/usr/lib/swi-prolog/library/heaps.pl is in swi-prolog-nox 5.10.4-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 | /* Part of SWI-Prolog
Author: Lars Buitinck
E-mail: larsmans@gmail.com
WWW: http://www.swi-prolog.org
Copyright (C): 2010-2011, Lars Buitinck
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(heaps,
[ add_to_heap/4, % +Heap0, +Priority, ?Key, -Heap
delete_from_heap/4, % +Heap0, -Priority, +Key, -Heap
empty_heap/1, % +Heap
get_from_heap/4, % ?Heap0, ?Priority, ?Key, -Heap
heap_size/2, % +Heap, -Size:int
heap_to_list/2, % +Heap, -List:list
is_heap/1, % +Term
list_to_heap/2, % +List:list, -Heap
merge_heaps/3, % +Heap0, +Heap1, -Heap
min_of_heap/3, % +Heap, ?Priority, ?Key
min_of_heap/5, % +Heap, ?Priority1, ?Key1,
% ?Priority2, ?Key2
singleton_heap/3 % ?Heap, ?Priority, ?Key
]).
/** <module> heaps/priority queues
*
* Heaps are data structures that return the entries inserted into them in an
* ordered fashion, based on a priority. This makes them the data structure of
* choice for implementing priority queues, a central element of algorithms
* such as best-first/A* search and Kruskal's minimum-spanning-tree algorithm.
*
* This module implements min-heaps, meaning that items are retrieved in
* ascending order of key/priority. It was designed to be compatible with
* the SICStus Prolog library module of the same name. merge_heaps/3 and
* singleton_heap/3 are SWI-specific extension. The portray_heap/1 predicate
* is not implemented.
*
* Although the data items can be arbitrary Prolog data, keys/priorities must
* be ordered by @=</2. Be careful when using variables as keys, since binding
* them in between heap operations may change the ordering.
*
* The current version implements pairing heaps. All operations can be
* performed in at most O(lg n) amortized time, except for delete_from_heap/4,
* heap_to_list/2, is_heap/1 and list_to_heap/2.
*
* (The actual time complexity of pairing heaps is complicated and not yet
* determined conclusively; see, e.g. S. Pettie (2005), Towards a final
* analysis of pairing heaps, Proc. FOCS'05.)
*
* @author Lars Buitinck
*
* @bug The "decrease key" operation is not implemented.
*/
/*
* Heaps are represented as heap(H,Size) terms, where H is a pairing heap and
* Size is an integer. A pairing heap is either nil or a term
* t(X,PrioX,Sub) where Sub is a list of pairing heaps t(Y,PrioY,Sub) s.t.
* PrioX @< PrioY. See predicate is_heap/2, below.
*/
%% add_to_heap(+Heap0, +Priority, ?Key, -Heap) is semidet.
%
% Adds Key with priority Priority to Heap0, constructing a new
% heap in Heap.
add_to_heap(heap(Q0,M),P,X,heap(Q1,N)) :-
meld(Q0,t(X,P,[]),Q1),
N is M+1.
%% delete_from_heap(+Heap0, -Priority, +Key, -Heap) is semidet.
%
% Deletes Key from Heap0, leaving its priority in Priority and the
% resulting data structure in Heap. Fails if Key is not found in
% Heap0.
%
% @bug This predicate is extremely inefficient and exists only for
% SICStus compatibility.
delete_from_heap(Q0,P,X,Q) :-
get_from_heap(Q0,P,X,Q), !.
delete_from_heap(Q0,Px,X,Q) :-
get_from_heap(Q0,Py,Y,Q1),
delete_from_heap(Q1,Px,X,Q2),
add_to_heap(Q2,Py,Y,Q).
%% empty_heap(?Heap) is semidet.
%
% True if Heap is an empty heap.
empty_heap(heap(nil,0)).
%% singleton_heap(?Heap, ?Priority, ?Key) is semidet.
