/usr/lib/swi-prolog/doc/Manual/practical.html is in swi-prolog-nox 5.10.4-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<HTML>
<HEAD>
<TITLE>SWI-Prolog 5.11.18 Reference Manual: Section 7.3</TITLE><LINK REL=home HREF="index.html">
<LINK REL=contents HREF="Contents.html">
<LINK REL=index HREF="DocIndex.html">
<LINK REL=summary HREF="summary.html">
<LINK REL=previous HREF="SyntaxAndSemantics.html">
<LINK REL=next HREF="debugging.html">
<STYLE type="text/css">
/* Style sheet for SWI-Prolog latex2html
*/
dd.defbody
{ margin-bottom: 1em;
}
dt.pubdef
{ background-color: #c5e1ff;
}
dt.multidef
{ background-color: #c8ffc7;
}
.bib dd
{ margin-bottom: 1em;
}
.bib dt
{ float: left;
margin-right: 1.3ex;
}
pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}
div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}
div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}
div.author
{ text-align: center;
font-style: italic;
}
div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}
div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}
div.toc-h1
{ font-size: 200%;
font-weight: bold;
}
div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}
div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}
div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}
span.sec-nr
{
}
span.sec-title
{
}
span.pred-ext
{ font-weight: bold;
}
span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #202020;
}
/* Footnotes */
sup.fn { color: blue; text-decoration: underline; }
span.fn-text { display: none; }
sup.fn span {display: none;}
sup:hover span
{ display: block !important;
position: absolute; top: auto; left: auto; width: 80%;
color: #000; background: white;
border: 2px solid;
padding: 5px; margin: 10px; z-index: 100;
font-size: smaller;
}
</STYLE>
</HEAD>
<BODY BGCOLOR="white">
<DIV class="navigate"><A class="nav" href="index.html"><IMG SRC="home.gif" BORDER=0 ALT="Home"></A>
<A class="nav" href="Contents.html"><IMG SRC="index.gif" BORDER=0 ALT="Contents"></A>
<A class="nav" href="DocIndex.html"><IMG SRC="yellow_pages.gif" BORDER=0 ALT="Index"></A>
<A class="nav" href="summary.html"><IMG SRC="info.gif" BORDER=0 ALT="Summary"></A>
<A class="nav" href="SyntaxAndSemantics.html"><IMG SRC="prev.gif" BORDER=0 ALT="Previous"></A>
<A class="nav" href="debugging.html"><IMG SRC="next.gif" BORDER=0 ALT="Next"></A>
</DIV>
<H2><A NAME="sec:7.3"><SPAN class="sec-nr">7.3</SPAN> <SPAN class="sec-title">CHR
in SWI-Prolog Programs</SPAN></A></H2>
<A NAME="sec:practical"></A>
<H3><A NAME="sec:7.3.1"><SPAN class="sec-nr">7.3.1</SPAN> <SPAN class="sec-title">Embedding
in Prolog Programs</SPAN></A></H3>
<P>The CHR constraints defined in a <CODE>.pl</CODE> file are associated
with a module. The default module is <CODE>user</CODE>. One should never
load different <CODE>.pl</CODE> files with the same CHR module name.
<H3><A NAME="sec:7.3.2"><SPAN class="sec-nr">7.3.2</SPAN> <SPAN class="sec-title">Constraint
declaration</SPAN></A></H3>
<DL class="latex">
<DT class="pubdef"><A NAME="chr_constraint/1">:- <STRONG>chr_constraint</STRONG>(<VAR>+Specifier</VAR>)</A></DT>
<DD class="defbody">
Every constraint used in CHR rules has to be declared with a
<A NAME="idx:chrconstraint1:1349"></A><A class="pred" href="practical.html#chr_constraint/1">chr_constraint/1</A>
declaration by the <EM>constraint specifier</EM>. For convenience
multiple constraints may be declared at once with the same
<A class="pred" href="practical.html#chr_constraint/1">chr_constraint/1</A>
declaration followed by a comma-separated list of constraint specifiers.
