This file is indexed.

/usr/lib/swi-prolog/library/assoc.pl is in swi-prolog-nox 5.10.4-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
%   File   : ASSOC.PL
%   Author : R.A.O'Keefe
%   Updated: 9 November 1983
%   Purpose: Binary tree implementation of "association lists".

%   Note   : the keys should be ground, the associated values need not be.

/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Adapted for SWI-Prolog by Jan Wielemaker, January 2004.

To the best of my knowledge, this file   is in the public domain and can
therefore safely be distributed with SWI-Prolog and used in applications
without restrictions.

Various versions of this file exists. This   one  is copied from the YAP
library. The SICStus library contains  one   using  AVL  trees to ensure
proper balancing. Although based  on  this   library  they  changed  the
argument order of some of the predicates.

Richard O'Keefe has told me he  is  working   on  a  new version of this
library. This new version, as it becomes available, is likely to replace
this one.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */


/*
Balancing code merged from L.Damas, V.S.Costa, AVL trees in YAP.
Tree is either:

*) empty (t/0)  or
*) t(Key,Value,Balance,Left,Right)
   Left,Right: trees
   Balance: <, -, or > denoting |L|-|R| = 1, 0, or -1, respectively

TODO: get_next_assoc/4, get_prev_assoc/4 for SICStus compatibility

TODO: exploit order in ord_list_to_assoc/2

*/

/*
   Added del_assoc/4, del_min_assoc/4 and del_max_assoc/4

   Ported by Glenn Burgess from a language called Pure.
   Jiri Spitz ported the Pure AVL library from this SWI-Prolog library,
   but the deletion code was added by Jiri. Full circle.
   Also added is_assoc/1, which makes testing much easier.     */

:- module(assoc,
	  [ empty_assoc/1,		% -Assoc
	    is_assoc/1,                 % +Assoc
	    assoc_to_list/2,		% +Assoc, -Pairs
	    assoc_to_keys/2,		% +Assoc, -List
	    assoc_to_values/2,		% +Assoc, -List
	    gen_assoc/3,		% ?Key, +Assoc, ?Value
	    get_assoc/3,		% +Key, +Assoc, ?Value
	    get_assoc/5,		% +Key, +Assoc, ?Old, ?NewAssoc, +New
	    list_to_assoc/2,		% +List, ?Assoc
	    map_assoc/2,		% :Goal, +Assoc
	    map_assoc/3,		% :Goal, +AssocIn, ?AssocOut
	    max_assoc/3,		% +Assoc, ?Key, ?Value
	    min_assoc/3,		% +Assoc, ?Key, ?Value
	    ord_list_to_assoc/2,	% +List, ?Assoc
	    put_assoc/4,		% +Key, +Assoc, +Value, ?NewAssoc
	    del_assoc/4,                % +Key, +Assoc, +Value, ?NewAssoc
	    del_min_assoc/4,            % +Assoc, ?Key, ?Value, ?NewAssoc
	    del_max_assoc/4             % +Assoc, ?Key, ?Value, ?NewAssoc
	  ]).

/** <module> Binary associations

Assocs are Key-Value associations implemented as  a balanced binary tree
(AVL tree).

@see		library(pairs), library(rbtrees)
@author		R.A.O'Keefe, L.Damas, V.S.Costa and Jan Wielemaker
@license	Public domain
*/

:- meta_predicate
	map_assoc(1, ?),
	map_assoc(2, ?, ?).

%%	empty_assoc(-Assoc) is det.
%%	empty_assoc(+Assoc) is semidet.
%
%	Is true if Assoc is the empty assoc.

empty_assoc(t).

%%	assoc_to_list(+Assoc, -Pairs:list(Key-Value)) is semidet.
%
%	Translate Assoc to a list of pairs.  The keys in Pairs are
%	sorted in ascending order.

assoc_to_list(Assoc, List) :-
	assoc_to_list(Assoc, List, []).

assoc_to_list(t(Key,Val,_,L,R), List, Rest) :-
	assoc_to_list(L, List, [Key-Val|More]),
	assoc_to_list(R, More, Rest).
assoc_to_list(t, List, List).


