/usr/share/Yap/clpq/bv_q.pl is in yap 5.1.3-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 | /*
Part of CLP(Q) (Constraint Logic Programming over Rationals)
Author: Leslie De Koninck
E-mail: Leslie.DeKoninck@cs.kuleuven.be
WWW: http://www.swi-prolog.org
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
Copyright (C): 2006, K.U. Leuven and
1992-1995, Austrian Research Institute for
Artificial Intelligence (OFAI),
Vienna, Austria
This software is based on CLP(Q,R) by Christian Holzbaur for SICStus
Prolog and distributed under the license details below with permission from
all mentioned authors.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(bv_q,
[
allvars/2,
backsubst/3,
backsubst_delta/4,
basis_add/2,
dec_step/2,
deref/2,
deref_var/2,
detach_bounds/1,
detach_bounds_vlv/5,
determine_active_dec/1,
determine_active_inc/1,
dump_var/6,
dump_nz/5,
export_binding/1,
get_or_add_class/2,
inc_step/2,
intro_at/3,
iterate_dec/2,
lb/3,
pivot_a/4,
pivot/5,
rcbl_status/6,
reconsider/1,
same_class/2,
solve/1,
solve_ord_x/3,
ub/3,
unconstrained/4,
var_intern/2,
var_intern/3,
var_with_def_assign/2,
var_with_def_intern/4,
maximize/1,
minimize/1,
sup/2,
sup/4,
inf/2,
inf/4,
'solve_<'/1,
'solve_=<'/1,
'solve_=\\='/1,
log_deref/4
]).
:- use_module(store_q,
[
add_linear_11/3,
add_linear_f1/4,
add_linear_ff/5,
delete_factor/4,
indep/2,
isolate/3,
nf2sum/3,
nf_rhs_x/4,
nf_substitute/4,
normalize_scalar/2,
mult_hom/3,
mult_linear_factor/3
]).
:- use_module('../clpqr/class',
[
class_allvars/2,
class_basis/2,
class_basis_add/3,
class_basis_drop/2,
class_basis_pivot/3,
class_new/5
]).
:- use_module(ineq_q,
[
ineq/4
]).
:- use_module(nf_q,
[
{}/1,
split/3,
wait_linear/3
]).
:- use_module(bb_q,
[
vertex_value/2
]).
:- use_module(library(ordsets),
[
ord_add_element/3
]).
% For the rhs maint. the following events are important:
%
% -) introduction of an indep var at active bound B
% -) narrowing of active bound
% -) swap active bound
% -) pivot
%
% a variables bound (L/U) can have the states:
%
% -) t_none no bounds
% -) t_l inactive lower bound
% -) t_u inactive upper bound
% -) t_L active lower bound
% -) t_U active upper bound
% -) t_lu inactive lower and upper bound
% -) t_Lu active lower bound and inactive upper bound
% -) t_lU inactive lower bound and active upper bound
% ----------------------------------- deref -----------------------------------
%
% deref(Lin,Lind)
%
% Makes a linear equation of the form [v(I,[])|H] into a solvable linear
% equation.
% If the variables are new, they are initialized with the linear equation X=X.
deref(Lin,Lind) :-
split(Lin,H,I),
normalize_scalar(I,Nonvar),
length(H,Len),
log_deref(Len,H,[],Restd),
add_linear_11(Nonvar,Restd,Lind).
% log_deref(Len,[Vs|VsTail],VsTail,Res)
%
% Logarithmically converts a linear equation in normal form ([v(_,_)|_]) into a
% linear equation in solver form ([I,R,K*X|_]). Res contains the result, Len is
% the length of the part to convert and [Vs|VsTail] is a difference list
% containing the equation in normal form.
log_deref(0,Vs,Vs,Lin) :-
!,
Lin = [0,0].
log_deref(1,[v(K,[X^1])|Vs],Vs,Lin) :-
!,
deref_var(X,Lx),
mult_linear_factor(Lx,K,Lin).
log_deref(2,[v(Kx,[X^1]),v(Ky,[Y^1])|Vs],Vs,Lin) :-
!,
deref_var(X,Lx),
deref_var(Y,Ly),
add_linear_ff(Lx,Kx,Ly,Ky,Lin).
log_deref(N,V0,V2,Lin) :-
P is N >> 1,
Q is N - P,
log_deref(P,V0,V1,Lp),
log_deref(Q,V1,V2,Lq),
add_linear_11(Lp,Lq,Lin).
% deref_var(X,Lin)
%
% Returns the equation of variable X. If X is a new variable, a new equation
% X = X is made.
deref_var(X,Lin) :-
( get_attr(X,itf,Att)
-> ( \+ arg(1,Att,clpq)
-> throw(error(permission_error('mix CLP(Q) variables with',
'CLP(R) variables:',X),context(_)))
; arg(4,Att,lin(Lin))
-> true
; setarg(2,Att,type(t_none)),
setarg(3,Att,strictness(0)),
Lin = [0,0,l(X*1,Ord)],
setarg(4,Att,lin(Lin)),
setarg(5,Att,order(Ord))
)
; Lin = [0,0,l(X*1,Ord)],
put_attr(X,itf,t(clpq,type(t_none),strictness(0),
lin(Lin),order(Ord),n,n,n,n,n,n))
).
% TODO
%
%
var_with_def_assign(Var,Lin) :-
Lin = [I,_|Hom],
( Hom = []
-> % X=k
Var = I
; Hom = [l(V*K,_)|Cs]
-> ( Cs = [],
K =:= 1,
I =:= 0
-> % X=Y
Var = V
; % general case
var_with_def_intern(t_none,Var,Lin,0)
)
).
% var_with_def_intern(Type,Var,Lin,Strictness)
%
% Makes Lin the linear equation of new variable Var, makes all variables of
% Lin, and Var of the same class and bounds Var by type(Type) and
% strictness(Strictness)
var_with_def_intern(Type,Var,Lin,Strict) :-
put_attr(Var,itf,t(clpq,type(Type),strictness(Strict),lin(Lin),
order(_),n,n,n,n,n,n)), % check uses
Lin = [_,_|Hom],
get_or_add_class(Var,Class),
same_class(Hom,Class).
% TODO
%
%
var_intern(Type,Var,Strict) :-
put_attr(Var,itf,t(clpq,type(Type),strictness(Strict),
lin([0,0,l(Var*1,Ord)]),order(Ord),n,n,n,n,n,n)),
get_or_add_class(Var,_Class).
% TODO
%
%
var_intern(Var,Class) :- % for ordered/1 but otherwise free vars
get_attr(Var,itf,Att),
arg(2,Att,type(_)),
arg(4,Att,lin(_)),
!,
get_or_add_class(Var,Class).
var_intern(Var,Class) :-
put_attr(Var,itf,t(clpq,type(t_none),strictness(0),
lin([0,0,l(Var*1,Ord)]),order(Ord),n,n,n,n,n,n)),
get_or_add_class(Var,Class).
% -----------------------------------------------------------------------------
% export_binding(Lst)
%
% Binds variables X to Y where Lst contains elements of the form [X-Y].
export_binding([]).
export_binding([X-Y|Gs]) :-
Y = X,
export_binding(Gs).
% 'solve_='(Nf)
%
% Solves linear equation Nf = 0 where Nf is in normal form.
'solve_='(Nf) :-
deref(Nf,Nfd), % dereferences and turns Nf into solvable form Nfd
solve(Nfd).
