/usr/lib/swi-prolog/library/assoc.pl is in swi-prolog-nox 5.10.4-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 | % File : ASSOC.PL
% Author : R.A.O'Keefe
% Updated: 9 November 1983
% Purpose: Binary tree implementation of "association lists".
% Note : the keys should be ground, the associated values need not be.
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Adapted for SWI-Prolog by Jan Wielemaker, January 2004.
To the best of my knowledge, this file is in the public domain and can
therefore safely be distributed with SWI-Prolog and used in applications
without restrictions.
Various versions of this file exists. This one is copied from the YAP
library. The SICStus library contains one using AVL trees to ensure
proper balancing. Although based on this library they changed the
argument order of some of the predicates.
Richard O'Keefe has told me he is working on a new version of this
library. This new version, as it becomes available, is likely to replace
this one.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/*
Balancing code merged from L.Damas, V.S.Costa, AVL trees in YAP.
Tree is either:
*) empty (t/0) or
*) t(Key,Value,Balance,Left,Right)
Left,Right: trees
Balance: <, -, or > denoting |L|-|R| = 1, 0, or -1, respectively
TODO: get_next_assoc/4, get_prev_assoc/4 for SICStus compatibility
TODO: exploit order in ord_list_to_assoc/2
*/
/*
Added del_assoc/4, del_min_assoc/4 and del_max_assoc/4
Ported by Glenn Burgess from a language called Pure.
Jiri Spitz ported the Pure AVL library from this SWI-Prolog library,
but the deletion code was added by Jiri. Full circle.
Also added is_assoc/1, which makes testing much easier. */
:- module(assoc,
[ empty_assoc/1, % -Assoc
is_assoc/1, % +Assoc
assoc_to_list/2, % +Assoc, -Pairs
assoc_to_keys/2, % +Assoc, -List
assoc_to_values/2, % +Assoc, -List
gen_assoc/3, % ?Key, +Assoc, ?Value
get_assoc/3, % +Key, +Assoc, ?Value
get_assoc/5, % +Key, +Assoc, ?Old, ?NewAssoc, +New
list_to_assoc/2, % +List, ?Assoc
map_assoc/2, % :Goal, +Assoc
map_assoc/3, % :Goal, +AssocIn, ?AssocOut
max_assoc/3, % +Assoc, ?Key, ?Value
min_assoc/3, % +Assoc, ?Key, ?Value
ord_list_to_assoc/2, % +List, ?Assoc
put_assoc/4, % +Key, +Assoc, +Value, ?NewAssoc
del_assoc/4, % +Key, +Assoc, +Value, ?NewAssoc
del_min_assoc/4, % +Assoc, ?Key, ?Value, ?NewAssoc
del_max_assoc/4 % +Assoc, ?Key, ?Value, ?NewAssoc
]).
/** <module> Binary associations
Assocs are Key-Value associations implemented as a balanced binary tree
(AVL tree).
@see library(pairs), library(rbtrees)
@author R.A.O'Keefe, L.Damas, V.S.Costa and Jan Wielemaker
@license Public domain
*/
:- meta_predicate
map_assoc(1, ?),
map_assoc(2, ?, ?).
%% empty_assoc(-Assoc) is det.
%% empty_assoc(+Assoc) is semidet.
%
% Is true if Assoc is the empty assoc.
empty_assoc(t).
%% assoc_to_list(+Assoc, -Pairs:list(Key-Value)) is semidet.
%
% Translate Assoc to a list of pairs. The keys in Pairs are
% sorted in ascending order.
assoc_to_list(Assoc, List) :-
assoc_to_list(Assoc, List, []).
assoc_to_list(t(Key,Val,_,L,R), List, Rest) :-
assoc_to_list(L, List, [Key-Val|More]),
assoc_to_list(R, More, Rest).
assoc_to_list(t, List, List).
%% assoc_to_keys(+Assoc, -Keys:ord_set) is det.
%
% True if Keys is the list of keys in Assoc. The keys are sorted
% in ascending order.
assoc_to_keys(Assoc, List) :-
assoc_to_keys(Assoc, List, []).
assoc_to_keys(t(Key,_,_,L,R), List, Rest) :-
assoc_to_keys(L, List, [Key|More]),
assoc_to_keys(R, More, Rest).
assoc_to_keys(t, List, List).
%% assoc_to_values(+Assoc, -Values:list) is det.
%
% True if Values is the list of values in Assoc. Values are
% ordered in ascending order of the key to which they were
% associated. Values may contain duplicates.
assoc_to_values(Assoc, List) :-
assoc_to_values(Assoc, List, []).
assoc_to_values(t(_,Value,_,L,R), List, Rest) :-
assoc_to_values(L, List, [Value|More]),
assoc_to_values(R, More, Rest).
assoc_to_values(t, List, List).