%%	assoc_to_keys(+Assoc, -Keys:ord_set) is det.
%
%	True if Keys is the list of keys   in Assoc. The keys are sorted
%	in ascending order.

assoc_to_keys(Assoc, List) :-
	assoc_to_keys(Assoc, List, []).

assoc_to_keys(t(Key,_,_,L,R), List, Rest) :-
	assoc_to_keys(L, List, [Key|More]),
	assoc_to_keys(R, More, Rest).
assoc_to_keys(t, List, List).


%%	assoc_to_values(+Assoc, -Values:list) is det.
%
%	True if Values is the  list  of   values  in  Assoc.  Values are
%	ordered in ascending  order  of  the   key  to  which  they were
%	associated.  Values may contain duplicates.

assoc_to_values(Assoc, List) :-
	assoc_to_values(Assoc, List, []).

assoc_to_values(t(_,Value,_,L,R), List, Rest) :-
	assoc_to_values(L, List, [Value|More]),
	assoc_to_values(R, More, Rest).
assoc_to_values(t, List, List).

%%      is_assoc(+Assoc)
%
%	True if Assoc is an AVL-tree   association  list Checks that the
%	structure is valid, elements are in  order, and tree is balanced
%	to the extent guaranteed by AVL   trees.  I.e., branches of each
%	subtree differ in depth by at most 1.

is_assoc(Assoc) :-
	is_assoc(Assoc, _Min, _Max, _Depth).

is_assoc(t,X,X,0) :- !.
is_assoc(t(K,_,-,t,t),K,K,1) :- !, ground(K).
is_assoc(t(K,_,>,t,t(RK,_,-,t,t)),K,RK,2) :-
	% Ensure right side Key is 'greater' than K
	!, ground((K,RK)), K < RK.

is_assoc(t(K,_,<,t(LK,_,-,t,t),t),LK,K,2) :-
	% Ensure left side Key is 'less' than K
	!, ground((LK,K)), LK < K.

is_assoc(t(K,_,B,L,R),Min,Max,Depth) :-
	is_assoc(L,Min,LMax,LDepth),
	is_assoc(R,RMin,Max,RDepth),
	% Ensure Balance matches depth
	compare(Rel,RDepth,LDepth),
	balance(Rel,B),
	% Ensure ordering
	ground((LMax,K,RMin)),
	LMax < K,
	K < RMin,
	Depth is max(LDepth, RDepth)+1.

% Private lookup table matching comparison operators to Balance operators used in tree
balance(=,-).
balance(<,<).
balance(>,>).


%%	gen_assoc(?Key, +Assoc, ?Value) is nondet.
%
%	True if Key-Value is an association in Assoc. Enumerates keys in
%	ascending order.
%
%	@see get_assoc/3.

gen_assoc(Key, t(_,_,_,L,_), Val) :-
	gen_assoc(Key, L, Val).
gen_assoc(Key, t(Key,Val,_,_,_), Val).
gen_assoc(Key, t(_,_,_,_,R), Val) :-
	gen_assoc(Key, R, Val).


%%	get_assoc(+Key, +Assoc, -Value) is semidet.
%
%	True if Key-Value is an association in Assoc.

get_assoc(Key, t(K,V,_,L,R), Val) :-
	compare(Rel, Key, K),
	get_assoc(Rel, Key, V, L, R, Val).

get_assoc(=, _, Val, _, _, Val).
get_assoc(<, Key, _, Tree, _, Val) :-
	get_assoc(Key, Tree, Val).
get_assoc(>, Key, _, _, Tree, Val) :-
	get_assoc(Key, Tree, Val).