% 'solve_=\\='(Nf)
%
% Solves linear inequality Nf =\= 0 where Nf is in normal form.
'solve_=\\='(Nf) :-
deref(Nf,Lind), % dereferences and turns Nf into solvable form Lind
Lind = [Inhom,_|Hom],
( Hom = []
-> Inhom =\= 0
; % make new variable Nz = Lind
var_with_def_intern(t_none,Nz,Lind,0),
% make Nz nonzero
get_attr(Nz,itf,Att),
setarg(8,Att,nonzero)
).
% 'solve_<'(Nf)
%
% Solves linear inequality Nf < 0 where Nf is in normal form.
'solve_<'(Nf) :-
split(Nf,H,I),
ineq(H,I,Nf,strict).
% 'solve_=<'(Nf)
%
% Solves linear inequality Nf =< 0 where Nf is in normal form.
'solve_=<'(Nf) :-
split(Nf,H,I),
ineq(H,I,Nf,nonstrict).
maximize(Term) :-
minimize(-Term).
%
% This is NOT coded as minimize(Expr) :- inf(Expr,Expr).
%
% because the new version of inf/2 only visits
% the vertex where the infimum is assumed and returns
% to the 'current' vertex via backtracking.
% The rationale behind this construction is to eliminate
% all garbage in the solver data structures produced by
% the pivots on the way to the extremal point caused by
% {inf,sup}/{2,4}.
%
% If we are after the infimum/supremum for minimizing/maximizing,
% this strategy may have adverse effects on performance because
% the simplex algorithm is forced to re-discover the
% extremal vertex through the equation {Inf =:= Expr}.
%
% Thus the extra code for {minimize,maximize}/1.
%
% In case someone comes up with an example where
%
% inf(Expr,Expr)
%
% outperforms the provided formulation for minimize - so be it.
% Both forms are available to the user.
%
minimize(Term) :-
wait_linear(Term,Nf,minimize_lin(Nf)).
% minimize_lin(Lin)
%
% Minimizes the linear expression Lin. It does so by making a new
% variable Dep and minimizes its value.
minimize_lin(Lin) :-
deref(Lin,Lind),
var_with_def_intern(t_none,Dep,Lind,0),
determine_active_dec(Lind),
iterate_dec(Dep,Inf),
{ Dep =:= Inf }.
sup(Expression,Sup) :-
sup(Expression,Sup,[],[]).
sup(Expression,Sup,Vector,Vertex) :-
inf(-Expression,-Sup,Vector,Vertex).
inf(Expression,Inf) :-
inf(Expression,Inf,[],[]).
inf(Expression,Inf,Vector,Vertex) :-
% wait until Expression becomes linear, Nf contains linear Expression
% in normal form
wait_linear(Expression,Nf,inf_lin(Nf,Inf,Vector,Vertex)).
inf_lin(Lin,_,Vector,_) :-
deref(Lin,Lind),
var_with_def_intern(t_none,Dep,Lind,0), % make new variable Dep = Lind
determine_active_dec(Lind), % minimizes Lind
iterate_dec(Dep,Inf),
vertex_value(Vector,Values),
nb_setval(inf,[Inf|Values]),
fail.
inf_lin(_,Infimum,_,Vertex) :-
catch(nb_getval(inf,L),_,fail),
nb_delete(inf),
assign([Infimum|Vertex],L).
% assign(L1,L2)
%
% The elements of L1 are pairwise assigned to the elements of L2
% by means of asserting {X =:= Y} where X is an element of L1 and Y
% is the corresponding element of L2.
assign([],[]).
assign([X|Xs],[Y|Ys]) :-
{X =:= Y}, % more defensive/expressive than X=Y
assign(Xs,Ys).
% --------------------------------- optimization ------------------------------
%
% The _sn(S) =< 0 row might be temporarily infeasible.
% We use reconsider/1 to fix this.
%
% s(S) e [_,0] = d +xi ... -xj, Rhs > 0 so we want to decrease s(S)
%
% positive xi would have to be moved towards their lower bound,
% negative xj would have to be moved towards their upper bound,
%
% the row s(S) does not limit the lower bound of xi
% the row s(S) does not limit the upper bound of xj
%
% a) if some other row R is limiting xk, we pivot(R,xk),
% s(S) will decrease and get more feasible until (b)
% b) if there is no limiting row for some xi: we pivot(s(S),xi)
% xj: we pivot(s(S),xj)
% which cures the infeasibility in one step
%
% iterate_dec(OptVar,Opt)
%
% Decreases the bound on the variables of the linear equation of OptVar as much
% as possible and returns the resulting optimal bound in Opt. Fails if for some
% variable, a status of unlimited is found.
iterate_dec(OptVar,Opt) :-
get_attr(OptVar,itf,Att),
arg(4,Att,lin([I,R|H])),
dec_step(H,Status),
( Status = applied
-> iterate_dec(OptVar,Opt)
; Status = optimum,
Opt is R + I
).
% iterate_inc(OptVar,Opt)
%
% Increases the bound on the variables of the linear equation of OptVar as much
% as possible and returns the resulting optimal bound in Opt. Fails if for some
% variable, a status of unlimited is found.
iterate_inc(OptVar,Opt) :-
get_attr(OptVar,itf,Att),
arg(4,Att,lin([I,R|H])),
inc_step(H,Status),
( Status = applied
-> iterate_inc(OptVar,Opt)
; Status = optimum,
Opt is R + I
).
%
% Status = {optimum,unlimited(Indep,DepT),applied}
% If Status = optimum, the tables have not been changed at all.
% Searches left to right, does not try to find the 'best' pivot
% Therefore we might discover unboundedness only after a few pivots
%
dec_step_cont([],optimum,Cont,Cont).
dec_step_cont([l(V*K,OrdV)|Vs],Status,ContIn,ContOut) :-
get_attr(V,itf,Att),
arg(2,Att,type(W)),
arg(6,Att,class(Class)),
( dec_step_2_cont(W,l(V*K,OrdV),Class,Status,ContIn,ContOut)
-> true
; dec_step_cont(Vs,Status,ContIn,ContOut)
).
inc_step_cont([],optimum,Cont,Cont).
inc_step_cont([l(V*K,OrdV)|Vs],Status,ContIn,ContOut) :-
get_attr(V,itf,Att),
arg(2,Att,type(W)),
arg(6,Att,class(Class)),
( inc_step_2_cont(W,l(V*K,OrdV),Class,Status,ContIn,ContOut)
-> true
; inc_step_cont(Vs,Status,ContIn,ContOut)
).
dec_step_2_cont(t_U(U),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
K > 0,
( lb(Class,OrdV,Vub-Vb-_)
-> % found a lower bound
Status = applied,
pivot_a(Vub,V,Vb,t_u(U)),
replace_in_cont(ContIn,Vub,V,ContOut)
; Status = unlimited(V,t_u(U)),
ContIn = ContOut
).
dec_step_2_cont(t_lU(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
K > 0,
Init is L - U,
class_basis(Class,Deps),
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)),
replace_in_cont(ContIn,Vub,V,ContOut).
dec_step_2_cont(t_L(L),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
K < 0,
( ub(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_l(L)),
replace_in_cont(ContIn,Vub,V,ContOut)
; Status = unlimited(V,t_l(L)),
ContIn = ContOut
).
