/usr/share/doc/xmaxima/intro.html is in xmaxima 5.24.0-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 | <html>
<br>
<img src=maxima-icon.gif align=center border=0>
<h1 align=center>Maxima Primer</h1>
<body BGCOLOR=#ffffff TEXT=#000000 LINK=#244C21>
<p>Maxima is a computer program for doing mathematics calculations,
symbolic manipulations, numerical computations and graphics.
Procedures can be programmed and then run by Maxima to
do complex tasks. Much of the syntax for other languages such as
Maple was copied from Maxima.</p>
<h2>Project and documentation links</h2>
<p>The <em>Help</em> menu in Xmaxima gives you access to the following documents:</p>
<ul>
<li>Maxima reference manual</li>
<li>Xmaxima reference manual</li>
<li>Maxima home page, http://maxima.sourceforge.net</li>
<li>Maxima project page, http://sourceforge.net/projects/maxima</li>
</ul>
<h2>Getting started</h2>
<p>To do basic operations, a line is typed, followed by a
semicolon, and then entered. This can be done in the window above.
Alternately you may edit the blue portions in this buffer, and click
on them, to see the result evaluated above and/or inserted in
this window, depending on what was specified in the html source for this
file.
For example clicking below
<br>
<ul><li>
<eval program=maxima doinsert=0
>integrate(1/(1+x^3),x)</eval>
</ul>
You may double click the above formula, and the integral will be substituted into the Maxima evaluation in the other window.
There are <a href="examples.html">examples</a> which you may also look at
<a href="plotmaxima.html">3d plotting </a>
If you wish to have your plots appear in a separate window, go to the
preferences button under file, and select separate.
You may also go to the <http://www.ma.utexas.edu/users/wfs/netmath/netmath.html>
netmath page </a> to see some more capabilities.
<p>Here are some examples from basic calculus. To have Maxima
evaluate the derivative of the function below, click on this line.
<ul><li>
<eval program=maxima doinsert=1> diff(cos(x),x);</eval> returns <result modified>result</result>.
</ul>
<p>Maxima can calculate <b>indefinite integrals</b>.
<ul>
<li><eval program=maxima doinsert=1> integrate( x/(1+x^3),x );</eval> returns <result modified>result</result>
<li>...and definite integrals with respect to x from 0 to 1.
<br><eval program=maxima doinsert=1> integrate( 1/(1+x^2), x, 0, 1 ); </eval> returns <result modified>result</result>
<li><eval program=maxima doinsert=0> plot2d(sin(x),[x,0,2*%pi])</eval>
<li><eval program=maxima doinsert=0> plot3d(x^2-y^2,[x,-2,2],[y,-2,2],[grid,12,12])</eval>
</ul>
<ul>
<li>Also, limits can be evaluated as x goes to infinity:
<br><eval program=maxima doinsert=1> limit( (2*x+1)/(3*x+2), x,inf );</eval> produces <result modified>result</result>
<li><eval program=maxima doinsert=1> limit( sin(3*x)/x, x,0);</eval> evaluates to <result modified>result</result>
</ul>
<p>Maxima can perform calculations to arbitrary precision. The
following example computes Pi to one hundred decimal places.
<ul><li><eval program=maxima doinsert=1>block([fpprec:100],bfloat(%pi))</eval> yields <result modified>result</result>
if we took sin of this we would get 0 to to within 100 decimal places..
<li><eval program=maxima doinsert=1>block([fpprec:100],sin(bfloat(%pi)))</eval> gives <result modified>result</result>
<p>Maxima can solve equations. Click this line to solve the system.
<li><eval program=maxima doinsert=1> solve([x+y+z=5,3*x-5*y=10,y+2*z=3],[x,y,z]);</eval> returns <result modified>result</result>
<li><eval program=maxima doinsert=1> solve(x^2-5*x+6 =0,x);</eval> produces <result modified>result</result>
</ul>
<h5>Linear Algebra</h5>
<p>
For example, matrices can be
entered and manipulated. Click these two lines.