%%	get_assoc(+Key, +AssocIn, +Val, -AssocOut, +NewVal) is semidet.
%
%	True if Key-Val is in AssocIn and Key-NewVal is in AssocOut.

get_assoc(Key, t(K,V,B,L,R), Val, t(K,NV,B,NL,NR), NVal) :-
	compare(Rel, Key, K),
	get_assoc(Rel, Key, V, L, R, Val, NV, NL, NR, NVal).

get_assoc(=, _, Val, L, R, Val, NVal, L, R, NVal).
get_assoc(<, Key, V, L, R, Val, V, NL, R, NVal) :-
	get_assoc(Key, L, Val, NL, NVal).
get_assoc(>, Key, V, L, R, Val, V, L, NR, NVal) :-
	get_assoc(Key, R, Val, NR, NVal).


%%	list_to_assoc(+List:list(Key-Value), -Assoc) is det.
%
%	Create an assoc from a pair-list.

list_to_assoc(List, Assoc) :-
	list_to_assoc(List, t, Assoc).

list_to_assoc([], Assoc, Assoc).
list_to_assoc([Key-Val|List], Assoc0, Assoc) :-
	put_assoc(Key, Assoc0, Val, AssocI),
	list_to_assoc(List, AssocI, Assoc).


%%	ord_list_to_assoc(+List:list(Key-Value), -Assoc) is det.
%
%	Create an assoc from an ordered pair-list.

ord_list_to_assoc(Keys, Assoc) :-
	list_to_assoc(Keys, Assoc).

%%	map_assoc(:Pred, +Assoc) is semidet.
%
%	True if Pred(Value) is true for all values in Assoc.

map_assoc(Pred, T) :-
	map_assoc_(T, Pred).

map_assoc_(t, _).
map_assoc_(t(_,Val,_,L,R), Pred) :-
	map_assoc_(L, Pred),
	call(Pred, Val),
	map_assoc_(R, Pred).

%%	map_assoc(:Pred, ?AssocIn, ?AssocOut) is semidet.
%
%	True if for every Key, Pred(ValIn, ValOut) is true.

map_assoc(Pred, T0, T) :-
	map_assoc_(T0, Pred, T).

map_assoc_(t, _, t).
map_assoc_(t(Key,Val,B,L0,R0), Pred, t(Key,Ans,B,L1,R1)) :-
	map_assoc_(L0, Pred, L1),
	call(Pred, Val, Ans),
	map_assoc_(R0, Pred, R1).


%%	max_assoc(+Assoc, -Key, -Value) is semidet.
%
%	True if Key-Value is in assoc and Key is the largest.

max_assoc(t(K,V,_,_,R), Key, Val) :-
	max_assoc(R, K, V, Key, Val).

max_assoc(t, K, V, K, V).
max_assoc(t(K,V,_,_,R), _, _, Key, Val) :-
	max_assoc(R, K, V, Key, Val).


%%	min_assoc(+Assoc, -Key, -Value) is semidet.
%
%	True if Key-Value is in assoc and Key is the smallest.

min_assoc(t(K,V,_,L,_), Key, Val) :-
	min_assoc(L, K, V, Key, Val).

min_assoc(t, K, V, K, V).
min_assoc(t(K,V,_,L,_), _, _, Key, Val) :-
	min_assoc(L, K, V, Key, Val).


%%	put_assoc(+Key, +AssocIn, +Value, -AssocOut) is det.
%
%	Add Key-Value to AssocIn. If  Key   is  already  in AssocIn, the
%	associated value is replaced.

put_assoc(Key, A0, Value, A) :-
	insert(A0, Key, Value, A, _).

insert(t, Key, Val, t(Key,Val,-,t,t), yes).
insert(t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
	compare(Rel, K, Key),
	insert(Rel, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged).

insert(=, t(Key,_,B,L,R), _, V, t(Key,V,B,L,R), no).
insert(<, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
	insert(L, K, V, NewL, LeftHasChanged),
	adjust(LeftHasChanged, t(Key,Val,B,NewL,R), left, NewTree, WhatHasChanged).
insert(>, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
	insert(R, K, V, NewR, RightHasChanged),
	adjust(RightHasChanged, t(Key,Val,B,L,NewR), right, NewTree, WhatHasChanged).

adjust(no, Oldree, _, Oldree, no).
adjust(yes, t(Key,Val,B0,L,R), LoR, NewTree, WhatHasChanged) :-
	table(B0, LoR, B1, WhatHasChanged, ToBeRebalanced),
	rebalance(ToBeRebalanced, t(Key,Val,B0,L,R), B1, NewTree, _, _).