dec_step_2_cont(t_Lu(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
K < 0,
Init is U - L,
class_basis(Class,Deps),
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)),
replace_in_cont(ContIn,Vub,V,ContOut).
dec_step_2_cont(t_none,l(V*_,_),_,unlimited(V,t_none),Cont,Cont).
inc_step_2_cont(t_U(U),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
K < 0,
( lb(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_u(U)),
replace_in_cont(ContIn,Vub,V,ContOut)
; Status = unlimited(V,t_u(U)),
ContIn = ContOut
).
inc_step_2_cont(t_lU(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
K < 0,
Init is L - U,
class_basis(Class,Deps),
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)),
replace_in_cont(ContIn,Vub,V,ContOut).
inc_step_2_cont(t_L(L),l(V*K,OrdV),Class,Status,ContIn,ContOut) :-
K > 0,
( ub(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_l(L)),
replace_in_cont(ContIn,Vub,V,ContOut)
; Status = unlimited(V,t_l(L)),
ContIn = ContOut
).
inc_step_2_cont(t_Lu(L,U),l(V*K,OrdV),Class,applied,ContIn,ContOut) :-
K > 0,
Init is U - L,
class_basis(Class,Deps),
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)),
replace_in_cont(ContIn,Vub,V,ContOut).
inc_step_2_cont(t_none,l(V*_,_),_,unlimited(V,t_none),Cont,Cont).
replace_in_cont([],_,_,[]).
replace_in_cont([H1|T1],X,Y,[H2|T2]) :-
( H1 == X
-> H2 = Y,
T1 = T2
; H2 = H1,
replace_in_cont(T1,X,Y,T2)
).
dec_step([],optimum).
dec_step([l(V*K,OrdV)|Vs],Status) :-
get_attr(V,itf,Att),
arg(2,Att,type(W)),
arg(6,Att,class(Class)),
( dec_step_2(W,l(V*K,OrdV),Class,Status)
-> true
; dec_step(Vs,Status)
).
dec_step_2(t_U(U),l(V*K,OrdV),Class,Status) :-
K > 0,
( lb(Class,OrdV,Vub-Vb-_)
-> % found a lower bound
Status = applied,
pivot_a(Vub,V,Vb,t_u(U))
; Status = unlimited(V,t_u(U))
).
dec_step_2(t_lU(L,U),l(V*K,OrdV),Class,applied) :-
K > 0,
Init is L - U,
class_basis(Class,Deps),
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)).
dec_step_2(t_L(L),l(V*K,OrdV),Class,Status) :-
K < 0,
( ub(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_l(L))
; Status = unlimited(V,t_l(L))
).
dec_step_2(t_Lu(L,U),l(V*K,OrdV),Class,applied) :-
K < 0,
Init is U - L,
class_basis(Class,Deps),
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)).
dec_step_2(t_none,l(V*_,_),_,unlimited(V,t_none)).
inc_step([],optimum). % if status has not been set yet: no changes
inc_step([l(V*K,OrdV)|Vs],Status) :-
get_attr(V,itf,Att),
arg(2,Att,type(W)),
arg(6,Att,class(Class)),
( inc_step_2(W,l(V*K,OrdV),Class,Status)
-> true
; inc_step(Vs,Status)
).
inc_step_2(t_U(U),l(V*K,OrdV),Class,Status) :-
K < 0,
( lb(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_u(U))
; Status = unlimited(V,t_u(U))
).
inc_step_2(t_lU(L,U),l(V*K,OrdV),Class,applied) :-
K < 0,
Init is L - U,
class_basis(Class,Deps),
lb(Deps,OrdV,V-t_Lu(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)).
inc_step_2(t_L(L),l(V*K,OrdV),Class,Status) :-
K > 0,
( ub(Class,OrdV,Vub-Vb-_)
-> Status = applied,
pivot_a(Vub,V,Vb,t_l(L))
; Status = unlimited(V,t_l(L))
).
inc_step_2(t_Lu(L,U),l(V*K,OrdV),Class,applied) :-
K > 0,
Init is U - L,
class_basis(Class,Deps),
ub(Deps,OrdV,V-t_lU(L,U)-Init,Vub-Vb-_),
pivot_b(Vub,V,Vb,t_lu(L,U)).
inc_step_2(t_none,l(V*_,_),_,unlimited(V,t_none)).
% ------------------------- find the most constraining row --------------------
%
% The code for the lower and the upper bound are dual versions of each other.
% The only difference is in the orientation of the comparisons.
% Indeps are ruled out by their types.
% If there is no bound, this fails.
%
% *** The actual lb and ub on an indep variable X are [lu]b + b(X), where b(X)
% is the value of the active bound.
%
% Nota bene: We must NOT consider infeasible rows as candidates to
% leave the basis!
%
% ub(Class,OrdX,Ub)
%
% See lb/3: this is similar
ub(Class,OrdX,Ub) :-
class_basis(Class,Deps),
ub_first(Deps,OrdX,Ub).
% ub_first(Deps,X,Dep-W-Ub)
%
% Finds the tightest upperbound for variable X from the linear equations of
% basis variables Deps, and puts the resulting bound in Ub. Dep is the basis
% variable that generates the bound, and W is bound of that variable that has
% to be activated to achieve this.
ub_first([Dep|Deps],OrdX,Tightest) :-
( get_attr(Dep,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
ub_inner(Type,OrdX,Lin,W,Ub),
Ub >= 0
-> ub(Deps,OrdX,Dep-W-Ub,Tightest)
; ub_first(Deps,OrdX,Tightest)
).
% ub(Deps,OrdX,TightestIn,TightestOut)
%
% See lb/4: this is similar
ub([],_,T0,T0).
ub([Dep|Deps],OrdX,T0,T1) :-
( get_attr(Dep,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
ub_inner(Type,OrdX,Lin,W,Ub),
T0 = _-Ubb,
Ub < Ubb,
Ub >= 0
-> ub(Deps,OrdX,Dep-W-Ub,T1) % tighter bound, use new bound
; ub(Deps,OrdX,T0,T1) % no tighter bound, keep current one
).
% ub_inner(Type,OrdX,Lin,W,Ub)
%
% See lb_inner/5: this is similar
ub_inner(t_l(L),OrdX,Lin,t_L(L),Ub) :-
nf_rhs_x(Lin,OrdX,Rhs,K),
K < 0,
Ub is (L - Rhs) rdiv K.
ub_inner(t_u(U),OrdX,Lin,t_U(U),Ub) :-
nf_rhs_x(Lin,OrdX,Rhs,K),
K > 0,
Ub is (U - Rhs) rdiv K.
ub_inner(t_lu(L,U),OrdX,Lin,W,Ub) :-
nf_rhs_x(Lin,OrdX,Rhs,K),
( K < 0 % use lowerbound
-> W = t_Lu(L,U),
Ub = (L - Rhs) rdiv K
; K > 0 % use upperbound
-> W = t_lU(L,U),
Ub = (U - Rhs) rdiv K
).
% lb(Class,OrdX,Lb)
%
% Returns in Lb how much we can lower the upperbound of X without violating
% a bound of the basisvariables.
% Lb has the form Dep-W-Lb with Dep the variable whose bound is violated when
% lowering the bound for X more, W the actual bound that has to be activated
% and Lb the amount that the upperbound can be lowered.
% X has ordering OrdX and class Class.
lb(Class,OrdX,Lb) :-
class_basis(Class,Deps),
lb_first(Deps,OrdX,Lb).
