
All integers <I>I</I> such that <I>Lower</I> <CODE>=<</CODE> <I>I</I> <CODE>=<</CODE> <I>Upper</I>.
<I>Lower</I> must be an integer or the atom <B>inf</B>, which denotes
negative infinity. <I>Upper</I> must be an integer or the atom <B>sup</B>,
which denotes positive infinity.
</DD>
<DT><VAR><VAR>Domain1</VAR></VAR> <STRONG><CODE>\/</CODE></STRONG> <VAR><VAR>Domain2</VAR></VAR></DT>
<DD class="defbody">
The union of Domain1 and Domain2.
</DD>
</DL>
</DD>
<DT class="pubdef"><A NAME="ins/2"><VAR>+Vars</VAR> <STRONG>ins</STRONG> <VAR>+Domain</VAR></A></DT>
<DD class="defbody">
The variables in the list <VAR>Vars</VAR> are elements of <VAR>Domain</VAR>.</DD>
<DT class="pubdef"><A NAME="indomain/1"><STRONG>indomain</STRONG>(<VAR>?Var</VAR>)</A></DT>
<DD class="defbody">
Bind <VAR>Var</VAR> to all feasible values of its domain on
backtracking. The domain of <VAR>Var</VAR> must be finite.</DD>
<DT class="pubdef"><A NAME="label/1"><STRONG>label</STRONG>(<VAR>+Vars</VAR>)</A></DT>
<DD class="defbody">
Equivalent to labeling([], <VAR>Vars</VAR>).</DD>
<DT class="pubdef"><A NAME="labeling/2"><STRONG>labeling</STRONG>(<VAR>+Options,
+Vars</VAR>)</A></DT>
<DD class="defbody">
Labeling means systematically trying out values for the finite domain
variables <VAR>Vars</VAR> until all of them are ground. The domain of
each variable in <VAR>Vars</VAR> must be finite. <VAR>Options</VAR> is a
list of options that let you exhibit some control over the search
process. Several categories of options exist:
<P>The variable selection strategy lets you specify which variable of
<VAR>Vars</VAR> is labeled next and is one of:
<DL class="latex">
<DT><STRONG>leftmost</STRONG></DT>
<DD class="defbody">
Label the variables in the order they occur in <VAR>Vars</VAR>. This is
the default.
</DD>
<DT><STRONG>ff</STRONG></DT>
<DD class="defbody">
<I>First fail</I>. Label the leftmost variable with smallest domain
next, in order to detect infeasibility early. This is often a good
strategy.
</DD>
<DT><STRONG>ffc</STRONG></DT>
<DD class="defbody">
Of the variables with smallest domains, the leftmost one participating
in most constraints is labeled next.
</DD>
<DT><STRONG>min</STRONG></DT>
<DD class="defbody">
Label the leftmost variable whose lower bound is the lowest next.
</DD>
<DT><STRONG>max</STRONG></DT>
<DD class="defbody">
Label the leftmost variable whose upper bound is the highest next.
</DD>
</DL>
<P>The value order is one of:
<DL class="latex">
<DT><STRONG>up</STRONG></DT>
<DD class="defbody">
Try the elements of the chosen variable's domain in ascending order.
This is the default.
</DD>
<DT><STRONG>down</STRONG></DT>
<DD class="defbody">
Try the domain elements in descending order.
</DD>
</DL>
<P>The branching strategy is one of:
<DL class="latex">
<DT><STRONG>step</STRONG></DT>
<DD class="defbody">
For each variable X, a choice is made between X = V and X <CODE>#\=</CODE>
V, where V is determined by the value ordering options. This is the
default.
</DD>
<DT><STRONG>enum</STRONG></DT>
<DD class="defbody">
For each variable X, a choice is made between X = V_1, X = V_2 etc., for
all values V_i of the domain of X. The order is determined by the value
ordering options.
</DD>
<DT><STRONG>bisect</STRONG></DT>
<DD class="defbody">
For each variable X, a choice is made between X <CODE>#=<</CODE> M
and X <CODE>#></CODE> M, where M is the midpoint of the domain of X.
</DD>
</DL>
<P>At most one option of each category can be specified, and an option
must not occur repeatedly.
