/usr/lib/swi-prolog/doc/Manual/simplex.html is in swi-prolog-nox 5.10.4-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 | <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<HTML>
<HEAD>
<TITLE>SWI-Prolog 5.11.18 Reference Manual: Section A.23</TITLE><LINK REL=home HREF="index.html">
<LINK REL=contents HREF="Contents.html">
<LINK REL=index HREF="DocIndex.html">
<LINK REL=summary HREF="summary.html">
<LINK REL=previous HREF="registry.html">
<LINK REL=next HREF="threadpool.html">
<STYLE type="text/css">
/* Style sheet for SWI-Prolog latex2html
*/
dd.defbody
{ margin-bottom: 1em;
}
dt.pubdef
{ background-color: #c5e1ff;
}
dt.multidef
{ background-color: #c8ffc7;
}
.bib dd
{ margin-bottom: 1em;
}
.bib dt
{ float: left;
margin-right: 1.3ex;
}
pre.code
{ margin-left: 1.5em;
margin-right: 1.5em;
border: 1px dotted;
padding-top: 5px;
padding-left: 5px;
padding-bottom: 5px;
background-color: #f8f8f8;
}
div.navigate
{ text-align: center;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
}
div.title
{ text-align: center;
padding-bottom: 1em;
font-size: 200%;
font-weight: bold;
}
div.author
{ text-align: center;
font-style: italic;
}
div.abstract
{ margin-top: 2em;
background-color: #f0f0f0;
border: 1px dotted;
padding: 5px;
margin-left: 10%; margin-right:10%;
}
div.abstract-title
{ text-align: center;
padding: 5px;
font-size: 120%;
font-weight: bold;
}
div.toc-h1
{ font-size: 200%;
font-weight: bold;
}
div.toc-h2
{ font-size: 120%;
font-weight: bold;
margin-left: 2em;
}
div.toc-h3
{ font-size: 100%;
font-weight: bold;
margin-left: 4em;
}
div.toc-h4
{ font-size: 100%;
margin-left: 6em;
}
span.sec-nr
{
}
span.sec-title
{
}
span.pred-ext
{ font-weight: bold;
}
span.pred-tag
{ float: right;
padding-top: 0.2em;
font-size: 80%;
font-style: italic;
color: #202020;
}
/* Footnotes */
sup.fn { color: blue; text-decoration: underline; }
span.fn-text { display: none; }
sup.fn span {display: none;}
sup:hover span
{ display: block !important;
position: absolute; top: auto; left: auto; width: 80%;
color: #000; background: white;
border: 2px solid;
padding: 5px; margin: 10px; z-index: 100;
font-size: smaller;
}
</STYLE>
</HEAD>
<BODY BGCOLOR="white">
<DIV class="navigate"><A class="nav" href="index.html"><IMG SRC="home.gif" BORDER=0 ALT="Home"></A>
<A class="nav" href="Contents.html"><IMG SRC="index.gif" BORDER=0 ALT="Contents"></A>
<A class="nav" href="DocIndex.html"><IMG SRC="yellow_pages.gif" BORDER=0 ALT="Index"></A>
<A class="nav" href="summary.html"><IMG SRC="info.gif" BORDER=0 ALT="Summary"></A>
<A class="nav" href="registry.html"><IMG SRC="prev.gif" BORDER=0 ALT="Previous"></A>
<A class="nav" href="threadpool.html"><IMG SRC="next.gif" BORDER=0 ALT="Next"></A>
</DIV>
<H2><A NAME="sec:A.23"><SPAN class="sec-nr">A.23</SPAN> <SPAN class="sec-title">library(simplex):
Solve linear programming problems</SPAN></A></H2>
<A NAME="simplex"></A>
<A NAME="sec:lib:simplex"></A>
<P>Author: <EM>Markus Triska</EM>
<P>A linear programming problem consists of a set of (linear)
constraints, a number of variables and a linear objective function. The
goal is to assign values to the variables so as to maximize (or
minimize) the value of the objective function while satisfying all
constraints.
<P>Many optimization problems can be modeled in this way. Consider
having a knapsack with fixed capacity C, and a number of items with
sizes s(i) and values v(i). The goal is to put as many items as possible
in the knapsack (not exceeding its capacity) while maximizing the sum of
their values.
<P>As another example, suppose you are given a set of coins with certain
values, and you are to find the minimum number of coins such that their
values sum up to a fixed amount. Instances of these problems are solved
below.