%     balance  where     balance  whole tree  to be
%     before   inserted  after    increased   rebalanced
table(-      , left    , <      , yes       , no    ) :- !.
table(-      , right   , >      , yes       , no    ) :- !.
table(<      , left    , -      , no        , yes   ) :- !.
table(<      , right   , -      , no        , no    ) :- !.
table(>      , left    , -      , no        , no    ) :- !.
table(>      , right   , -      , no        , yes   ) :- !.

%%      del_min_assoc(+AssocIn, ?Key, ?Val, -AssocOut)
%
%	True if Key-Value  is  in  AssocIn   and  Key  is  the smallest.
%	AssocOut is AssocIn with Key-Value   removed. Warning: this will
%	succeed with no bindings for Key or Val if input Tree is t.

del_min_assoc(Tree, Key, Val, NewTree) :-
	del_min_assoc(Tree, Key, Val, NewTree, _DepthChanged).

del_min_assoc(t, _, _, t,no).
del_min_assoc(t(Key,Val,_B,t,R), Key, Val, R, yes) :- !.
del_min_assoc(t(K,V,B,L,R), Key, Val, NewTree, Changed) :-
	del_min_assoc(L, Key, Val, NewL, LeftChanged),
	deladjust(LeftChanged, t(K,V,B,NewL,R), left, NewTree, Changed).

%%      del_max_assoc(+AssocIn, ?Key, ?Val, -AssocOut)
%
%	True if Key-Value  is  in  AssocIn   and  Key  is  the greatest.
%	AssocOut is AssocIn with Key-Value   removed. Warning: this will
%	succeed with no bindings for Key or Val if input Tree is t.

del_max_assoc(Tree, Key, Val, NewTree) :-
	del_max_assoc(Tree, Key, Val, NewTree, _DepthChanged).

del_max_assoc(t, _, _, t,no).
del_max_assoc(t(Key,Val,_B,L,t), Key, Val, L, yes) :- !.
del_max_assoc(t(K,V,B,L,R), Key, Val, NewTree, Changed) :-
	del_max_assoc(R, Key, Val, NewR, RightChanged),
	deladjust(RightChanged, t(K,V,B,L,NewR), right, NewTree, Changed).

%%	del_assoc(+Key, +AssocIn, ?Value, -AssocOut)
%
%	True if Key-Value is  in  AssocIn.   AssocOut  is  AssocOut with
%	Key-Value removed.

del_assoc(Key, A0, Value, A) :-
	delete(A0, Key, Value, A, _).

% delete(+Subtree, +SearchedKey, ?SearchedValue, ?SubtreeOut, ?WhatHasChanged)
delete(t, _, _, t, no).          % deletion from empty tree succeeds with no bindings
delete(t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
	compare(Rel, K, Key),
	delete(Rel, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged).

% delete(+KeySide, +Subtree, +SearchedKey, ?SearchedValue, ?SubtreeOut, ?WhatHasChanged)
% KeySide is an operator {<,=,>} indicating which branch should be searched for the key.
% WhatHasChanged {yes,no} indicates whether the NewTree has changed in depth.
delete(=, t(Key,Val,_B,t,R), Key, Val, R, yes) :- !.
delete(=, t(Key,Val,_B,L,t), Key, Val, L, yes) :- !.
delete(=, t(Key,Val,>,L,R), Key, Val, NewTree, WhatHasChanged) :-
	% Rh tree is deeper, so rotate from R to L
	del_min_assoc(R, K, V, NewR, RightHasChanged),
	deladjust(RightHasChanged, t(K,V,>,L,NewR), right, NewTree, WhatHasChanged), !.
delete(=, t(Key,Val,B,L,R), Key, Val, NewTree, WhatHasChanged) :-
	% Rh tree is not deeper, so rotate from L to R
	del_max_assoc(L, K, V, NewL, LeftHasChanged),
	deladjust(LeftHasChanged, t(K,V,B,NewL,R), left, NewTree, WhatHasChanged), !.