<P>The order of solutions can be influenced with:
<DL class="latex">
<DT><STRONG>min</STRONG>(<VAR>Expr</VAR>)
<DT><STRONG>max</STRONG>(<VAR>Expr</VAR>)</DT>
<DD class="defbody">
</DD>
</DL>
<P>This generates solutions in ascending/descending order with respect
to the evaluation of the arithmetic expression Expr. Labeling <VAR>Vars</VAR>
must make Expr ground. If several such options are specified, they are
interpreted from left to right, e.g.:
<PRE class="code">
?- [X,Y] ins 10..20, labeling([max(X),min(Y)],[X,Y]).
</PRE>
<P>This generates solutions in descending order of X, and for each
binding of X, solutions are generated in ascending order of Y. To obtain
the incomplete behaviour that other systems exhibit with
"maximize(Expr)" and "minimize(Expr)", use <A class="pred" href="metacall.html#once/1">once/1</A>,
e.g.:
<PRE class="code">
once(labeling([max(Expr)], Vars))
</PRE>
<P>Labeling is always complete, always terminates, and yields no
redundant solutions.<DT class="pubdef"><A NAME="all_different/1"><STRONG>all_different</STRONG>(<VAR>+Vars</VAR>)</A></DT>
<DD class="defbody">
<VAR>Vars</VAR> are pairwise distinct.</DD>
<DT class="pubdef"><A NAME="sum/3"><STRONG>sum</STRONG>(<VAR>+Vars,
+Rel, ?Expr</VAR>)</A></DT>
<DD class="defbody">
The sum of elements of the list <VAR>Vars</VAR> is in relation <VAR>Rel</VAR>
to <VAR>Expr</VAR>, where <VAR>Rel</VAR> is #=, #<CODE>\</CODE>=, #<VAR><</VAR>, #<VAR>></VAR>, <CODE>#=<</CODE>
or #<VAR>></VAR>=. For example:
<PRE class="code">
?- [A,B,C] ins 0..sup, sum([A,B,C], #=, 100).
A in 0..100,
A+B+C#=100,
B in 0..100,
C in 0..100.
</PRE>
</DD>
<DT class="pubdef"><A NAME="scalar_product/4"><STRONG>scalar_product</STRONG>(<VAR>+Cs,
+Vs, +Rel, ?Expr</VAR>)</A></DT>
<DD class="defbody">
<VAR>Cs</VAR> is a list of integers, <VAR>Vs</VAR> is a list of
variables and integers. True if the scalar product of <VAR>Cs</VAR> and <VAR>Vs</VAR>
is in relation <VAR>Rel</VAR> to <VAR>Expr</VAR>, where <VAR>Rel</VAR>
is #=, #<CODE>\</CODE>=, #<VAR><</VAR>, #<VAR>></VAR>, <CODE>#=<</CODE>
or #<VAR>></VAR>=.</DD>
<DT class="pubdef"><A NAME="#>=/2"><VAR>?X</VAR> <STRONG>#>=</STRONG> <VAR>?Y</VAR></A></DT>
<DD class="defbody">
<VAR>X</VAR> is greater than or equal to <VAR>Y</VAR>.</DD>
<DT class="pubdef"><A NAME="#=</2"><VAR>?X</VAR> <STRONG>#=<</STRONG> <VAR>?Y</VAR></A></DT>
<DD class="defbody">
<VAR>X</VAR> is less than or equal to <VAR>Y</VAR>.</DD>
<DT class="pubdef"><A NAME="#=/2"><VAR>?X</VAR> <STRONG>#=</STRONG> <VAR>?Y</VAR></A></DT>
<DD class="defbody">
<VAR>X</VAR> equals <VAR>Y</VAR>.</DD>
<DT class="pubdef"><A NAME="#\=/2"><VAR>?X</VAR> <STRONG>#\=</STRONG> <VAR>?Y</VAR></A></DT>
<DD class="defbody">
<VAR>X</VAR> is not <VAR>Y</VAR>.</DD>
<DT class="pubdef"><A NAME="#>/2"><VAR>?X</VAR> <STRONG>#></STRONG> <VAR>?Y</VAR></A></DT>
<DD class="defbody">
<VAR>X</VAR> is greater than <VAR>Y</VAR>.</DD>
<DT class="pubdef"><A NAME="#</2"><VAR>?X</VAR> <STRONG>#<</STRONG> <VAR>?Y</VAR></A></DT>
<DD class="defbody">
<VAR>X</VAR> is less than <VAR>Y</VAR>. In addition to its regular use
in problems that require it, this constraint can also be useful to
eliminate uninteresting symmetries from a problem. For example, all
possible matches between pairs built from four players in total:
<PRE class="code">
?- Vs = [A,B,C,D], Vs ins 1..4, all_different(Vs), A #< B, C #< D, A #< C,
findall(pair(A,B)-pair(C,D), label(Vs), Ms).
