/usr/lib/swi-prolog/library/ugraphs.pl is in swi-prolog-nox 5.10.4-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 | % $Id$
%
% File : GRAPHS.PL
% Author : R.A.O'Keefe
% Updated: 20 March 1984
% Purpose: Graph-processing utilities.
:- module(ugraphs,
[ add_edges/3, % +Graph, +Edges, -NewGraph
add_vertices/3, % +Graph, +Vertices, -NewGraph
complement/2, % +Graph, -NewGraph
compose/3, % +LeftGraph, +RightGraph, -NewGraph
del_edges/3, % +Graph, +Edges, -NewGraph
del_vertices/3, % +Graph, +Vertices, -NewGraph
edges/2, % +Graph, -Edges
neighbors/3, % +Vertex, +Graph, -Vertices
neighbours/3, % +Vertex, +Graph, -Vertices
reachable/3, % +Vertex, +Graph, -Vertices
top_sort/2, % +Graph, -Sort
top_sort/3, % +Graph, -Sort0, -Sort
transitive_closure/2, % +Graph, -Closure
transpose/2, % +Graph, -NewGraph
vertices/2, % +Graph, -Vertices
vertices_edges_to_ugraph/3, % +Vertices, +Edges, -Graph
ugraph_union/3 % +Graph1, +Graph2, -Graph
]).
/** <module> Graph manipulation library
The S-representation of a graph is a list of (vertex-neighbours) pairs,
where the pairs are in standard order (as produced by keysort) and the
neighbours of each vertex are also in standard order (as produced by
sort). This form is convenient for many calculations.
A new UGraph from raw data can be created using
vertices_edges_to_ugraph/3.
Adapted to support some of the functionality of the SICStus ugraphs
library by Vitor Santos Costa.
Ported from YAP 5.0.1 to SWI-Prolog by Jan Wielemaker.
As the original code was distributed in the public domain and YAP under
the Perl artistic license the code can be used with SWI-Prolog
applications without consequences to the overall system or proprietary
code linked to SWI-Prolog
@author R.A.O'Keefe
@author Vitor Santos Costa
@author Jan Wielemaker
*/
:- use_module(library(lists), [
append/3,
member/2
]).
:- use_module(library(ordsets), [
ord_add_element/3,
ord_subtract/3,
ord_union/3,
ord_union/4
]).
/*
:- public
p_to_s_graph/2,
s_to_p_graph/2, % edges
s_to_p_trans/2,
p_member/3,
s_member/3,
p_transpose/2,
s_transpose/2,
compose/3,
top_sort/2,
vertices/2,
warshall/2.
:- mode
vertices(+, -),
p_to_s_graph(+, -),
p_to_s_vertices(+, -),
p_to_s_group(+, +, -),
p_to_s_group(+, +, -, -),
s_to_p_graph(+, -),
s_to_p_graph(+, +, -, -),
s_to_p_trans(+, -),
s_to_p_trans(+, +, -, -),
p_member(?, ?, +),
s_member(?, ?, +),
p_transpose(+, -),
s_transpose(+, -),
s_transpose(+, -, ?, -),
transpose_s(+, +, +, -),
compose(+, +, -),
compose(+, +, +, -),
compose1(+, +, +, -),
compose1(+, +, +, +, +, +, +, -),
top_sort(+, -),
vertices_and_zeros(+, -, ?),
count_edges(+, +, +, -),
incr_list(+, +, +, -),
select_zeros(+, +, -),
top_sort(+, -, +, +, +),
decr_list(+, +, +, -, +, -),
warshall(+, -),
warshall(+, +, -),
warshall(+, +, +, -).
*/
%% vertices(+S_Graph, -Vertices) is det.
%
% Strips off the neighbours lists of an S-representation to
% produce a list of the vertices of the graph. (It is a
% characteristic of S-representations that *every* vertex appears,
% even if it has no neighbours.). Vertices is in the standard
% order of terms.
vertices([], []) :- !.
vertices([Vertex-_|Graph], [Vertex|Vertices]) :-
vertices(Graph, Vertices).
%% vertices_edges_to_ugraph(+Vertices, +Edges, -UGraph) is det.