<P>A constraint specifier is, in its compact form, <TT><VAR>F</VAR>/<VAR>A</VAR></TT>
where
<VAR>F</VAR> and <VAR>A</VAR> are respectively the functor name and
arity of the constraint, e.g.:
<PRE class="code">
:- chr_constraint foo/1.
:- chr_constraint bar/2, baz/3.
</PRE>
<P>In its extended form, a constraint specifier is
<TT><VAR>c</VAR>(<VAR>A_1</VAR>, ... ,<VAR>A_n</VAR>)</TT> where <VAR>c</VAR>
is the constraint's functor,
<VAR>n</VAR> its arity and the <VAR>A_i</VAR> are argument specifiers.
An argument specifier is a mode, optionally followed by a type. E.g.
<PRE class="code">
:- chr_constraint get_value(+,?).
:- chr_constraint domain(?int, +list(int)),
alldifferent(?list(int)).
</PRE>
<P></DD>
</DL>
<P><B>Modes</B>
<P>A mode is one of:
<DL class="latex">
<DT><STRONG><CODE>-</CODE></STRONG></DT>
<DD class="defbody">
The corresponding argument of every occurrence of the constraint is
always unbound.
</DD>
<DT><STRONG><CODE>+</CODE></STRONG></DT>
<DD class="defbody">
The corresponding argument of every occurrence of the constraint is
always ground.
</DD>
<DT><STRONG><CODE>?</CODE></STRONG></DT>
<DD class="defbody">
The corresponding argument of every occurrence of the constraint can
have any instantiation, which may change over time. This is the default
value.
</DD>
</DL>
<P><B>Types</B>
<P>A type can be a user-defined type or one of the built-in types. A
type comprises a (possibly infinite) set of values. The type declaration
for a constraint argument means that for every instance of that
constraint the corresponding argument is only ever bound to values in
that set. It does not state that the argument necessarily has to be
bound to a value.
<P>The built-in types are:
<DL class="latex">
<DT><STRONG>int</STRONG></DT>
<DD class="defbody">
The corresponding argument of every occurrence of the constraint is an
integer number.
</DD>
<DT><STRONG>dense_int</STRONG></DT>
<DD class="defbody">
The corresponding argument of every occurrence of the constraint is an
integer that can be used as an array index. Note that if this argument
takes values in <VAR>[0,n]</VAR>, the array takes
<VAR>O(n)</VAR> space.
</DD>
<DT><STRONG>float</STRONG></DT>
<DD class="defbody">
... a floating point number.
</DD>
<DT><STRONG>number</STRONG></DT>
<DD class="defbody">
... a number.
</DD>
<DT><STRONG>natural</STRONG></DT>
<DD class="defbody">
... a positive integer.
</DD>
<DT><STRONG>any</STRONG></DT>
<DD class="defbody">
The corresponding argument of every occurrence of the constraint can
have any type. This is the default value.
</DD>
</DL>
<DL class="latex">
<DT class="pubdef"><A NAME="chr_type/1">:- <STRONG>chr_type</STRONG>(<VAR>+TypeDeclaration</VAR>)</A></DT>
<DD class="defbody">
User-defined types are algebraic data types, similar to those in Haskell
or the discriminated unions in Mercury. An algebraic data type is
defined using <A NAME="idx:chrtype1:1350"></A><A class="pred" href="practical.html#chr_type/1">chr_type/1</A>:
<PRE class="code">
:- chr_type type ---> body.
</PRE>
<P>If the type term is a functor of arity zero (i.e. one having zero
arguments), it names a monomorphic type. Otherwise, it names a
polymorphic type; the arguments of the functor must be distinct type
variables. The body term is defined as a sequence of constructor
definitions separated by semi-colons.
<P>Each constructor definition must be a functor whose arguments (if
any) are types. Discriminated union definitions must be transparent: all
type variables occurring in the body must also occur in the type.
<P>Here are some examples of algebraic data type definitions:
<PRE class="code">
:- chr_type color ---> red ; blue ; yellow ; green.
:- chr_type tree ---> empty ; leaf(int) ; branch(tree, tree).
:- chr_type list(T) ---> [] ; [T | list(T)].
:- chr_type pair(T1, T2) ---> (T1 - T2).