Ms = [pair(1, 2)-pair(3, 4), pair(1, 3)-pair(2, 4), pair(1, 4)-pair(2, 3)]
</PRE>
</DD>
<DT class="pubdef"><A NAME="#\/1"><STRONG>#\</STRONG> <VAR>+Q</VAR></A></DT>
<DD class="defbody">
The reifiable constraint <VAR>Q</VAR> does <I>not</I> hold. For example,
to obtain the complement of a domain:
<PRE class="code">
?- #\ X in -3..0\/10..80.
X in inf.. -4\/1..9\/81..sup.
</PRE>
</DD>
<DT class="pubdef"><A NAME="#<==>/2"><VAR>?P</VAR> <STRONG>#<==></STRONG> <VAR>?Q</VAR></A></DT>
<DD class="defbody">
<VAR>P</VAR> and <VAR>Q</VAR> are equivalent. For example:
<PRE class="code">
?- X #= 4 #<==> B, X #\= 4.
B = 0,
X in inf..3\/5..sup.
</PRE>
<P>The following example uses reified constraints to relate a list of
finite domain variables to the number of occurrences of a given value:
<PRE class="code">
:- use_module(library(clpfd)).
vs_n_num(Vs, N, Num) :-
maplist(eq_b(N), Vs, Bs),
sum(Bs, #=, Num).
eq_b(X, Y, B) :- X #= Y #<==> B.
</PRE>
<P>Sample queries and their results:
<PRE class="code">
?- Vs = [X,Y,Z], Vs ins 0..1, vs_n_num(Vs, 4, Num).
Vs = [X, Y, Z],
Num = 0,
X in 0..1,
Y in 0..1,
Z in 0..1.
?- vs_n_num([X,Y,Z], 2, 3).
X = 2,
Y = 2,
Z = 2.
</PRE>
</DD>
<DT class="pubdef"><A NAME="#==>/2"><VAR>?P</VAR> <STRONG>#==></STRONG> <VAR>?Q</VAR></A></DT>
<DD class="defbody">
<VAR>P</VAR> implies <VAR>Q</VAR>.</DD>
<DT class="pubdef"><A NAME="#<==/2"><VAR>?P</VAR> <STRONG>#<==</STRONG> <VAR>?Q</VAR></A></DT>
<DD class="defbody">
<VAR>Q</VAR> implies <VAR>P</VAR>.</DD>
<DT class="pubdef"><A NAME="#/\/2"><VAR>?P</VAR> <STRONG>#/\</STRONG> <VAR>?Q</VAR></A></DT>
<DD class="defbody">
<VAR>P</VAR> and <VAR>Q</VAR> hold.</DD>
<DT class="pubdef"><A NAME="#\//2"><VAR>?P</VAR> <STRONG>#\/</STRONG> <VAR>?Q</VAR></A></DT>
<DD class="defbody">
<VAR>P</VAR> or <VAR>Q</VAR> holds. For example, the sum of natural
numbers below 1000 that are multiples of 3 or 5:
<PRE class="code">
?- findall(N, (N mod 3 #= 0 #\/ N mod 5 #= 0, N in 0..999, indomain(N)), Ns), sum(Ns, #=, Sum).
Ns = [0, 3, 5, 6, 9, 10, 12, 15, 18|...],
Sum = 233168.
</PRE>
</DD>
<DT class="pubdef"><A NAME="lex_chain/1"><STRONG>lex_chain</STRONG>(<VAR>+Lists</VAR>)</A></DT>
<DD class="defbody">
<VAR>Lists</VAR> are lexicographically non-decreasing.</DD>
<DT class="pubdef"><A NAME="tuples_in/2"><STRONG>tuples_in</STRONG>(<VAR>+Tuples,
+Relation</VAR>)</A></DT>
<DD class="defbody">
<VAR>Relation</VAR> must be a list of lists of integers. The elements of
the list <VAR>Tuples</VAR> are constrained to be elements of <VAR>Relation</VAR>.