%% is_assoc(+Assoc)
%
% True if Assoc is an AVL-tree association list Checks that the
% structure is valid, elements are in order, and tree is balanced
% to the extent guaranteed by AVL trees. I.e., branches of each
% subtree differ in depth by at most 1.
is_assoc(Assoc) :-
is_assoc(Assoc, _Min, _Max, _Depth).
is_assoc(t,X,X,0) :- !.
is_assoc(t(K,_,-,t,t),K,K,1) :- !, ground(K).
is_assoc(t(K,_,>,t,t(RK,_,-,t,t)),K,RK,2) :-
% Ensure right side Key is 'greater' than K
!, ground((K,RK)), K < RK.
is_assoc(t(K,_,<,t(LK,_,-,t,t),t),LK,K,2) :-
% Ensure left side Key is 'less' than K
!, ground((LK,K)), LK < K.
is_assoc(t(K,_,B,L,R),Min,Max,Depth) :-
is_assoc(L,Min,LMax,LDepth),
is_assoc(R,RMin,Max,RDepth),
% Ensure Balance matches depth
compare(Rel,RDepth,LDepth),
balance(Rel,B),
% Ensure ordering
ground((LMax,K,RMin)),
LMax < K,
K < RMin,
Depth is max(LDepth, RDepth)+1.
% Private lookup table matching comparison operators to Balance operators used in tree
balance(=,-).
balance(<,<).
balance(>,>).
%% gen_assoc(?Key, +Assoc, ?Value) is nondet.
%
% True if Key-Value is an association in Assoc. Enumerates keys in
% ascending order.
%
% @see get_assoc/3.
gen_assoc(Key, t(_,_,_,L,_), Val) :-
gen_assoc(Key, L, Val).
gen_assoc(Key, t(Key,Val,_,_,_), Val).
gen_assoc(Key, t(_,_,_,_,R), Val) :-
gen_assoc(Key, R, Val).
%% get_assoc(+Key, +Assoc, -Value) is semidet.
%
% True if Key-Value is an association in Assoc.
get_assoc(Key, t(K,V,_,L,R), Val) :-
compare(Rel, Key, K),
get_assoc(Rel, Key, V, L, R, Val).
get_assoc(=, _, Val, _, _, Val).
get_assoc(<, Key, _, Tree, _, Val) :-
get_assoc(Key, Tree, Val).
get_assoc(>, Key, _, _, Tree, Val) :-
get_assoc(Key, Tree, Val).
%% get_assoc(+Key, +AssocIn, +Val, -AssocOut, +NewVal) is semidet.
%
% True if Key-Val is in AssocIn and Key-NewVal is in AssocOut.
get_assoc(Key, t(K,V,B,L,R), Val, t(K,NV,B,NL,NR), NVal) :-
compare(Rel, Key, K),
get_assoc(Rel, Key, V, L, R, Val, NV, NL, NR, NVal).
get_assoc(=, _, Val, L, R, Val, NVal, L, R, NVal).
get_assoc(<, Key, V, L, R, Val, V, NL, R, NVal) :-
get_assoc(Key, L, Val, NL, NVal).
get_assoc(>, Key, V, L, R, Val, V, L, NR, NVal) :-
get_assoc(Key, R, Val, NR, NVal).
%% list_to_assoc(+List:list(Key-Value), -Assoc) is det.
%
% Create an assoc from a pair-list.
list_to_assoc(List, Assoc) :-
list_to_assoc(List, t, Assoc).
list_to_assoc([], Assoc, Assoc).
list_to_assoc([Key-Val|List], Assoc0, Assoc) :-
put_assoc(Key, Assoc0, Val, AssocI),
list_to_assoc(List, AssocI, Assoc).
%% ord_list_to_assoc(+List:list(Key-Value), -Assoc) is det.
%
% Create an assoc from an ordered pair-list.
ord_list_to_assoc(Keys, Assoc) :-
list_to_assoc(Keys, Assoc).
%% map_assoc(:Pred, +Assoc) is semidet.
%
% True if Pred(Value) is true for all values in Assoc.
map_assoc(Pred, T) :-
map_assoc_(T, Pred).
map_assoc_(t, _).
map_assoc_(t(_,Val,_,L,R), Pred) :-
map_assoc_(L, Pred),
call(Pred, Val),
map_assoc_(R, Pred).
%% map_assoc(:Pred, ?AssocIn, ?AssocOut) is semidet.
%
% True if for every Key, Pred(ValIn, ValOut) is true.
map_assoc(Pred, T0, T) :-
map_assoc_(T0, Pred, T).
map_assoc_(t, _, t).
map_assoc_(t(Key,Val,B,L0,R0), Pred, t(Key,Ans,B,L1,R1)) :-
map_assoc_(L0, Pred, L1),
call(Pred, Val, Ans),
map_assoc_(R0, Pred, R1).