%
% Create a UGraph from Vertices and edges. Given a graph with a
% set of Vertices and a set of Edges, Graph must unify with the
% corresponding S-representation. Note that the vertices without
% edges will appear in Vertices but not in Edges. Moreover, it is
% sufficient for a vertice to appear in Edges.
%
% ==
% ?- vertices_edges_to_ugraph([],[1-3,2-4,4-5,1-5], L).
% L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[]]
% ==
%
% In this case all vertices are defined implicitly. The next
% example shows three unconnected vertices:
%
% ==
% ?- vertices_edges_to_ugraph([6,7,8],[1-3,2-4,4-5,1-5], L).
% L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[], 6-[], 7-[], 8-[]]
% ==
vertices_edges_to_ugraph(Vertices, Edges, Graph) :-
sort(Edges, EdgeSet),
p_to_s_vertices(EdgeSet, IVertexBag),
append(Vertices, IVertexBag, VertexBag),
sort(VertexBag, VertexSet),
p_to_s_group(VertexSet, EdgeSet, Graph).
add_vertices(Graph, Vertices, NewGraph) :-
msort(Vertices, V1),
add_vertices_to_s_graph(V1, Graph, NewGraph).
add_vertices_to_s_graph(L, [], NL) :- !,
add_empty_vertices(L, NL).
add_vertices_to_s_graph([], L, L) :- !.
add_vertices_to_s_graph([V1|VL], [V-Edges|G], NGL) :-
compare(Res, V1, V),
add_vertices_to_s_graph(Res, V1, VL, V, Edges, G, NGL).
add_vertices_to_s_graph(=, _, VL, V, Edges, G, [V-Edges|NGL]) :-
add_vertices_to_s_graph(VL, G, NGL).
add_vertices_to_s_graph(<, V1, VL, V, Edges, G, [V1-[]|NGL]) :-
add_vertices_to_s_graph(VL, [V-Edges|G], NGL).
add_vertices_to_s_graph(>, V1, VL, V, Edges, G, [V-Edges|NGL]) :-
add_vertices_to_s_graph([V1|VL], G, NGL).
add_empty_vertices([], []).
add_empty_vertices([V|G], [V-[]|NG]) :-
add_empty_vertices(G, NG).
%% del_vertices(+Graph, +Vertices, -NewGraph) is det.
%
% Unify NewGraph with a new graph obtained by deleting the list of
% Vertices and all the edges that start from or go to a vertex in
% Vertices to the Graph. Example:
%
% ==
% ?- del_vertices([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[2,6],8-[]],
% [2,1],
% NL).
% NL = [3-[],4-[5],5-[],6-[],7-[6],8-[]]
% ==
%
% @compat Upto 5.6.48 the argument order was (+Vertices, +Graph,
% -NewGraph). Both YAP and SWI-Prolog have changed the argument
% order for compatibility with recent SICStus as well as
% consistency with del_edges/3.
del_vertices(Graph, Vertices, NewGraph) :-
sort(Vertices, V1), % JW: was msort
( V1 = []
-> Graph = NewGraph
; del_vertices(Graph, V1, V1, NewGraph)
).
del_vertices(G, [], V1, NG) :- !,
del_remaining_edges_for_vertices(G, V1, NG).
del_vertices([], _, _, []).
del_vertices([V-Edges|G], [V0|Vs], V1, NG) :-
compare(Res, V, V0),
split_on_del_vertices(Res, V,Edges, [V0|Vs], NVs, V1, NG, NGr),
del_vertices(G, NVs, V1, NGr).
del_remaining_edges_for_vertices([], _, []).
del_remaining_edges_for_vertices([V0-Edges|G], V1, [V0-NEdges|NG]) :-
ord_subtract(Edges, V1, NEdges),
del_remaining_edges_for_vertices(G, V1, NG).
split_on_del_vertices(<, V, Edges, Vs, Vs, V1, [V-NEdges|NG], NG) :-
ord_subtract(Edges, V1, NEdges).
split_on_del_vertices(>, V, Edges, [_|Vs], Vs, V1, [V-NEdges|NG], NG) :-
ord_subtract(Edges, V1, NEdges).
split_on_del_vertices(=, _, _, [_|Vs], Vs, _, NG, NG).
add_edges(Graph, Edges, NewGraph) :-
p_to_s_graph(Edges, G1),
ugraph_union(Graph, G1, NewGraph).