Arbitrary finite relations, such as compatibility tables, can be modeled
in this way. For example, if 1 is compatible with 2 and 5, and 4 is
compatible with 0 and 3:
<PRE class="code">
?- tuples_in([[X,Y]], [[1,2],[1,5],[4,0],[4,3]]), X = 4.
X = 4,
Y in 0\/3.
</PRE>
<P>As another example, consider a train schedule represented as a list
of quadruples, denoting departure and arrival places and times for each
train. In the following program, Ps is a feasible journey of length 3
from A to D via trains that are part of the given schedule.
<PRE class="code">
:- use_module(library(clpfd)).
trains([[1,2,0,1],[2,3,4,5],[2,3,0,1],[3,4,5,6],[3,4,2,3],[3,4,8,9]]).
threepath(A, D, Ps) :-
Ps = [[A,B,_T0,T1],[B,C,T2,T3],[C,D,T4,_T5]],
T2 #> T1,
T4 #> T3,
trains(Ts),
tuples_in(Ps, Ts).
</PRE>
<P>In this example, the unique solution is found without labeling:
<PRE class="code">
?- threepath(1, 4, Ps).
Ps = [[1, 2, 0, 1], [2, 3, 4, 5], [3, 4, 8, 9]].
</PRE>
</DD>
<DT class="pubdef"><A NAME="all_distinct/1"><STRONG>all_distinct</STRONG>(<VAR>+Ls</VAR>)</A></DT>
<DD class="defbody">
Like <A class="pred" href="clpfd.html#all_different/1">all_different/1</A>,
with stronger propagation. For example,
<A class="pred" href="clpfd.html#all_distinct/1">all_distinct/1</A> can
detect that not all variables can assume distinct values given the
following domains:
<PRE class="code">
?- maplist(in, Vs, [1\/3..4, 1..2\/4, 1..2\/4, 1..3, 1..3, 1..6]), all_distinct(Vs).
false.
</PRE>
</DD>
<DT class="pubdef"><A NAME="serialized/2"><STRONG>serialized</STRONG>(<VAR>+Starts,
+Durations</VAR>)</A></DT>
<DD class="defbody">
Constrain a set of intervals to a non-overlapping sequence.
<VAR>Starts</VAR> = [S_1,...,S_n], is a list of variables or integers,
<VAR>Durations</VAR> = [D_1,...,D_n] is a list of non-negative integers.
Constrains <VAR>Starts</VAR> and <VAR>Durations</VAR> to denote a set of
non-overlapping tasks, i.e.: S_i + D_i <CODE>=<</CODE> S_j or S_j +
D_j <CODE>=<</CODE> S_i for all 1 <CODE>=<</CODE> i <VAR><</VAR>
j <CODE>=<</CODE> n. Example:
<PRE class="code">
?- length(Vs, 3), Vs ins 0..3, serialized(Vs, [1,2,3]), label(Vs).
Vs = [0, 1, 3] ;
Vs = [2, 0, 3] ;
false.
</PRE>
<DL>
<DT><B>See also</B><DD> Dorndorf et al. 2000, "Constraint Propagation
Techniques for the Disjunctive Scheduling Problem"
</DL>
</DD>
<DT class="pubdef"><A NAME="element/3"><STRONG>element</STRONG>(<VAR>?N,
+Vs, ?V</VAR>)</A></DT>
<DD class="defbody">
The <VAR>N</VAR>-th element of the list of finite domain variables <VAR>Vs</VAR>
is <VAR>V</VAR>. Analogous to <A class="pred" href="lists.html#nth1/3">nth1/3</A>.</DD>
<DT class="pubdef"><A NAME="global_cardinality/2"><STRONG>global_cardinality</STRONG>(<VAR>+Vs,
+Pairs</VAR>)</A></DT>
<DD class="defbody">
Equivalent to global_cardinality(<VAR>Vs</VAR>, <VAR>Pairs</VAR>, []).