<P>The <CODE>library(simplex)</CODE> module provides the following
predicates:
<DL class="latex">
<DT class="pubdef"><A NAME="assignment/2"><STRONG>assignment</STRONG>(<VAR>+Cost,
-Assignment</VAR>)</A></DT>
<DD class="defbody">
<VAR>Cost</VAR> is a list of lists representing the quadratic cost
matrix, where element (i,j) denotes the cost of assigning entity <VAR>i</VAR>
to entity <VAR>j</VAR>. An assignment with minimal cost is computed and
unified with <VAR>Assignment</VAR> as a list of lists, representing an
adjacency matrix.</DD>
<DT class="pubdef"><A NAME="constraint/3"><STRONG>constraint</STRONG>(<VAR>+Constraint,
+S0, -S</VAR>)</A></DT>
<DD class="defbody">
Adds a linear or integrality constraint to the linear program
corresponding to state <VAR>S0</VAR>. A linear constraint is of the form
"Left Op C", where "Left" is a list of Coefficient*Variable terms
(variables in the context of linear programs can be atoms or compound
terms) and C is a non-negative numeric constant. The list represents the
sum of its elements. <VAR>Op</VAR> can be =, =< or >=. The
coefficient "1" can be omitted. An integrality constraint is of the form
integral(Variable) and constrains Variable to an integral value.</DD>
<DT class="pubdef"><A NAME="constraint/4"><STRONG>constraint</STRONG>(<VAR>+Name,
+Constraint, +S0, -S</VAR>)</A></DT>
<DD class="defbody">
Like <A NAME="idx:constraint3:1625"></A><A class="pred" href="simplex.html#constraint/3">constraint/3</A>,
and attaches the name <VAR>Name</VAR> (an atom or compound term) to the
new constraint.</DD>
<DT class="pubdef"><A NAME="constraint_add/4"><STRONG>constraint_add</STRONG>(<VAR>+Name,
+Left, +S0, -S</VAR>)</A></DT>
<DD class="defbody">
<VAR>Left</VAR> is a list of Coefficient*Variable terms. The terms are
added to the left-hand side of the constraint named
<VAR>Name</VAR>. <VAR>S</VAR> is unified with the resulting state.</DD>
<DT class="pubdef"><A NAME="gen_state/1"><STRONG>gen_state</STRONG>(<VAR>-State</VAR>)</A></DT>
<DD class="defbody">
Generates an initial state corresponding to an empty linear program.</DD>
<DT class="pubdef"><A NAME="maximize/3"><STRONG>maximize</STRONG>(<VAR>+Objective,
+S0, -S</VAR>)</A></DT>
<DD class="defbody">
Maximizes the objective function, stated as a list of
"Coefficient*Variable" terms that represents the sum of its elements,
with respect to the linear program corresponding to state <VAR>S0</VAR>. <VAR>S</VAR>
is unified with an internal representation of the solved instance.</DD>
<DT class="pubdef"><A NAME="minimize/3"><STRONG>minimize</STRONG>(<VAR>+Objective,
+S0, -S</VAR>)</A></DT>
<DD class="defbody">
Analogous to <A NAME="idx:maximize3:1626"></A><A class="pred" href="simplex.html#maximize/3">maximize/3</A>.</DD>
<DT class="pubdef"><A NAME="objective/2"><STRONG>objective</STRONG>(<VAR>+State,
-Objective</VAR>)</A></DT>
<DD class="defbody">
Unifies <VAR>Objective</VAR> with the result of the objective function
at the obtained extremum. <VAR>State</VAR> must correspond to a solved
instance.</DD>
<DT class="pubdef"><A NAME="shadow_price/3"><STRONG>shadow_price</STRONG>(<VAR>+State,
+Name, -Value</VAR>)</A></DT>
<DD class="defbody">
Unifies <VAR>Value</VAR> with the shadow price corresponding to the
linear constraint whose name is <VAR>Name</VAR>. <VAR>State</VAR> must
correspond to a solved instance.</DD>
<DT class="pubdef"><A NAME="transportation/4"><STRONG>transportation</STRONG>(<VAR>+Supplies,
+Demands, +Costs, -Transport</VAR>)</A></DT>
<DD class="defbody">
<VAR>Supplies</VAR> and <VAR>Demands</VAR> are both lists of positive
numbers. Their respective sums must be equal. <VAR>Costs</VAR> is a list
of lists representing the cost matrix, where an entry (i,j) denotes the
cost of transporting one unit from <VAR>i</VAR> to <VAR>j</VAR>. A
transportation plan having minimum cost is computed and unified with <VAR>Transport</VAR>
in the form of a list of lists that represents the transportation
matrix, where element (i,j) denotes how many units to ship from <VAR>i</VAR>
to <VAR>j</VAR>.</DD>
<DT class="pubdef"><A NAME="variable_value/3"><STRONG>variable_value</STRONG>(<VAR>+State,
+Variable, -Value</VAR>)</A></DT>
<DD class="defbody">
<VAR>Value</VAR> is unified with the value obtained for
<VAR>Variable</VAR>. <VAR>State</VAR> must correspond to a solved
instance.