% lb_first(Deps,OrdX,Tightest)
%
% Returns in Tightest how much we can lower the upperbound of X without
% violating a bound of Deps.
% Tightest has the form Dep-W-Lb with Dep the variable whose bound is violated
% when lowering the bound for X more, W the actual bound that has to be
% activated and Lb the amount that the upperbound can be lowered. X has
% ordering attribute OrdX.
lb_first([Dep|Deps],OrdX,Tightest) :-
( get_attr(Dep,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
lb_inner(Type,OrdX,Lin,W,Lb),
Lb =< 0 % Lb > 0 means a violated bound
-> lb(Deps,OrdX,Dep-W-Lb,Tightest)
; lb_first(Deps,OrdX,Tightest)
).
% lb(Deps,OrdX,TightestIn,TightestOut)
%
% See lb_first/3: this one does the same thing, but is used for the steps after
% the first one and remembers the tightest bound so far.
lb([],_,T0,T0).
lb([Dep|Deps],OrdX,T0,T1) :-
( get_attr(Dep,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
lb_inner(Type,OrdX,Lin,W,Lb),
T0 = _-Lbb,
Lb > Lbb, % choose the least lowering, others might violate
% bounds
Lb =< 0 % violation of a bound (without lowering)
-> lb(Deps,OrdX,Dep-W-Lb,T1)
; lb(Deps,OrdX,T0,T1)
).
% lb_inner(Type,X,Lin,W,Lb)
%
% Returns in Lb how much lower we can make X without violating a bound
% by using the linear equation Lin of basis variable B which has type
% Type and which has to activate a bound (type W) to do so.
%
% E.g. when B has a lowerbound L, then L should always be smaller than I + R.
% So a lowerbound of X (which has scalar K in Lin), could be at most
% (L-(I+R))/K lower than its upperbound (if K is positive).
% Also note that Lb should always be smaller than 0, otherwise the row is
% not feasible.
% X has ordering attribute OrdX.
lb_inner(t_l(L),OrdX,Lin,t_L(L),Lb) :-
nf_rhs_x(Lin,OrdX,Rhs,K), % if linear equation Lin contains the term
% X*K, Rhs is the right hand side of that
% equation
K > 0,
Lb is (L - Rhs) rdiv K.
lb_inner(t_u(U),OrdX,Lin,t_U(U),Lb) :-
nf_rhs_x(Lin,OrdX,Rhs,K),
K < 0, % K < 0
Lb is (U - Rhs) rdiv K.
lb_inner(t_lu(L,U),OrdX,Lin,W,Lb) :-
nf_rhs_x(Lin,OrdX,Rhs,K),
( K < 0
-> W = t_lU(L,U),
Lb is (U - Rhs) rdiv K
; K > 0
-> W = t_Lu(L,U),
Lb is (L - Rhs) rdiv K
).
% ---------------------------------- equations --------------------------------
%
% backsubstitution will not make the system infeasible, if the bounds on the
% indep vars are obeyed, but some implied values might pop up in rows where X
% occurs
% -) special case X=Y during bs -> get rid of dependend var(s), alias
%
solve(Lin) :-
Lin = [I,_|H],
solve(H,Lin,I,Bindings,[]),
export_binding(Bindings).
% solve(Hom,Lin,I,Bind,BindT)
%
% Solves a linear equation Lin = [I,_|H] = 0 and exports the generated bindings
solve([],_,I,Bind0,Bind0) :-
!,
I =:= 0.
solve(H,Lin,_,Bind0,BindT) :-
sd(H,[],ClassesUniq,9-9-0,Category-Selected-_,NV,NVT),
get_attr(Selected,itf,Att),
arg(5,Att,order(Ord)),
isolate(Ord,Lin,Lin1), % Lin = 0 => Selected = Lin1
( Category = 1 % classless variable, no bounds
-> setarg(4,Att,lin(Lin1)),
Lin1 = [Inhom,_|Hom],
bs_collect_binding(Hom,Selected,Inhom,Bind0,BindT),
eq_classes(NV,NVT,ClassesUniq)
; Category = 2 % class variable, no bounds
-> arg(6,Att,class(NewC)),
class_allvars(NewC,Deps),
( ClassesUniq = [_] % rank increasing
-> bs_collect_bindings(Deps,Ord,Lin1,Bind0,BindT)
; Bind0 = BindT,
bs(Deps,Ord,Lin1)
),
eq_classes(NV,NVT,ClassesUniq)
; Category = 3 % classless variable, all variables in Lin and
% Selected are bounded
-> arg(2,Att,type(Type)),
setarg(4,Att,lin(Lin1)),
deactivate_bound(Type,Selected),
eq_classes(NV,NVT,ClassesUniq),
basis_add(Selected,Basis),
undet_active(Lin1), % we can't tell which bound will likely be a
% problem at this point
Lin1 = [Inhom,_|Hom],
bs_collect_binding(Hom,Selected,Inhom,Bind0,Bind1), % only if
% Hom = []
rcbl(Basis,Bind1,BindT) % reconsider entire basis
; Category = 4 % class variable, all variables in Lin and Selected
% are bounded
-> arg(2,Att,type(Type)),
arg(6,Att,class(NewC)),
class_allvars(NewC,Deps),
( ClassesUniq = [_] % rank increasing
-> bs_collect_bindings(Deps,Ord,Lin1,Bind0,Bind1)
; Bind0 = Bind1,
bs(Deps,Ord,Lin1)
),
deactivate_bound(Type,Selected),
basis_add(Selected,Basis),
% eq_classes( NV, NVT, ClassesUniq),
% 4 -> var(NV)
equate(ClassesUniq,_),
undet_active(Lin1),
rcbl(Basis,Bind1,BindT)
).
%
% Much like solve, but we solve for a particular variable of type t_none
%
% solve_x(H,Lin,I,X,[Bind|BindT],BindT)
%
%
solve_x(Lin,X) :-
Lin = [I,_|H],
solve_x(H,Lin,I,X,Bindings,[]),
export_binding(Bindings).
solve_x([],_,I,_,Bind0,Bind0) :-
!,
I =:= 0.
solve_x(H,Lin,_,X,Bind0,BindT) :-
sd(H,[],ClassesUniq,9-9-0,_,NV,NVT),
get_attr(X,itf,Att),
arg(5,Att,order(OrdX)),
isolate(OrdX,Lin,Lin1),
( arg(6,Att,class(NewC))
-> class_allvars(NewC,Deps),
( ClassesUniq = [_] % rank increasing
-> bs_collect_bindings(Deps,OrdX,Lin1,Bind0,BindT)
; Bind0 = BindT,
bs(Deps,OrdX,Lin1)
),
eq_classes(NV,NVT,ClassesUniq)
; setarg(4,Att,lin(Lin1)),
Lin1 = [Inhom,_|Hom],
bs_collect_binding(Hom,X,Inhom,Bind0,BindT),
eq_classes(NV,NVT,ClassesUniq)
).