Example:
<PRE class="code">
?- Vs = [_,_,_], global_cardinality(Vs, [1-2,3-_]), label(Vs).
Vs = [1, 1, 3] ;
Vs = [1, 3, 1] ;
Vs = [3, 1, 1].
</PRE>
</DD>
<DT class="pubdef"><A NAME="global_cardinality/3"><STRONG>global_cardinality</STRONG>(<VAR>+Vs,
+Pairs, +Options</VAR>)</A></DT>
<DD class="defbody">
<VAR>Vs</VAR> is a list of finite domain variables, <VAR>Pairs</VAR> is
a list of Key-Num pairs, where Key is an integer and Num is a finite
domain variable. The constraint holds iff each V in <VAR>Vs</VAR> is
equal to some key, and for each Key-Num pair in <VAR>Pairs</VAR>, the
number of occurrences of Key in <VAR>Vs</VAR> is Num. <VAR>Options</VAR>
is a list of options. Supported options are:
<DL class="latex">
<DT><STRONG>consistency</STRONG>(<VAR>value</VAR>)</DT>
<DD class="defbody">
A weaker form of consistency is used.
</DD>
<DT><STRONG>cost</STRONG>(<VAR>Cost, Matrix</VAR>)</DT>
<DD class="defbody">
Matrix is a list of rows, one for each variable, in the order they occur
in <VAR>Vs</VAR>. Each of these rows is a list of integers, one for each
key, in the order these keys occur in <VAR>Pairs</VAR>. When variable
v_i is assigned the value of key k_j, then the associated cost is
Matrix_{ij}. Cost is the sum of all costs.
</DD>
</DL>
</DD>
<DT class="pubdef"><A NAME="circuit/1"><STRONG>circuit</STRONG>(<VAR>+Vs</VAR>)</A></DT>
<DD class="defbody">
True if the list <VAR>Vs</VAR> of finite domain variables induces a
Hamiltonian circuit, where the k-th element of <VAR>Vs</VAR> denotes the
successor of node k. Node indexing starts with 1. Examples:
<PRE class="code">
?- length(Vs, _), circuit(Vs), label(Vs).
Vs = [] ;
Vs = [1] ;
Vs = [2, 1] ;
Vs = [2, 3, 1] ;
Vs = [3, 1, 2] ;
Vs = [2, 3, 4, 1] .
</PRE>
</DD>
<DT class="pubdef"><A NAME="automaton/3"><STRONG>automaton</STRONG>(<VAR>+Signature,
+Nodes, +Arcs</VAR>)</A></DT>
<DD class="defbody">
Equivalent to automaton(_, _, <VAR>Signature</VAR>, <VAR>Nodes</VAR>, <VAR>Arcs</VAR>,
[], [], _), a common use case of <A class="pred" href="clpfd.html#automaton/8">automaton/8</A>.
In the following example, a list of binary finite domain variables is
constrained to contain at least two consecutive ones:
<PRE class="code">
:- use_module(library(clpfd)).
two_consecutive_ones(Vs) :-
automaton(Vs, [source(a),sink(c)],
[arc(a,0,a), arc(a,1,b),
arc(b,0,a), arc(b,1,c),
arc(c,0,c), arc(c,1,c)]).
?- length(Vs, 3), two_consecutive_ones(Vs), label(Vs).
Vs = [0, 1, 1] ;
Vs = [1, 1, 0] ;
Vs = [1, 1, 1].
</PRE>
</DD>
<DT class="pubdef"><A NAME="automaton/8"><STRONG>automaton</STRONG>(<VAR>?Sequence,
?Template, +Signature, +Nodes, +Arcs, +Counters, +Initials, ?Finals</VAR>)</A></DT>
<DD class="defbody">
True if the finite automaton induced by <VAR>Nodes</VAR> and <VAR>Arcs</VAR>
(extended with <VAR>Counters</VAR>) accepts <VAR>Signature</VAR>. <VAR>Sequence</VAR>
is a list of terms, all of the same shape. Additional constraints must
link <VAR>Sequence</VAR> to
<VAR>Signature</VAR>, if necessary. <VAR>Nodes</VAR> is a list of
source(Node) and sink(Node) terms. <VAR>Arcs</VAR> is a list of
arc(Node,Integer,Node) and arc(Node,Integer,Node,Exprs) terms that
denote the automaton's transitions. Each node is represented by an
arbitrary term. Transitions that are not mentioned go to an implicit
failure node. Exprs is a list of arithmetic expressions, of the same
length as
<VAR>Counters</VAR>. In each expression, variables occurring in <VAR>Counters</VAR>
correspond to old counter values, and variables occurring in
<VAR>Template</VAR> correspond to the current element of <VAR>Sequence</VAR>.