<ul>
<li><eval program=maxima doinsert=1> A:matrix([1,2],[3,4]);</eval> gives <result modified>result</result>
<li><eval program=maxima doinsert=1> B:matrix([1,1],[1,1]);</eval> gives <result modified>result</result>
<p>The matrices can then be added, for example:
<li><eval program=maxima doinsert=1> A + B ;</eval> returns the sum <result modified>result</result>
...and multiplied.
<li><eval program=maxima doinsert=1> A . B ;</eval> gives the product<result modified>result</result>
<li><eval program=maxima doinsert=1> A^^-1</eval> evaluates to the inverse: <result modified>result</result>
<li><eval program=maxima doinsert=1>determinant(matrix([a,b],[c,d]))</eval> gives <result modified>result</result>
<li><eval program=maxima doinsert=0
> Fib[0] : 0;
Fib[1] : 1;
Fib[n] := Fib[n-1] + Fib[n-2];
</eval>
</ul>
Then the procedure can be called. <eval program=maxima doinsert=1> Fib[8];</eval> gives <result>21</result>
<p>Maxima can solve ordinary differential equations analytically and numerically. Click the
following line for an example of an analytic solution.
<ul><li>
<eval program=maxima doinsert=1>ode2('diff(y,x)+3*x*y = sin(x)/x, y,x)</eval> returns <result modified>result</result>
<li><eval program=maxima doinsert=1>ode2('diff(y,x) -y = 1, y,x)</eval> returns <result modified>result</result>
<li>
<eval program=maxima doinsert=1> ode2('diff(y,x,2) - y = 1, y,x)</eval> gives <result modified>result</result>
</ul>
<h4 align=left>Defining a Function</h4>
<p>The standard form is
<ul>
<li>
<eval program=maxima doinsert=1>f(3)</eval> gives <result>f(3)</result>
<li>
<eval program=maxima doinsert=0>f(x):=x+2</eval>
<li>now <eval program=maxima doinsert=1>f(3)</eval> gives <result>5</result>
</ul>
<p>Local variables:
<p>The <b>block</b> construct lets us introduce local variables, and also lets
us have a sequence of statements:
<pre>block([v1:val1,v2:val2,v3,v4:val4],stmt1,stmt2,... stmtn)</pre>
the value is the value of the last statement. During the execution the
variables v1,v2,... will have the values indicated. If no value is given
for v3 then it will just evaluate to itself:
<p>Thus if we set v3 globally to be 7,
<ul><li><eval program=maxima doinsert=1>v3:7</eval> produces <result>7</result>
<li> , then <eval program=maxima doinsert=1>block([v3],v3)</eval> gives <result>v3</result>.
</ul>
An example in a function:
<ul>
<li><eval program=maxima doinsert=0>g(x):=block([u:x+3,w], u:u^2, w:(y+2)^2, u+w);</eval>
<li><eval program=maxima doinsert=1>g(2)</eval> yields <result><pre>
2
(y + 2) + 25
</pre></result>
Using <b>if</b>:
<li><eval program=maxima doinsert=0>h(x):=block([u:x+3,w], u:u^2,
if (u<3) then w:(y+2)^2 else w:(y+2)^2+1,
u+w);
</eval>
<li><eval program=maxima doinsert=1>[h(3),h(2)]</eval> gives <result><pre>
2 2
[(y + 2) + 37, (y + 2) + 26]
</pre></result>
</ul>
Using for:
<ul>
<li><eval program=maxima doinsert=1> block([w:0], for i:1 thru 10 do (w:w+i^2))</eval> gives <result>done</result>
</ul>
<p>a for loop always returns 'done as its value. To get the value you want
add the w.
<ul>
<li><eval program=maxima doinsert=1> block([w:0], for i:1 thru 10 do (w:w+i^2),w)</eval> gives <result>385</result>
</ul>
The function <b>describe(</b><i>s</i><b>)</b>
returns documentation on all functions whose names include the string <i>s</i>.
For example, if the string is "log",
<br><eval program=maxima doinsert=1>describe("log");all</eval> prints <result modified>this output</result>
|