% solve_ord_x(Lin,OrdX,ClassX)
%
% Does the same thing as solve_x/2, but has the ordering of X and its class as
% input. This also means that X has a class which is not sure in solve_x/2.
solve_ord_x(Lin,OrdX,ClassX) :-
Lin = [I,_|H],
solve_ord_x(H,Lin,I,OrdX,ClassX,Bindings,[]),
export_binding(Bindings).
solve_ord_x([],_,I,_,_,Bind0,Bind0) :-
I =:= 0.
solve_ord_x([_|_],Lin,_,OrdX,ClassX,Bind0,BindT) :-
isolate(OrdX,Lin,Lin1),
Lin1 = [_,_|H1],
sd(H1,[],ClassesUniq1,9-9-0,_,NV,NVT), % do sd on Lin without X, then
% add class of X
ord_add_element(ClassesUniq1,ClassX,ClassesUniq),
class_allvars(ClassX,Deps),
( ClassesUniq = [_] % rank increasing
-> bs_collect_bindings(Deps,OrdX,Lin1,Bind0,BindT)
; Bind0 = BindT,
bs(Deps,OrdX,Lin1)
),
eq_classes(NV,NVT,ClassesUniq).
% sd(H,[],ClassesUniq,9-9-0,Category-Selected-_,NV,NVT)
% sd(Hom,ClassesIn,ClassesOut,PreferenceIn,PreferenceOut,[NV|NVTail],NVTail)
%
% ClassesOut is a sorted list of the different classes that are either in
% ClassesIn or that are the classes of the variables in Hom. Variables that do
% not belong to a class yet, are put in the difference list NV.
sd([],Class0,Class0,Preference0,Preference0,NV0,NV0).
sd([l(X*K,_)|Xs],Class0,ClassN,Preference0,PreferenceN,NV0,NVt) :-
get_attr(X,itf,Att),
( arg(6,Att,class(Xc)) % old: has class
-> NV0 = NV1,
ord_add_element(Class0,Xc,Class1),
( arg(2,Att,type(t_none))
-> preference(Preference0,2-X-K,Preference1)
% has class, no bounds => category 2
; preference(Preference0,4-X-K,Preference1)
% has class, is bounded => category 4
)
; % new: has no class
Class1 = Class0,
NV0 = [X|NV1], % X has no class yet, add to list of new variables
( arg(2,Att,type(t_none))
-> preference(Preference0,1-X-K,Preference1)
% no class, no bounds => category 1
; preference(Preference0,3-X-K,Preference1)
% no class, is bounded => category 3
)
),
sd(Xs,Class1,ClassN,Preference1,PreferenceN,NV1,NVt).
%
% A is best sofar, B is current
% smallest prefered
preference(A,B,Pref) :-
A = Px-_-_,
B = Py-_-_,
( Px < Py
-> Pref = A
; Pref = B
).
% eq_classes(NV,NVTail,Cs)
%
% Attaches all classless variables NV to a new class and equates all other
% classes with this class. The equate operation only happens after attach_class
% because the unification of classes can bind the tail of the AllVars attribute
% to a nonvar and then the attach_class operation wouldn't work.
eq_classes(NV,_,Cs) :-
var(NV),
!,
equate(Cs,_).
eq_classes(NV,NVT,Cs) :-
class_new(Su,clpq,NV,NVT,[]), % make a new class Su with NV as the variables
attach_class(NV,Su), % attach the variables NV to Su
equate(Cs,Su).
equate([],_).
equate([X|Xs],X) :- equate(Xs,X).
%
% assert: none of the Vars has a class attribute yet
%
attach_class(Xs,_) :-
var(Xs), % Tail
!.
attach_class([X|Xs],Class) :-
get_attr(X,itf,Att),
setarg(6,Att,class(Class)),
attach_class(Xs,Class).
% unconstrained(Lin,Uc,Kuc,Rest)
%
% Finds an unconstrained variable Uc (type(t_none)) in Lin with scalar Kuc and
% removes it from Lin to return Rest.
unconstrained(Lin,Uc,Kuc,Rest) :-
Lin = [_,_|H],
sd(H,[],_,9-9-0,Category-Uc-_,_,_),
Category =< 2,
get_attr(Uc,itf,Att),
arg(5,Att,order(OrdUc)),
delete_factor(OrdUc,Lin,Rest,Kuc).
%
% point the vars in Lin into the same equivalence class
% maybe join some global data
%
same_class([],_).
same_class([l(X*_,_)|Xs],Class) :-
get_or_add_class(X,Class),
same_class(Xs,Class).
% get_or_add_class(X,Class)
%
% Returns in Class the class of X if X has one, or a new class where X now
% belongs to if X didn't have one.
get_or_add_class(X,Class) :-
get_attr(X,itf,Att),
arg(1,Att,CLP),
( arg(6,Att,class(ClassX))
-> ClassX = Class
; setarg(6,Att,class(Class)),
class_new(Class,CLP,[X|Tail],Tail,[])
).
% allvars(X,Allvars)
%
% Allvars is a list of all variables in the class to which X belongs.
allvars(X,Allvars) :-
get_attr(X,itf,Att),
arg(6,Att,class(C)),
class_allvars(C,Allvars).
% deactivate_bound(Type,Variable)
%
% The Type of the variable is changed to reflect the deactivation of its
% bounds.
% t_L(_) becomes t_l(_), t_lU(_,_) becomes t_lu(_,_) and so on.
deactivate_bound(t_l(_),_).
deactivate_bound(t_u(_),_).
deactivate_bound(t_lu(_,_),_).
deactivate_bound(t_L(L),X) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_l(L))).
deactivate_bound(t_Lu(L,U),X) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_lu(L,U))).
deactivate_bound(t_U(U),X) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_u(U))).
deactivate_bound(t_lU(L,U),X) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_lu(L,U))).
% intro_at(X,Value,Type)
%
% Variable X gets new type Type which reflects the activation of a bound with
% value Value. In the linear equations of all the variables belonging to the
% same class as X, X is substituted by [0,Value,X] to reflect the new active
% bound.
intro_at(X,Value,Type) :-
get_attr(X,itf,Att),
arg(5,Att,order(Ord)),
arg(6,Att,class(Class)),
setarg(2,Att,type(Type)),
( Value =:= 0
-> true
; backsubst_delta(Class,Ord,X,Value)
).
% undet_active(Lin)
%
% For each variable in the homogene part of Lin, a bound is activated
% if an inactive bound exists. (t_l(L) becomes t_L(L) and so on)
undet_active([_,_|H]) :-
undet_active_h(H).
% undet_active_h(Hom)
%
% For each variable in homogene part Hom, a bound is activated if an
% inactive bound exists (t_l(L) becomes t_L(L) and so on)
undet_active_h([]).
undet_active_h([l(X*_,_)|Xs]) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
undet_active(Type,X),
undet_active_h(Xs).
% undet_active(Type,Var)
%
% An inactive bound of Var is activated if such exists
% t_lu(L,U) is arbitrarily chosen to become t_Lu(L,U)
undet_active(t_none,_). % type_activity
undet_active(t_L(_),_).
undet_active(t_Lu(_,_),_).
undet_active(t_U(_),_).
undet_active(t_lU(_,_),_).
undet_active(t_l(L),X) :- intro_at(X,L,t_L(L)).
undet_active(t_u(U),X) :- intro_at(X,U,t_U(U)).
undet_active(t_lu(L,U),X) :- intro_at(X,L,t_Lu(L,U)).
% determine_active_dec(Lin)
%
% Activates inactive bounds on the variables of Lin if such bounds exist.
% If the type of a variable is t_none, this fails. This version is aimed
% to make the R component of Lin as small as possible in order not to violate
% an upperbound (see reconsider/1)
determine_active_dec([_,_|H]) :-
determine_active(H,-1).