<P></DD>
</DL>
All numeric quantities are converted to rationals via <A NAME="idx:rationalize1:1627"></A><A class="pred" href="arith.html#rationalize/1">rationalize/1</A>,
and rational arithmetic is used throughout solving linear programs. In
the current implementation, all variables are implicitly constrained to
be non-negative. This may change in future versions, and non-negativity
constraints should therefore be stated explicitly.
<H3><A NAME="sec:A.23.1"><SPAN class="sec-nr">A.23.1</SPAN> <SPAN class="sec-title">Example
1</SPAN></A></H3>
This is the "radiation therapy" example, taken from "Introduction to
Operations Research" by Hillier and Lieberman. DCG notation is used to
implicitly thread the state through posting the constraints:
<PRE class="code">
:- use_module(library(simplex)).
post_constraints -->
constraint([0.3*x1, 0.1*x2] =< 2.7),
constraint([0.5*x1, 0.5*x2] = 6),
constraint([0.6*x1, 0.4*x2] >= 6),
constraint([x1] >= 0),
constraint([x2] >= 0).
radiation(S) :-
gen_state(S0),
post_constraints(S0, S1),
minimize([0.4*x1, 0.5*x2], S1, S).
</PRE>
<P>An example query:
<PRE class="code">
?- radiation(S), variable_value(S, x1, Val1), variable_value(S, x2, Val2).
Val1 = 15 rdiv 2
Val2 = 9 rdiv 2 ;
</PRE>
<H3><A NAME="sec:A.23.2"><SPAN class="sec-nr">A.23.2</SPAN> <SPAN class="sec-title">Example
2</SPAN></A></H3>
Here is an instance of the knapsack problem described above, where C =
8, and we have two types of items: One item with value 7 and size 6, and
2 items each having size 4 and value 4. We introduce two variables, x(1)
and x(2) that denote how many items to take of each type.
<PRE class="code">
knapsack_constrain(S) :-
gen_state(S0),
constraint([6*x(1), 4*x(2)] =< 8, S0, S1),
constraint([x(1)] =< 1, S1, S2),
constraint([x(2)] =< 2, S2, S).
knapsack(S) :-
knapsack_constrain(S0),
maximize([7*x(1), 4*x(2)], S0, S).
</PRE>
<P>An example query yields:
<PRE class="code">
?- knapsack(S), variable_value(S, x(1), X1), variable_value(S, x(2), X2).
X1 = 1
X2 = 1 rdiv 2 ;
</PRE>
<P>That is, we are to take the one item of the first type, and half of
one of the items of the other type to maximize the total value of items
in the knapsack.
<P>If items can not be split, integrality constraints have to be
imposed:
<PRE class="code">
knapsack_integral(S) :-
knapsack_constrain(S0),
constraint(integral(x(1)), S0, S1),
constraint(integral(x(2)), S1, S2),
maximize([7*x(1), 4*x(2)], S2, S).
</PRE>
<P>Now the result is different:
<PRE class="code">
?- knapsack_integral(S), variable_value(S, x(1), X1), variable_value(S, x(2), X2).
X1 = 0
X2 = 2
</PRE>
<P>That is, we are to take only the two items of the second type. Notice
in particular that always choosing the remaining item with best
performance (ratio of value to size) that still fits in the knapsack
does not necessarily yield an optimal solution in the presence of
integrality constraints.
<H3><A NAME="sec:A.23.3"><SPAN class="sec-nr">A.23.3</SPAN> <SPAN class="sec-title">Example
3</SPAN></A></H3>
We are given 3 coins each worth 1, 20 coins each worth 5, and 10 coins
each worth 20 units of money. The task is to find a minimal number of
these coins that amount to 111 units of money. We introduce variables
c(1), c(5) and c(20) denoting how many coins to take of the respective
type:
<PRE class="code">
coins -->
constraint([c(1), 5*c(5), 20*c(20)] = 111),
constraint([c(1)] =< 3),
constraint([c(5)] =< 20),
constraint([c(20)] =< 10),
constraint([c(1)] >= 0),
constraint([c(5)] >= 0),
constraint([c(20)] >= 0),
constraint(integral(c(1))),
constraint(integral(c(5))),
constraint(integral(c(20))),
minimize([c(1), c(5), c(20)]).
coins(S) :-
gen_state(S0),
coins(S0, S).
</PRE>
<P>An example query:
<PRE class="code">
?- coins(S), variable_value(S, c(1), C1), variable_value(S, c(5), C5), variable_value(S, c(20), C20).
C1 = 1
C5 = 2
C20 = 5
</PRE>
<P></BODY></HTML>
|