When a transition containing expressions is taken, counters are updated
as stated. By default, counters remain unchanged. <VAR>Counters</VAR> is
a list of variables that must not occur anywhere outside of the
constraint goal. <VAR>Initials</VAR> is a list of the same length as <VAR>Counters</VAR>.
Counter arithmetic on the transitions relates the counter values in
<VAR>Initials</VAR> to <VAR>Finals</VAR>.
<P>The following example is taken from Beldiceanu, Carlsson, Debruyne
and Petit: "Reformulation of Global Constraints Based on Constraints
Checkers", Constraints 10(4), pp 339-362 (2005). It relates a sequence
of integers and finite domain variables to its number of inflexions,
which are switches between strictly ascending and strictly descending
subsequences:
<PRE class="code">
:- use_module(library(clpfd)).
sequence_inflexions(Vs, N) :-
variables_signature(Vs, Sigs),
automaton(_, _, Sigs,
[source(s),sink(i),sink(j),sink(s)],
[arc(s,0,s), arc(s,1,j), arc(s,2,i),
arc(i,0,i), arc(i,1,j,[C+1]), arc(i,2,i),
arc(j,0,j), arc(j,1,j), arc(j,2,i,[C+1])], [C], [0], [N]).
variables_signature([], []).
variables_signature([V|Vs], Sigs) :-
variables_signature_(Vs, V, Sigs).
variables_signature_([], _, []).
variables_signature_([V|Vs], Prev, [S|Sigs]) :-
V #= Prev #<==> S #= 0,
Prev #< V #<==> S #= 1,
Prev #> V #<==> S #= 2,
variables_signature_(Vs, V, Sigs).
</PRE>
<P>Example queries:
<PRE class="code">
?- sequence_inflexions([1,2,3,3,2,1,3,0], N).
N = 3.
?- length(Ls, 5), Ls ins 0..1, sequence_inflexions(Ls, 3), label(Ls).
Ls = [0, 1, 0, 1, 0] ;
Ls = [1, 0, 1, 0, 1].
</PRE>
</DD>
<DT class="pubdef"><A NAME="transpose/2"><STRONG>transpose</STRONG>(<VAR>+Matrix,
?Transpose</VAR>)</A></DT>
<DD class="defbody">
<VAR>Transpose</VAR> a list of lists of the same length. Example:
<PRE class="code">
?- transpose([[1,2,3],[4,5,6],[7,8,9]], Ts).
Ts = [[1, 4, 7], [2, 5, 8], [3, 6, 9]].
</PRE>
<P>This predicate is useful in many constraint programs. Consider for
instance Sudoku:
<PRE class="code">
:- use_module(library(clpfd)).
sudoku(Rows) :-
length(Rows, 9), maplist(length_(9), Rows),
append(Rows, Vs), Vs ins 1..9,
maplist(all_distinct, Rows),
transpose(Rows, Columns), maplist(all_distinct, Columns),
Rows = [A,B,C,D,E,F,G,H,I],
blocks(A, B, C), blocks(D, E, F), blocks(G, H, I).
length_(L, Ls) :- length(Ls, L).
blocks([], [], []).
blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :-
all_distinct([A,B,C,D,E,F,G,H,I]),
blocks(Bs1, Bs2, Bs3).
problem(1, [[_,_,_,_,_,_,_,_,_],
[_,_,_,_,_,3,_,8,5],
[_,_,1,_,2,_,_,_,_],
[_,_,_,5,_,7,_,_,_],
[_,_,4,_,_,_,1,_,_],
[_,9,_,_,_,_,_,_,_],
[5,_,_,_,_,_,_,7,3],
[_,_,2,_,1,_,_,_,_],
[_,_,_,_,4,_,_,_,9]]).