%
% True if Heap is a heap with the single element Priority-Key.
singleton_heap(heap(t(X,P,[]), 1), X, P).
%% get_from_heap(?Heap0, ?Priority, ?Key, -Heap) is semidet.
%
% Retrieves the minimum-priority pair Priority-Key from Heap0.
% Heap is Heap0 with that pair removed.
get_from_heap(heap(t(X,P,Sub),M), P, X, heap(Q,N)) :-
pairing(Sub,Q),
N is M-1.
%% heap_size(+Heap, -Size:int) is det.
%
% Determines the number of elements in Heap.
heap_size(heap(_,N),N).
%% heap_to_list(+Heap, -List:list) is det.
%
% Constructs a list List of Priority-Element terms, ordered by
% (ascending) priority.
heap_to_list(Q,L) :-
to_list(Q,L).
to_list(heap(nil,0),[]) :- !.
to_list(Q0,[P-X|Xs]) :-
get_from_heap(Q0,P,X,Q),
heap_to_list(Q,Xs).
%% is_heap(+X) is semidet.
%
% Returns true is X is a heap.
%
% @bug May return false positives.
is_heap(V) :-
var(V), !, fail.
is_heap(heap(Q,N)) :-
integer(N),
\+ var(Q),
( Q == nil
-> N == 0
; N > 0,
Q = t(_,MinP,Sub),
are_pairing_heaps(Sub, MinP)
).
% True iff 1st arg is a pairing heap with min key @=< 2nd arg,
% where min key of nil is logically @> any term.
is_pairing_heap(V, _) :-
var(V), !,
fail.
is_pairing_heap(nil, _).
is_pairing_heap(t(_,P,Sub), MinP) :-
P @=< MinP,
are_pairing_heaps(Sub, P).
% True iff 1st arg is a list of pairing heaps, each with min key @=< 2nd arg.
are_pairing_heaps(V, _) :-
var(V), !,
fail.
are_pairing_heaps([], _).
are_pairing_heaps([Q|Qs], MinP) :-
is_pairing_heap(Q, MinP),
are_pairing_heaps(Qs, MinP).
%% list_to_heap(+List:list, -Heap) is det.
%
% If List is a list of Priority-Element terms, constructs a heap
% out of List.
list_to_heap(Xs,Q) :-
empty_heap(Empty),
list_to_heap(Xs,Empty,Q).
list_to_heap([],Q,Q).
list_to_heap([P-X|Xs],Q0,Q) :-
add_to_heap(Q0,P,X,Q1),
list_to_heap(Xs,Q1,Q).
%% min_of_heap(+Heap, ?Priority, ?Key) is semidet.
%
% Unifies Key with the minimum-priority element of Heap and
% Priority with its priority value.
min_of_heap(heap(t(X,P,_),_), P, X).
%% min_of_heap(+Heap, ?Priority1, ?Key1, ?Priority2, ?Key2) is semidet.
%
% Gets the two minimum-priority elements from Heap.
min_of_heap(Q,Px,X,Py,Y) :-
get_from_heap(Q,Px,X,Q0),
min_of_heap(Q0,Py,Y).
%% merge_heaps(+Heap0, +Heap1, -Heap) is det.
%
% Merge the two heaps Heap0 and Heap1 in Heap.
merge_heaps(heap(L,K),heap(R,M),heap(Q,N)) :-
meld(L,R,Q),
N is K+M.
% Merge two pairing heaps according to the pairing heap definition.
meld(nil,Q,Q) :- !.
meld(Q,nil,Q) :- !.
meld(L,R,Q) :-
L = t(X,Px,SubL),
R = t(Y,Py,SubR),
( Px @< Py
-> Q = t(X,Px,[R|SubL])
; Q = t(Y,Py,[L|SubR])
).
% "Pair up" (recursively meld) a list of pairing heaps.
pairing([], nil).
pairing([Q], Q) :- !.
pairing([Q0,Q1|Qs], Q) :-
meld(Q0, Q1, Q2),
pairing([Q2|Qs], Q).
|