delete(<, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
	delete(L, K, V, NewL, LeftHasChanged),
	deladjust(LeftHasChanged, t(Key,Val,B,NewL,R), left, NewTree, WhatHasChanged).
delete(>, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
	delete(R, K, V, NewR, RightHasChanged),
	deladjust(RightHasChanged, t(Key,Val,B,L,NewR), right, NewTree, WhatHasChanged).

deladjust(no, OldTree, _, OldTree, no).
deladjust(yes, t(Key,Val,B0,L,R), LoR, NewTree, RealChange) :-
	deltable(B0, LoR, B1, WhatHasChanged, ToBeRebalanced),
	rebalance(ToBeRebalanced, t(Key,Val,B0,L,R), B1, NewTree, WhatHasChanged, RealChange).

%     balance  where     balance  whole tree  to be
%     before   deleted   after    changed   rebalanced
deltable(-      , right   , <      , no        , no    ) :- !.
deltable(-      , left    , >      , no        , no    ) :- !.
deltable(<      , right   , -      , yes       , yes   ) :- !.
deltable(<      , left    , -      , yes       , no    ) :- !.
deltable(>      , right   , -      , yes       , no    ) :- !.
deltable(>      , left    , -      , yes       , yes   ) :- !.
% It depends on the tree pattern in avl_geq whether it really decreases.

% Single and double tree rotations - these are common for insert and delete.
/* The patterns (>)-(>), (>)-( <), ( <)-( <) and ( <)-(>) on the LHS
   always change the tree height and these are the only patterns which can
   happen after an insertion. That's the reason why we can use a table only to
   decide the needed changes.

   The patterns (>)-( -) and ( <)-( -) do not change the tree height. After a
   deletion any pattern can occur and so we return yes or no as a flag of a
   height change.  */


rebalance(no, t(K,V,_,L,R), B, t(K,V,B,L,R), Changed, Changed).
rebalance(yes, OldTree, _, NewTree, _, RealChange) :-
	avl_geq(OldTree, NewTree, RealChange).

avl_geq(t(A,VA,>,Alpha,t(B,VB,>,Beta,Gamma)),
	t(B,VB,-,t(A,VA,-,Alpha,Beta),Gamma), yes) :- !.
avl_geq(t(A,VA,>,Alpha,t(B,VB,-,Beta,Gamma)),
	t(B,VB,<,t(A,VA,>,Alpha,Beta),Gamma), no) :- !.
avl_geq(t(B,VB,<,t(A,VA,<,Alpha,Beta),Gamma),
	t(A,VA,-,Alpha,t(B,VB,-,Beta,Gamma)), yes) :- !.
avl_geq(t(B,VB,<,t(A,VA,-,Alpha,Beta),Gamma),
	t(A,VA,>,Alpha,t(B,VB,<,Beta,Gamma)), no) :- !.
avl_geq(t(A,VA,>,Alpha,t(B,VB,<,t(X,VX,B1,Beta,Gamma),Delta)),
	t(X,VX,-,t(A,VA,B2,Alpha,Beta),t(B,VB,B3,Gamma,Delta)), yes) :- !,
	table2(B1, B2, B3).
avl_geq(t(B,VB,<,t(A,VA,>,Alpha,t(X,VX,B1,Beta,Gamma)),Delta),
	t(X,VX,-,t(A,VA,B2,Alpha,Beta),t(B,VB,B3,Gamma,Delta)), yes) :- !,
	table2(B1, B2, B3).

table2(< ,- ,> ).
table2(> ,< ,- ).
table2(- ,- ,- ).