</PRE>
<P>Each algebraic data type definition introduces a distinct type. Two
algebraic data types that have the same bodies are considered to be
distinct types (name equivalence).
<P>Constructors may be overloaded among different types: there may be
any number of constructors with a given name and arity, so long as they
all have different types.
<P>Aliases can be defined using ==. For example, if your program uses
lists of lists of integers, you can define an alias as follows:
<PRE class="code">
:- chr_type lli == list(list(int)).
</PRE>
<P></DD>
</DL>
<P><B>Type Checking</B>
<P>Currently two complementary forms of type checking are performed:
<OL class="latex">
<LI>Static type checking is always performed by the compiler. It is
limited to CHR rule heads and CHR constraint calls in rule bodies.
<P>Two kinds of type error are detected. The first is where a variable
has to belong to two types. For example, in the program:
<PRE class="code">
:-chr_type foo ---> foo.
:-chr_type bar ---> bar.
:-chr_constraint abc(?foo).
:-chr_constraint def(?bar).
foobar @ abc(X) <=> def(X).
</PRE>
<P>the variable <TT>X</TT> has to be of both type <TT>foo</TT> and <TT>bar</TT>.
This is reported by the type clash error:
<PRE class="code">
CHR compiler ERROR:
`--> Type clash for variable _G5398 in rule foobar:
expected type foo in body goal def(_G5398, _G5448)
expected type bar in head def(_G5448, _G5398)
</PRE>
<P>The second kind of error is where a functor is used that does not
belong to the declared type. For example in:
<PRE class="code">
:-chr_type foo ---> foo.
:-chr_type bar ---> bar.
:-chr_constraint abc(?foo).
foo @ abc(bar) <=> true.
</PRE>
<P>in the head of the rule <TT>bar</TT> appears where something of type <TT>foo</TT>
is expected. This is reported as:
<PRE class="code">
CHR compiler ERROR:
`--> Invalid functor in head abc(bar) of rule foo:
found `bar',
expected type `foo'!
</PRE>
<P>No runtime overhead is incurred in static type checking.
<P>
<LI>Dynamic type checking checks at runtime, during program execution,
whether the arguments of CHR constraints respect their declared types.
The <A class="pred" href="coroutining.html#when/2">when/2</A>
co-routining library is used to delay dynamic type checks until
variables are instantiated.
<P>The kind of error detected by dynamic type checking is where a
functor is used that does not belong to the declared type. E.g. for the
program:
<PRE class="code">
:-chr_type foo ---> foo.
:-chr_constraint abc(?foo).
</PRE>
<P>we get the following error in an erroneous query:
<PRE class="code">
?- abc(bar).
ERROR: Type error: `foo' expected, found `bar' (CHR Runtime Type Error)
</PRE>
<P>Dynamic type checking is weaker than static type checking in the
sense that it only checks the particular program execution at hand
rather than all possible executions. It is stronger in the sense that it
tracks types throughout the whole program.
<P>Note that it is enabled only in debug mode, as it incurs some (minor)
runtime overhead.
</OL>
<H3><A NAME="sec:7.3.3"><SPAN class="sec-nr">7.3.3</SPAN> <SPAN class="sec-title">Compilation</SPAN></A></H3>
The SWI-Prolog CHR compiler exploits <A NAME="idx:termexpansion2:1351"></A><A class="pred" href="consulting.html#term_expansion/2">term_expansion/2</A>
rules to translate the constraint handling rules to plain Prolog. These
rules are loaded from the library <CODE>library(chr)</CODE>. They are
activated if the compiled file has the <CODE>.chr</CODE> extension or
after finding a declaration of the format below.
<PRE class="code">
:- chr_constraint ...
</PRE>
<P>It is advised to define CHR rules in a module file, where the module
declaration is immediately followed by including the library(chr)
library as exemplified below:
<PRE class="code">
:- module(zebra, [ zebra/0 ]).
:- use_module(library(chr)).
:- chr_constraint ...
</PRE>
<P>Using this style CHR rules can be defined in ordinary Prolog .pl
files and the operator definitions required by CHR do not leak into
modules where they might cause conflicts.
<P></BODY></HTML>
|