%% ugraph_union(+Set1, +Set2, ?Union)
%
% Is true when Union is the union of Set1 and Set2. This code is a
% copy of set union
ugraph_union(Set1, [], Set1) :- !.
ugraph_union([], Set2, Set2) :- !.
ugraph_union([Head1-E1|Tail1], [Head2-E2|Tail2], Union) :-
compare(Order, Head1, Head2),
ugraph_union(Order, Head1-E1, Tail1, Head2-E2, Tail2, Union).
ugraph_union(=, Head-E1, Tail1, _-E2, Tail2, [Head-Es|Union]) :-
ord_union(E1, E2, Es),
ugraph_union(Tail1, Tail2, Union).
ugraph_union(<, Head1, Tail1, Head2, Tail2, [Head1|Union]) :-
ugraph_union(Tail1, [Head2|Tail2], Union).
ugraph_union(>, Head1, Tail1, Head2, Tail2, [Head2|Union]) :-
ugraph_union([Head1|Tail1], Tail2, Union).
del_edges(Graph, Edges, NewGraph) :-
p_to_s_graph(Edges, G1),
graph_subtract(Graph, G1, NewGraph).
%% graph_subtract(+Set1, +Set2, ?Difference)
%
% Is based on ord_subtract
graph_subtract(Set1, [], Set1) :- !.
graph_subtract([], _, []).
graph_subtract([Head1-E1|Tail1], [Head2-E2|Tail2], Difference) :-
compare(Order, Head1, Head2),
graph_subtract(Order, Head1-E1, Tail1, Head2-E2, Tail2, Difference).
graph_subtract(=, H-E1, Tail1, _-E2, Tail2, [H-E|Difference]) :-
ord_subtract(E1,E2,E),
graph_subtract(Tail1, Tail2, Difference).
graph_subtract(<, Head1, Tail1, Head2, Tail2, [Head1|Difference]) :-
graph_subtract(Tail1, [Head2|Tail2], Difference).
graph_subtract(>, Head1, Tail1, _, Tail2, Difference) :-
graph_subtract([Head1|Tail1], Tail2, Difference).
edges(Graph, Edges) :-
s_to_p_graph(Graph, Edges).
p_to_s_graph(P_Graph, S_Graph) :-
sort(P_Graph, EdgeSet),
p_to_s_vertices(EdgeSet, VertexBag),
sort(VertexBag, VertexSet),
p_to_s_group(VertexSet, EdgeSet, S_Graph).
p_to_s_vertices([], []).
p_to_s_vertices([A-Z|Edges], [A,Z|Vertices]) :-
p_to_s_vertices(Edges, Vertices).
p_to_s_group([], _, []).
p_to_s_group([Vertex|Vertices], EdgeSet, [Vertex-Neibs|G]) :-
p_to_s_group(EdgeSet, Vertex, Neibs, RestEdges),
p_to_s_group(Vertices, RestEdges, G).
p_to_s_group([V1-X|Edges], V2, [X|Neibs], RestEdges) :- V1 == V2, !,
p_to_s_group(Edges, V2, Neibs, RestEdges).
p_to_s_group(Edges, _, [], Edges).
s_to_p_graph([], []) :- !.
s_to_p_graph([Vertex-Neibs|G], P_Graph) :-
s_to_p_graph(Neibs, Vertex, P_Graph, Rest_P_Graph),
s_to_p_graph(G, Rest_P_Graph).
s_to_p_graph([], _, P_Graph, P_Graph) :- !.
s_to_p_graph([Neib|Neibs], Vertex, [Vertex-Neib|P], Rest_P) :-
s_to_p_graph(Neibs, Vertex, P, Rest_P).
transitive_closure(Graph, Closure) :-
warshall(Graph, Graph, Closure).
warshall([], Closure, Closure) :- !.
warshall([V-_|G], E, Closure) :-
memberchk(V-Y, E), % Y := E(v)
warshall(E, V, Y, NewE),
warshall(G, NewE, Closure).