</PRE>
<P>Sample query:
<PRE class="code">
?- problem(1, Rows), sudoku(Rows), maplist(writeln, Rows).
[9, 8, 7, 6, 5, 4, 3, 2, 1]
[2, 4, 6, 1, 7, 3, 9, 8, 5]
[3, 5, 1, 9, 2, 8, 7, 4, 6]
[1, 2, 8, 5, 3, 7, 6, 9, 4]
[6, 3, 4, 8, 9, 2, 1, 5, 7]
[7, 9, 5, 4, 6, 1, 8, 3, 2]
[5, 1, 9, 2, 8, 6, 4, 7, 3]
[4, 7, 2, 3, 1, 9, 5, 6, 8]
[8, 6, 3, 7, 4, 5, 2, 1, 9]
Rows = [[9, 8, 7, 6, 5, 4, 3, 2|...], ... , [...|...]].
</PRE>
</DD>
<DT class="pubdef"><A NAME="zcompare/3"><STRONG>zcompare</STRONG>(<VAR>?Order,
?A, ?B</VAR>)</A></DT>
<DD class="defbody">
Analogous to <A class="pred" href="compare.html#compare/3">compare/3</A>,
with finite domain variables <VAR>A</VAR> and <VAR>B</VAR>. Example:
<PRE class="code">
:- use_module(library(clpfd)).
n_factorial(N, F) :-
zcompare(C, N, 0),
n_factorial_(C, N, F).
n_factorial_(=, _, 1).
n_factorial_(>, N, F) :- F #= F0*N, N1 #= N - 1, n_factorial(N1, F0).
</PRE>
<P>This version is deterministic if the first argument is instantiated:
<PRE class="code">
?- n_factorial(30, F).
F = 265252859812191058636308480000000.
</PRE>
</DD>
<DT class="pubdef"><A NAME="chain/2"><STRONG>chain</STRONG>(<VAR>+Zs,
+Relation</VAR>)</A></DT>
<DD class="defbody">
<VAR>Zs</VAR> is a list of finite domain variables that are a chain with
respect to the partial order <VAR>Relation</VAR>, in the order they
appear in the list. <VAR>Relation</VAR> must be #=, #=<VAR><</VAR>, #<VAR>></VAR>=, <CODE>#<</CODE>
or #<VAR>></VAR>. For example:
<PRE class="code">
?- chain([X,Y,Z], #>=).
X#>=Y,
Y#>=Z.
</PRE>
</DD>
<DT class="pubdef"><A NAME="fd_var/1"><STRONG>fd_var</STRONG>(<VAR>+Var</VAR>)</A></DT>
<DD class="defbody">
True iff <VAR>Var</VAR> is a CLP(FD) variable.</DD>
<DT class="pubdef"><A NAME="fd_inf/2"><STRONG>fd_inf</STRONG>(<VAR>+Var,
-Inf</VAR>)</A></DT>
<DD class="defbody">
<VAR>Inf</VAR> is the infimum of the current domain of <VAR>Var</VAR>.</DD>
<DT class="pubdef"><A NAME="fd_sup/2"><STRONG>fd_sup</STRONG>(<VAR>+Var,
-Sup</VAR>)</A></DT>
<DD class="defbody">
<VAR>Sup</VAR> is the supremum of the current domain of <VAR>Var</VAR>.</DD>
<DT class="pubdef"><A NAME="fd_size/2"><STRONG>fd_size</STRONG>(<VAR>+Var,
-Size</VAR>)</A></DT>
<DD class="defbody">
<VAR>Size</VAR> is the number of elements of the current domain of <VAR>Var</VAR>,
or the atom <B>sup</B> if the domain is unbounded.</DD>
<DT class="pubdef"><A NAME="fd_dom/2"><STRONG>fd_dom</STRONG>(<VAR>+Var,
-Dom</VAR>)</A></DT>
<DD class="defbody">
<VAR>Dom</VAR> is the current domain (see <A class="pred" href="clpfd.html#in/2">in/2</A>)
of <VAR>Var</VAR>. This predicate is useful if you want to reason about
domains. It is not needed if you only want to display remaining domains;
instead, separate your model from the search part and let the toplevel
display this information via residual goals.
</DD>
</DL>
<P></BODY></HTML>
|