% determine_active_inc(Lin)
%
% Activates inactive bounds on the variables of Lin if such bounds exist.
% If the type of a variable is t_none, this fails. This version is aimed
% to make the R component of Lin as large as possible in order not to violate
% a lowerbound (see reconsider/1)
determine_active_inc([_,_|H]) :-
determine_active(H,1).
% determine_active(Hom,S)
%
% For each variable in Hom, activates its bound if it is not yet activated.
% For the case of t_lu(_,_) the lower or upper bound is activated depending on
% K and S:
% If sign of K*S is negative, then lowerbound, otherwise upperbound.
determine_active([],_).
determine_active([l(X*K,_)|Xs],S) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
determine_active(Type,X,K,S),
determine_active(Xs,S).
determine_active(t_L(_),_,_,_).
determine_active(t_Lu(_,_),_,_,_).
determine_active(t_U(_),_,_,_).
determine_active(t_lU(_,_),_,_,_).
determine_active(t_l(L),X,_,_) :- intro_at(X,L,t_L(L)).
determine_active(t_u(U),X,_,_) :- intro_at(X,U,t_U(U)).
determine_active(t_lu(L,U),X,K,S) :-
KS is K*S,
( KS < 0
-> intro_at(X,L,t_Lu(L,U))
; KS > 0
-> intro_at(X,U,t_lU(L,U))
).
%
% Careful when an indep turns into t_none !!!
%
detach_bounds(V) :-
get_attr(V,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin(Lin)),
arg(5,Att,order(OrdV)),
arg(6,Att,class(Class)),
setarg(2,Att,type(t_none)),
setarg(3,Att,strictness(0)),
( indep(Lin,OrdV)
-> ( ub(Class,OrdV,Vub-Vb-_)
-> % exchange against thightest
class_basis_drop(Class,Vub),
pivot(Vub,Class,OrdV,Vb,Type)
; lb(Class,OrdV,Vlb-Vb-_)
-> class_basis_drop(Class,Vlb),
pivot(Vlb,Class,OrdV,Vb,Type)
; true
)
; class_basis_drop(Class,V)
).
detach_bounds_vlv(OrdV,Lin,Class,Var,NewLin) :-
( indep(Lin,OrdV)
-> Lin = [_,R|_],
( ub(Class,OrdV,Vub-Vb-_)
-> % in verify_lin, class might contain two occurrences of Var,
% but it doesn't matter which one we delete
class_basis_drop(Class,Var),
pivot_vlv(Vub,Class,OrdV,Vb,R,NewLin)
; lb(Class,OrdV,Vlb-Vb-_)
-> class_basis_drop(Class,Var),
pivot_vlv(Vlb,Class,OrdV,Vb,R,NewLin)
; NewLin = Lin
)
; NewLin = Lin,
class_basis_drop(Class,Var)
).
% ----------------------------- manipulate the basis --------------------------
% basis_drop(X)
%
% Removes X from the basis of the class to which X belongs.
basis_drop(X) :-
get_attr(X,itf,Att),
arg(6,Att,class(Cv)),
class_basis_drop(Cv,X).
% basis(X,Basis)
%
% Basis is the basis of the class to which X belongs.
basis(X,Basis) :-
get_attr(X,itf,Att),
arg(6,Att,class(Cv)),
class_basis(Cv,Basis).
% basis_add(X,NewBasis)
%
% NewBasis is the result of adding X to the basis of the class to which X
% belongs.
basis_add(X,NewBasis) :-
get_attr(X,itf,Att),
arg(6,Att,class(Cv)),
class_basis_add(Cv,X,NewBasis).
% basis_pivot(Leave,Enter)
%
% Removes Leave from the basis of the class to which it belongs, and adds
% Enter to that basis.
basis_pivot(Leave,Enter) :-
get_attr(Leave,itf,Att),
arg(6,Att,class(Cv)),
class_basis_pivot(Cv,Enter,Leave).
% ----------------------------------- pivot -----------------------------------
% pivot(Dep,Indep)
%
% The linear equation of variable Dep, is transformed into one of variable
% Indep, containing Dep. Then, all occurrences of Indep in linear equations are
% substituted by this new definition
%
% Pivot ignoring rhs and active states
%
pivot(Dep,Indep) :-
get_attr(Dep,itf,AttD),
arg(4,AttD,lin(H)),
arg(5,AttD,order(OrdDep)),
get_attr(Indep,itf,AttI),
arg(5,AttI,order(Ord)),
arg(5,AttI,class(Class)),
delete_factor(Ord,H,H0,Coeff),
K is -1 rdiv Coeff,
add_linear_ff(H0,K,[0,0,l(Dep* -1,OrdDep)],K,Lin),
backsubst(Class,Ord,Lin).
% pivot_a(Dep,Indep,IndepT,DepT)
%
% Removes Dep from the basis, puts Indep in, and pivots the equation of
% Dep to become one of Indep. The type of Dep becomes DepT (which means
% it gets deactivated), the type of Indep becomes IndepT (which means it
% gets activated)
pivot_a(Dep,Indep,Vb,Wd) :-
basis_pivot(Dep,Indep),
get_attr(Indep,itf,Att),
arg(2,Att,type(Type)),
arg(5,Att,order(Ord)),
arg(6,Att,class(Class)),
pivot(Dep,Class,Ord,Vb,Type),
get_attr(Indep,itf,Att2), %changed?
setarg(2,Att2,type(Wd)).
pivot_b(Vub,V,Vb,Wd) :-
( Vub == V
-> get_attr(V,itf,Att),
arg(5,Att,order(Ord)),
arg(6,Att,class(Class)),
setarg(2,Att,type(Vb)),
pivot_b_delta(Vb,Delta), % nonzero(Delta)
backsubst_delta(Class,Ord,V,Delta)
; pivot_a(Vub,V,Vb,Wd)
).
pivot_b_delta(t_Lu(L,U),Delta) :- Delta is L-U.
pivot_b_delta(t_lU(L,U),Delta) :- Delta is U-L.
% select_active_bound(Type,Bound)
%
% Returns the bound that is active in Type (if such exists, 0 otherwise)
select_active_bound(t_L(L),L).
select_active_bound(t_Lu(L,_),L).
select_active_bound(t_U(U),U).
select_active_bound(t_lU(_,U),U).
select_active_bound(t_none,0).
%
% for project.pl
%
select_active_bound(t_l(_),0).
select_active_bound(t_u(_),0).
select_active_bound(t_lu(_,_),0).
% pivot(Dep,Class,IndepOrd,DepAct,IndAct)
%
% See pivot/2.
% In addition, variable Indep with ordering IndepOrd has an active bound IndAct
%
%
% Pivot taking care of rhs and active states
%
pivot(Dep,Class,IndepOrd,DepAct,IndAct) :-
get_attr(Dep,itf,Att),
arg(4,Att,lin(H)),
arg(5,Att,order(DepOrd)),
setarg(2,Att,type(DepAct)),
select_active_bound(DepAct,AbvD), % New current value for Dep
select_active_bound(IndAct,AbvI), % Old current value of Indep
delete_factor(IndepOrd,H,H0,Coeff), % Dep = ... + Coeff*Indep + ...
AbvDm is -AbvD,
AbvIm is -AbvI,
add_linear_f1([0,AbvIm],Coeff,H0,H1),
K is -1 rdiv Coeff,
add_linear_ff(H1,K,[0,AbvDm,l(Dep* -1,DepOrd)],K,H2),
% Indep = -1/Coeff*... + 1/Coeff*Dep
add_linear_11(H2,[0,AbvIm],Lin),
backsubst(Class,IndepOrd,Lin).