warshall([X-Neibs|G], V, Y, [X-NewNeibs|NewG]) :-
memberchk(V, Neibs),
!,
ord_union(Neibs, Y, NewNeibs),
warshall(G, V, Y, NewG).
warshall([X-Neibs|G], V, Y, [X-Neibs|NewG]) :- !,
warshall(G, V, Y, NewG).
warshall([], _, _, []).
transpose(S_Graph, Transpose) :-
s_transpose(S_Graph, Base, Base, Transpose).
s_transpose([], [], Base, Base) :- !.
s_transpose([Vertex-Neibs|Graph], [Vertex-[]|RestBase], Base, Transpose) :-
s_transpose(Graph, RestBase, Base, SoFar),
transpose_s(SoFar, Neibs, Vertex, Transpose).
transpose_s([Neib-Trans|SoFar], [Neib|Neibs], Vertex,
[Neib-[Vertex|Trans]|Transpose]) :- !,
transpose_s(SoFar, Neibs, Vertex, Transpose).
transpose_s([Head|SoFar], Neibs, Vertex, [Head|Transpose]) :- !,
transpose_s(SoFar, Neibs, Vertex, Transpose).
transpose_s([], [], _, []).
%% compose(G1, G2, Composition)
%
% Calculates the composition of two S-form graphs, which need not
% have the same set of vertices.
compose(G1, G2, Composition) :-
vertices(G1, V1),
vertices(G2, V2),
ord_union(V1, V2, V),
compose(V, G1, G2, Composition).
compose([], _, _, []) :- !.
compose([Vertex|Vertices], [Vertex-Neibs|G1], G2,
[Vertex-Comp|Composition]) :- !,
compose1(Neibs, G2, [], Comp),
compose(Vertices, G1, G2, Composition).
compose([Vertex|Vertices], G1, G2, [Vertex-[]|Composition]) :-
compose(Vertices, G1, G2, Composition).
compose1([V1|Vs1], [V2-N2|G2], SoFar, Comp) :-
compare(Rel, V1, V2), !,
compose1(Rel, V1, Vs1, V2, N2, G2, SoFar, Comp).
compose1(_, _, Comp, Comp).
compose1(<, _, Vs1, V2, N2, G2, SoFar, Comp) :- !,
compose1(Vs1, [V2-N2|G2], SoFar, Comp).
compose1(>, V1, Vs1, _, _, G2, SoFar, Comp) :- !,
compose1([V1|Vs1], G2, SoFar, Comp).
compose1(=, V1, Vs1, V1, N2, G2, SoFar, Comp) :-
ord_union(N2, SoFar, Next),
compose1(Vs1, G2, Next, Comp).
%% top_sort(+Graph, -Sorted) is semidet.
%% top_sort(+Graph, -Sorted, ?Tail) is semidet.
%
% Sorted is a topological sorted list of nodes in Graph. A
% toplogical sort is possible if the graph is connected and
% acyclic. In the example we show how topological sorting works
% for a linear graph:
%
% ==
% ?- top_sort([1-[2], 2-[3], 3-[]], L).
% L = [1, 2, 3]
% ==
%
% The predicate top_sort/3 is a difference list version of
% top_sort/2.
top_sort(Graph, Sorted) :-
vertices_and_zeros(Graph, Vertices, Counts0),
count_edges(Graph, Vertices, Counts0, Counts1),
select_zeros(Counts1, Vertices, Zeros),
top_sort(Zeros, Sorted, Graph, Vertices, Counts1).
top_sort(Graph, Sorted0, Sorted) :-
vertices_and_zeros(Graph, Vertices, Counts0),
count_edges(Graph, Vertices, Counts0, Counts1),
select_zeros(Counts1, Vertices, Zeros),
top_sort(Zeros, Sorted, Sorted0, Graph, Vertices, Counts1).
vertices_and_zeros([], [], []) :- !.
vertices_and_zeros([Vertex-_|Graph], [Vertex|Vertices], [0|Zeros]) :-
vertices_and_zeros(Graph, Vertices, Zeros).
count_edges([], _, Counts, Counts) :- !.