%% max_assoc(+Assoc, -Key, -Value) is semidet.
%
% True if Key-Value is in assoc and Key is the largest.
max_assoc(t(K,V,_,_,R), Key, Val) :-
max_assoc(R, K, V, Key, Val).
max_assoc(t, K, V, K, V).
max_assoc(t(K,V,_,_,R), _, _, Key, Val) :-
max_assoc(R, K, V, Key, Val).
%% min_assoc(+Assoc, -Key, -Value) is semidet.
%
% True if Key-Value is in assoc and Key is the smallest.
min_assoc(t(K,V,_,L,_), Key, Val) :-
min_assoc(L, K, V, Key, Val).
min_assoc(t, K, V, K, V).
min_assoc(t(K,V,_,L,_), _, _, Key, Val) :-
min_assoc(L, K, V, Key, Val).
%% put_assoc(+Key, +AssocIn, +Value, -AssocOut) is det.
%
% Add Key-Value to AssocIn. If Key is already in AssocIn, the
% associated value is replaced.
put_assoc(Key, A0, Value, A) :-
insert(A0, Key, Value, A, _).
insert(t, Key, Val, t(Key,Val,-,t,t), yes).
insert(t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
compare(Rel, K, Key),
insert(Rel, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged).
insert(=, t(Key,_,B,L,R), _, V, t(Key,V,B,L,R), no).
insert(<, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
insert(L, K, V, NewL, LeftHasChanged),
adjust(LeftHasChanged, t(Key,Val,B,NewL,R), left, NewTree, WhatHasChanged).
insert(>, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
insert(R, K, V, NewR, RightHasChanged),
adjust(RightHasChanged, t(Key,Val,B,L,NewR), right, NewTree, WhatHasChanged).
adjust(no, Oldree, _, Oldree, no).
adjust(yes, t(Key,Val,B0,L,R), LoR, NewTree, WhatHasChanged) :-
table(B0, LoR, B1, WhatHasChanged, ToBeRebalanced),
rebalance(ToBeRebalanced, t(Key,Val,B0,L,R), B1, NewTree, _, _).
% balance where balance whole tree to be
% before inserted after increased rebalanced
table(- , left , < , yes , no ) :- !.
table(- , right , > , yes , no ) :- !.
table(< , left , - , no , yes ) :- !.
table(< , right , - , no , no ) :- !.
table(> , left , - , no , no ) :- !.
table(> , right , - , no , yes ) :- !.
%% del_min_assoc(+AssocIn, ?Key, ?Val, -AssocOut)
%
% True if Key-Value is in AssocIn and Key is the smallest.
% AssocOut is AssocIn with Key-Value removed. Warning: this will
% succeed with no bindings for Key or Val if input Tree is t.
del_min_assoc(Tree, Key, Val, NewTree) :-
del_min_assoc(Tree, Key, Val, NewTree, _DepthChanged).
del_min_assoc(t, _, _, t,no).
del_min_assoc(t(Key,Val,_B,t,R), Key, Val, R, yes) :- !.
del_min_assoc(t(K,V,B,L,R), Key, Val, NewTree, Changed) :-
del_min_assoc(L, Key, Val, NewL, LeftChanged),
deladjust(LeftChanged, t(K,V,B,NewL,R), left, NewTree, Changed).
%% del_max_assoc(+AssocIn, ?Key, ?Val, -AssocOut)
%
% True if Key-Value is in AssocIn and Key is the greatest.
% AssocOut is AssocIn with Key-Value removed. Warning: this will
% succeed with no bindings for Key or Val if input Tree is t.
del_max_assoc(Tree, Key, Val, NewTree) :-
del_max_assoc(Tree, Key, Val, NewTree, _DepthChanged).
del_max_assoc(t, _, _, t,no).
del_max_assoc(t(Key,Val,_B,L,t), Key, Val, L, yes) :- !.
del_max_assoc(t(K,V,B,L,R), Key, Val, NewTree, Changed) :-
del_max_assoc(R, Key, Val, NewR, RightChanged),
deladjust(RightChanged, t(K,V,B,L,NewR), right, NewTree, Changed).
%% del_assoc(+Key, +AssocIn, ?Value, -AssocOut)
%
% True if Key-Value is in AssocIn. AssocOut is AssocOut with
% Key-Value removed.
del_assoc(Key, A0, Value, A) :-
delete(A0, Key, Value, A, _).
% delete(+Subtree, +SearchedKey, ?SearchedValue, ?SubtreeOut, ?WhatHasChanged)
delete(t, _, _, t, no). % deletion from empty tree succeeds with no bindings
delete(t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
compare(Rel, K, Key),
delete(Rel, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged).