% Rewrite Dep = ... + Coeff*Indep + ...
% into Indep = ... + -1/Coeff*Dep + ...
%
% For backsubstitution, old current value of Indep must be removed from RHS
% New current value of Dep must be added to RHS
% For solving: old current value of Indep should be out of RHS
pivot_vlv(Dep,Class,IndepOrd,DepAct,AbvI,Lin) :-
get_attr(Dep,itf,Att),
arg(4,Att,lin(H)),
arg(5,Att,order(DepOrd)),
setarg(2,Att,type(DepAct)),
select_active_bound(DepAct,AbvD), % New current value for Dep
delete_factor(IndepOrd,H,H0,Coeff), % Dep = ... + Coeff*Indep + ...
AbvDm is -AbvD,
AbvIm is -AbvI,
add_linear_f1([0,AbvIm],Coeff,H0,H1),
K is -1 rdiv Coeff,
add_linear_ff(H1,K,[0,AbvDm,l(Dep* -1,DepOrd)],K,Lin),
% Indep = -1/Coeff*... + 1/Coeff*Dep
add_linear_11(Lin,[0,AbvIm],SubstLin),
backsubst(Class,IndepOrd,SubstLin).
% backsubst_delta(Class,OrdX,X,Delta)
%
% X with ordering attribute OrdX, is substituted in all linear equations of
% variables in the class Class, by linear equation [0,Delta,l(X*1,OrdX)]. This
% reflects the activation of a bound.
backsubst_delta(Class,OrdX,X,Delta) :-
backsubst(Class,OrdX,[0,Delta,l(X*1,OrdX)]).
% backsubst(Class,OrdX,Lin)
%
% X with ordering OrdX is substituted in all linear equations of variables in
% the class Class, by linear equation Lin
backsubst(Class,OrdX,Lin) :-
class_allvars(Class,Allvars),
bs(Allvars,OrdX,Lin).
% bs(Vars,OrdV,Lin)
%
% In all linear equations of the variables Vars, variable V with ordering
% attribute OrdV is substituted by linear equation Lin.
%
% valid if nothing will go ground
%
bs(Xs,_,_) :-
var(Xs),
!.
bs([X|Xs],OrdV,Lin) :-
( get_attr(X,itf,Att),
arg(4,Att,lin(LinX)),
nf_substitute(OrdV,Lin,LinX,LinX1) % does not change attributes
-> setarg(4,Att,lin(LinX1)),
bs(Xs,OrdV,Lin)
; bs(Xs,OrdV,Lin)
).
%
% rank increasing backsubstitution
%
% bs_collect_bindings(Deps,SelectedOrd,Lin,Bind,BindT)
%
% Collects bindings (of the form [X-I] where X = I is the binding) by
% substituting Selected in all linear equations of the variables Deps (which
% are of the same class), by Lin. Selected has ordering attribute SelectedOrd.
%
% E.g. when V = 2X + 3Y + 4, X = 3V + 2Z and Y = 4X + 3
% we can substitute V in the linear equation of X: X = 6X + 9Y + 2Z + 12
% we can't substitute V in the linear equation of Y of course.
bs_collect_bindings(Xs,_,_,Bind0,BindT) :-
var(Xs),
!,
Bind0 = BindT.
bs_collect_bindings([X|Xs],OrdV,Lin,Bind0,BindT) :-
( get_attr(X,itf,Att),
arg(4,Att,lin(LinX)),
nf_substitute(OrdV,Lin,LinX,LinX1) % does not change attributes
-> setarg(4,Att,lin(LinX1)),
LinX1 = [Inhom,_|Hom],
bs_collect_binding(Hom,X,Inhom,Bind0,Bind1),
bs_collect_bindings(Xs,OrdV,Lin,Bind1,BindT)
; bs_collect_bindings(Xs,OrdV,Lin,Bind0,BindT)
).
% bs_collect_binding(Hom,Selected,Inhom,Bind,BindT)
%
% Collects binding following from Selected = Hom + Inhom.
% If Hom = [], returns the binding Selected-Inhom (=0)
%
bs_collect_binding([],X,Inhom) --> [X-Inhom].
bs_collect_binding([_|_],_,_) --> [].
%
% reconsider the basis
%
% rcbl(Basis,Bind,BindT)
%
%
rcbl([],Bind0,Bind0).
rcbl([X|Continuation],Bind0,BindT) :-
( rcb_cont(X,Status,Violated,Continuation,NewContinuation) % have a culprit
-> rcbl_status(Status,X,NewContinuation,Bind0,BindT,Violated)
; rcbl(Continuation,Bind0,BindT)
).
rcb_cont(X,Status,Violated,ContIn,ContOut) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin([I,R|H])),
( Type = t_l(L) % case 1: lowerbound: R + I should always be larger
% than the lowerbound
-> R + I =< L,
Violated = l(L),
inc_step_cont(H,Status,ContIn,ContOut)
; Type = t_u(U) % case 2: upperbound: R + I should always be smaller
% than the upperbound
-> R + I >= U,
Violated = u(U),
dec_step_cont(H,Status,ContIn,ContOut)
; Type = t_lu(L,U) % case 3: check both
-> At is R + I,
( At =< L
-> Violated = l(L),
inc_step_cont(H,Status,ContIn,ContOut)
; At >= U
-> Violated = u(U),
dec_step_cont(H,Status,ContIn,ContOut)
)
). % other types imply nonbasic variable or unbounded variable
%
% reconsider one element of the basis
% later: lift the binds
%
reconsider(X) :-
rcb(X,Status,Violated),
!,
rcbl_status(Status,X,[],Binds,[],Violated),
export_binding(Binds).
reconsider(_).
%
% Find a basis variable out of its bound or at its bound
% Try to move it into whithin its bound
% a) impossible -> fail
% b) optimum at the bound -> implied value
% c) else look at the remaining basis variables
%
%
% Idea: consider a variable V with linear equation Lin.
% When a bound on a variable X of Lin gets activated, its value, multiplied
% with the scalar of X, is added to the R component of Lin.
% When we consider the lowerbound of V, it must be smaller than R + I, since R
% contains at best the lowerbounds of the variables in Lin (but could contain
% upperbounds, which are of course larger). So checking this can show the
% violation of a bound of V. A similar case works for the upperbound.
rcb(X,Status,Violated) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
arg(4,Att,lin([I,R|H])),
( Type = t_l(L) % case 1: lowerbound: R + I should always be larger
% than the lowerbound
-> R + I =< L,
Violated = l(L),
inc_step(H,Status)
; Type = t_u(U) % case 2: upperbound: R + I should always be smaller
% than the upperbound
-> R + I >= U,
Violated = u(U),
dec_step(H,Status)
; Type = t_lu(L,U) % case 3: check both
-> At is R + I,
( At =< L
-> Violated = l(L),
inc_step(H,Status)
; At >= U
-> Violated = u(U),
dec_step(H,Status)
)
). % other types imply nonbasic variable or unbounded variable
% rcbl_status(Status,X,Continuation,[Bind|BindT],BindT,Violated)
%
%
rcbl_status(optimum,X,Cont,B0,Bt,Violated) :- rcbl_opt(Violated,X,Cont,B0,Bt).
rcbl_status(applied,X,Cont,B0,Bt,Violated) :- rcbl_app(Violated,X,Cont,B0,Bt).
rcbl_status(unlimited(Indep,DepT),X,Cont,B0,Bt,Violated) :-
rcbl_unl(Violated,X,Cont,B0,Bt,Indep,DepT).