count_edges([_-Neibs|Graph], Vertices, Counts0, Counts2) :-
incr_list(Neibs, Vertices, Counts0, Counts1),
count_edges(Graph, Vertices, Counts1, Counts2).
incr_list([], _, Counts, Counts) :- !.
incr_list([V1|Neibs], [V2|Vertices], [M|Counts0], [N|Counts1]) :-
V1 == V2, !,
N is M+1,
incr_list(Neibs, Vertices, Counts0, Counts1).
incr_list(Neibs, [_|Vertices], [N|Counts0], [N|Counts1]) :-
incr_list(Neibs, Vertices, Counts0, Counts1).
select_zeros([], [], []) :- !.
select_zeros([0|Counts], [Vertex|Vertices], [Vertex|Zeros]) :- !,
select_zeros(Counts, Vertices, Zeros).
select_zeros([_|Counts], [_|Vertices], Zeros) :-
select_zeros(Counts, Vertices, Zeros).
top_sort([], [], Graph, _, Counts) :- !,
vertices_and_zeros(Graph, _, Counts).
top_sort([Zero|Zeros], [Zero|Sorted], Graph, Vertices, Counts1) :-
graph_memberchk(Zero-Neibs, Graph),
decr_list(Neibs, Vertices, Counts1, Counts2, Zeros, NewZeros),
top_sort(NewZeros, Sorted, Graph, Vertices, Counts2).
top_sort([], Sorted0, Sorted0, Graph, _, Counts) :- !,
vertices_and_zeros(Graph, _, Counts).
top_sort([Zero|Zeros], [Zero|Sorted], Sorted0, Graph, Vertices, Counts1) :-
graph_memberchk(Zero-Neibs, Graph),
decr_list(Neibs, Vertices, Counts1, Counts2, Zeros, NewZeros),
top_sort(NewZeros, Sorted, Sorted0, Graph, Vertices, Counts2).
graph_memberchk(Element1-Edges, [Element2-Edges2|_]) :-
Element1 == Element2, !,
Edges = Edges2.
graph_memberchk(Element, [_|Rest]) :-
graph_memberchk(Element, Rest).
decr_list([], _, Counts, Counts, Zeros, Zeros) :- !.
decr_list([V1|Neibs], [V2|Vertices], [1|Counts1], [0|Counts2], Zi, Zo) :-
V1 == V2, !,
decr_list(Neibs, Vertices, Counts1, Counts2, [V2|Zi], Zo).
decr_list([V1|Neibs], [V2|Vertices], [N|Counts1], [M|Counts2], Zi, Zo) :-
V1 == V2, !,
M is N-1,
decr_list(Neibs, Vertices, Counts1, Counts2, Zi, Zo).
decr_list(Neibs, [_|Vertices], [N|Counts1], [N|Counts2], Zi, Zo) :-
decr_list(Neibs, Vertices, Counts1, Counts2, Zi, Zo).
%% neighbors(+Vertex, +Graph, -Neigbours) is det.
%% neighbours(+Vertex, +Graph, -Neigbours) is det.
%
% Neigbours is a sorted list of the neighbours of Vertex in Graph.
neighbors(Vertex, Graph, Neig) :-
neighbours(Vertex, Graph, Neig).
neighbours(V,[V0-Neig|_],Neig) :-
V == V0, !.
neighbours(V,[_|G],Neig) :-
neighbours(V,G,Neig).
%
% Simple two-step algorithm. You could be smarter, I suppose.
%
complement(G, NG) :-
vertices(G,Vs),
complement(G,Vs,NG).
complement([], _, []).
complement([V-Ns|G], Vs, [V-INs|NG]) :-
ord_add_element(Ns,V,Ns1),
ord_subtract(Vs,Ns1,INs),
complement(G, Vs, NG).
reachable(N, G, Rs) :-
reachable([N], G, [N], Rs).
reachable([], _, Rs, Rs).
reachable([N|Ns], G, Rs0, RsF) :-
neighbours(N, G, Nei),
ord_union(Rs0, Nei, Rs1, D),
append(Ns, D, Nsi),
reachable(Nsi, G, Rs1, RsF).
|