% delete(+KeySide, +Subtree, +SearchedKey, ?SearchedValue, ?SubtreeOut, ?WhatHasChanged)
% KeySide is an operator {<,=,>} indicating which branch should be searched for the key.
% WhatHasChanged {yes,no} indicates whether the NewTree has changed in depth.
delete(=, t(Key,Val,_B,t,R), Key, Val, R, yes) :- !.
delete(=, t(Key,Val,_B,L,t), Key, Val, L, yes) :- !.
delete(=, t(Key,Val,>,L,R), Key, Val, NewTree, WhatHasChanged) :-
% Rh tree is deeper, so rotate from R to L
del_min_assoc(R, K, V, NewR, RightHasChanged),
deladjust(RightHasChanged, t(K,V,>,L,NewR), right, NewTree, WhatHasChanged), !.
delete(=, t(Key,Val,B,L,R), Key, Val, NewTree, WhatHasChanged) :-
% Rh tree is not deeper, so rotate from L to R
del_max_assoc(L, K, V, NewL, LeftHasChanged),
deladjust(LeftHasChanged, t(K,V,B,NewL,R), left, NewTree, WhatHasChanged), !.
delete(<, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
delete(L, K, V, NewL, LeftHasChanged),
deladjust(LeftHasChanged, t(Key,Val,B,NewL,R), left, NewTree, WhatHasChanged).
delete(>, t(Key,Val,B,L,R), K, V, NewTree, WhatHasChanged) :-
delete(R, K, V, NewR, RightHasChanged),
deladjust(RightHasChanged, t(Key,Val,B,L,NewR), right, NewTree, WhatHasChanged).
deladjust(no, OldTree, _, OldTree, no).
deladjust(yes, t(Key,Val,B0,L,R), LoR, NewTree, RealChange) :-
deltable(B0, LoR, B1, WhatHasChanged, ToBeRebalanced),
rebalance(ToBeRebalanced, t(Key,Val,B0,L,R), B1, NewTree, WhatHasChanged, RealChange).
% balance where balance whole tree to be
% before deleted after changed rebalanced
deltable(- , right , < , no , no ) :- !.
deltable(- , left , > , no , no ) :- !.
deltable(< , right , - , yes , yes ) :- !.
deltable(< , left , - , yes , no ) :- !.
deltable(> , right , - , yes , no ) :- !.
deltable(> , left , - , yes , yes ) :- !.
% It depends on the tree pattern in avl_geq whether it really decreases.
% Single and double tree rotations - these are common for insert and delete.
/* The patterns (>)-(>), (>)-( <), ( <)-( <) and ( <)-(>) on the LHS
always change the tree height and these are the only patterns which can
happen after an insertion. That's the reason why we can use a table only to
decide the needed changes.
The patterns (>)-( -) and ( <)-( -) do not change the tree height. After a
deletion any pattern can occur and so we return yes or no as a flag of a
height change. */
rebalance(no, t(K,V,_,L,R), B, t(K,V,B,L,R), Changed, Changed).
rebalance(yes, OldTree, _, NewTree, _, RealChange) :-
avl_geq(OldTree, NewTree, RealChange).
avl_geq(t(A,VA,>,Alpha,t(B,VB,>,Beta,Gamma)),
t(B,VB,-,t(A,VA,-,Alpha,Beta),Gamma), yes) :- !.
avl_geq(t(A,VA,>,Alpha,t(B,VB,-,Beta,Gamma)),
t(B,VB,<,t(A,VA,>,Alpha,Beta),Gamma), no) :- !.
avl_geq(t(B,VB,<,t(A,VA,<,Alpha,Beta),Gamma),
t(A,VA,-,Alpha,t(B,VB,-,Beta,Gamma)), yes) :- !.
avl_geq(t(B,VB,<,t(A,VA,-,Alpha,Beta),Gamma),
t(A,VA,>,Alpha,t(B,VB,<,Beta,Gamma)), no) :- !.
avl_geq(t(A,VA,>,Alpha,t(B,VB,<,t(X,VX,B1,Beta,Gamma),Delta)),
t(X,VX,-,t(A,VA,B2,Alpha,Beta),t(B,VB,B3,Gamma,Delta)), yes) :- !,
table2(B1, B2, B3).
avl_geq(t(B,VB,<,t(A,VA,>,Alpha,t(X,VX,B1,Beta,Gamma)),Delta),
t(X,VX,-,t(A,VA,B2,Alpha,Beta),t(B,VB,B3,Gamma,Delta)), yes) :- !,
table2(B1, B2, B3).
table2(< ,- ,> ).
table2(> ,< ,- ).
table2(- ,- ,- ).
|