%
% Might reach optimum immediately without changing the basis,
% but in general we must assume that there were pivots.
% If the optimum meets the bound, we backsubstitute the implied
% value, solve will call us again to check for further implied
% values or unsatisfiability in the rank increased system.
%
rcbl_opt(l(L),X,Continuation,B0,B1) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
arg(3,Att,strictness(Strict)),
arg(4,Att,lin(Lin)),
Lin = [I,R|_],
Opt is R + I,
( L < Opt
-> narrow_u(Type,X,Opt), % { X =< Opt }
rcbl(Continuation,B0,B1)
; L =:= Opt,
Strict /\ 2 =:= 0, % meets lower
Mop is -Opt,
normalize_scalar(Mop,MopN),
add_linear_11(MopN,Lin,Lin1),
Lin1 = [Inhom,_|Hom],
( Hom = []
-> rcbl(Continuation,B0,B1) % would not callback
; solve(Hom,Lin1,Inhom,B0,B1)
)
).
rcbl_opt(u(U),X,Continuation,B0,B1) :-
get_attr(X,itf,Att),
arg(2,Att,type(Type)),
arg(3,Att,strictness(Strict)),
arg(4,Att,lin(Lin)),
Lin = [I,R|_],
Opt is R + I,
( U > Opt
-> narrow_l(Type,X,Opt), % { X >= Opt }
rcbl(Continuation,B0,B1)
; U =:= Opt,
Strict /\ 1 =:= 0, % meets upper
Mop is -Opt,
normalize_scalar(Mop,MopN),
add_linear_11(MopN,Lin,Lin1),
Lin1 = [Inhom,_|Hom],
( Hom = []
-> rcbl(Continuation,B0,B1) % would not callback
; solve(Hom,Lin1,Inhom,B0,B1)
)
).
%
% Basis has already changed when this is called
%
rcbl_app(l(L),X,Continuation,B0,B1) :-
get_attr(X,itf,Att),
arg(4,Att,lin([I,R|H])),
( R + I > L % within bound now
-> rcbl(Continuation,B0,B1)
; inc_step(H,Status),
rcbl_status(Status,X,Continuation,B0,B1,l(L))
).
rcbl_app(u(U),X,Continuation,B0,B1) :-
get_attr(X,itf,Att),
arg(4,Att,lin([I,R|H])),
( R + I < U % within bound now
-> rcbl(Continuation,B0,B1)
; dec_step(H,Status),
rcbl_status(Status,X,Continuation,B0,B1,u(U))
).
%
% This is never called for a t_lu culprit
%
rcbl_unl(l(L),X,Continuation,B0,B1,Indep,DepT) :-
pivot_a(X,Indep,t_L(L),DepT), % changes the basis
rcbl(Continuation,B0,B1).
rcbl_unl(u(U),X,Continuation,B0,B1,Indep,DepT) :-
pivot_a(X,Indep,t_U(U),DepT), % changes the basis
rcbl(Continuation,B0,B1).
% narrow_u(Type,X,U)
%
% Narrows down the upperbound of X (type Type) to U.
% Fails if Type is not t_u(_) or t_lu(_)
narrow_u(t_u(_),X,U) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_u(U))).
narrow_u(t_lu(L,_),X,U) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_lu(L,U))).
% narrow_l(Type,X,L)
%
% Narrows down the lowerbound of X (type Type) to L.
% Fails if Type is not t_l(_) or t_lu(_)
narrow_l( t_l(_), X, L) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_l(L))).
narrow_l( t_lu(_,U), X, L) :-
get_attr(X,itf,Att),
setarg(2,Att,type(t_lu(L,U))).
% ----------------------------------- dump ------------------------------------
% dump_var(Type,Var,I,H,Dump,DumpTail)
%
% Returns in Dump a representation of the linear constraint on variable
% Var which has linear equation H + I and has type Type.
dump_var(t_none,V,I,H) -->
!,
( {
H = [l(W*K,_)],
V == W,
I =:= 0,
K =:= 1
}
-> % indep var
[]
; {nf2sum(H,I,Sum)},
[V = Sum]
).
dump_var(t_L(L),V,I,H) -->
!,
dump_var(t_l(L),V,I,H).
% case lowerbound: V >= L or V > L
% say V >= L, and V = K*V1 + ... + I, then K*V1 + ... + I >= L
% and K*V1 + ... >= L-I and V1 + .../K = (L-I)/K
dump_var(t_l(L),V,I,H) -->
!,
{
H = [l(_*K,_)|_], % avoid 1 >= 0
get_attr(V,itf,Att),
arg(3,Att,strictness(Strict)),
Sm is Strict /\ 2,
Kr is 1 rdiv K,
Li is Kr*(L - I),
mult_hom(H,Kr,H1),
nf2sum(H1,0,Sum),
( K > 0 % K > 0
-> dump_strict(Sm,Sum >= Li,Sum > Li,Result)
; dump_strict(Sm,Sum =< Li,Sum < Li,Result)
)
},
[Result].
dump_var(t_U(U),V,I,H) -->
!,
dump_var(t_u(U),V,I,H).
dump_var(t_u(U),V,I,H) -->
!,
{
H = [l(_*K,_)|_], % avoid 0 =< 1
get_attr(V,itf,Att),
arg(3,Att,strictness(Strict)),
Sm is Strict /\ 1,
Kr is 1 rdiv K,
Ui is Kr*(U-I),
mult_hom(H,Kr,H1),
nf2sum(H1,0.0,Sum),
( K > 0
-> dump_strict(Sm,Sum =< Ui,Sum < Ui,Result)
; dump_strict(Sm,Sum >= Ui,Sum > Ui,Result)
)
},
[Result].
dump_var(t_Lu(L,U),V,I,H) -->
!,
dump_var(t_l(L),V,I,H),
dump_var(t_u(U),V,I,H).
dump_var(t_lU(L,U),V,I,H) -->
!,
dump_var(t_l(L),V,I,H),
dump_var(t_u(U),V,I,H).
dump_var(t_lu(L,U),V,I,H) -->
!,
dump_var(t_l(L),V,I,H),
dump_var(t_U(U),V,I,H).
dump_var(T,V,I,H) --> % should not happen
[V:T:I+H].
% dump_strict(FilteredStrictness,Nonstrict,Strict,Res)
%
% Unifies Res with either Nonstrict or Strict depending on FilteredStrictness.
% FilteredStrictness is the component of strictness related to the bound: 0
% means nonstrict, 1 means strict upperbound, 2 means strict lowerbound,
% 3 is filtered out to either 1 or 2.
dump_strict(0,Result,_,Result).
dump_strict(1,_,Result,Result).
dump_strict(2,_,Result,Result).
% dump_nz(V,H,I,Dump,DumpTail)
%
% Returns in Dump a representation of the nonzero constraint of variable V
% which has linear
% equation H + I.
dump_nz(_,H,I) -->
{
H = [l(_*K,_)|_],
Kr is 1 rdiv K,
I1 is -Kr*I,
mult_hom(H,Kr,H1),
nf2sum(H1,0,Sum)
},
[Sum =\= I1].
|