/usr/share/Yap/clpqr/dump.pl is in yap 5.1.3-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 | /* $Id: dump.pl,v 1.1 2008/03/13 17:16:43 vsc Exp $
Part of CLP(Q,R) (Constraint Logic Programming over Rationals and Reals)
Author: Leslie De Koninck
E-mail: Leslie.DeKoninck@cs.kuleuven.be
WWW: http://www.swi-prolog.org
http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09
Copyright (C): 2006, K.U. Leuven and
1992-1995, Austrian Research Institute for
Artificial Intelligence (OFAI),
Vienna, Austria
This software is based on CLP(Q,R) by Christian Holzbaur for SICStus
Prolog and distributed under the license details below with permission from
all mentioned authors.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
As a special exception, if you link this library with other files,
compiled with a Free Software compiler, to produce an executable, this
library does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however
invalidate any other reasons why the executable file might be covered by
the GNU General Public License.
*/
:- module(dump,
[
dump/3,
projecting_assert/1
]).
:- use_module(class,
[
class_allvars/2
]).
:- use_module(geler,
[
collect_nonlin/3
]).
:- use_module(library(assoc),
[
empty_assoc/1,
get_assoc/3,
put_assoc/4,
assoc_to_list/2
]).
:- use_module(itf,
[
dump_linear/3,
dump_nonzero/3
]).
:- use_module(project,
[
project_attributes/2
]).
:- use_module(ordering,
[
ordering/1
]).
% dump(Target,NewVars,Constraints)
%
% Returns in <Constraints>, the constraints that currently hold on Target where
% all variables in <Target> are copied to new variables in <NewVars> and the
% constraints are given on these new variables. In short, you can safely
% manipulate <NewVars> and <Constraints> without changing the constraints on
% <Target>.
dump([],[],[]) :- !.
dump(Target,NewVars,Constraints) :-
( ( proper_varlist(Target)
-> true
; % Target is not a list of variables
throw(instantiation_error(dump(Target,NewVars,Constraints),1))
),
ordering(Target),
related_linear_vars(Target,All), % All contains all variables of the classes of Target variables.
nonlin_crux(All,Nonlin),
project_attributes(Target,All),
related_linear_vars(Target,Again), % project drops/adds vars
all_attribute_goals(Again,Gs,Nonlin),
empty_assoc(D0),
mapping(Target,NewVars,D0,D1), % late (AVL suffers from put_atts)
copy(Gs,Copy,D1,_), % strip constraints
nb_setval(clpqr_dump,NewVars/Copy),
fail % undo projection
; catch(nb_getval(clpqr_dump,NewVars/Constraints),_,fail),
nb_delete(clpqr_dump)
).
:- meta_predicate projecting_assert(:).
projecting_assert(QClause) :-
strip_module(QClause, Module, Clause), % JW: SWI-Prolog not always qualifies the term!
copy_term(Clause,Copy,Constraints),
l2c(Constraints,Conj), % fails for []
( Sm = clpq
; Sm = clpr
), % proper module for {}/1
!,
( Copy = (H:-B)
-> % former rule
Module:assert((H:-Sm:{Conj},B))
; % former fact
Module:assert((Copy:-Sm:{Conj}))
).
projecting_assert(Clause) :- % not our business
assert(Clause).
copy_term(Term,Copy,Constraints) :-
( term_variables(Term,Target), % get all variables in Term
related_linear_vars(Target,All), % get all variables of the classes of the variables in Term
nonlin_crux(All,Nonlin), % get a list of all the nonlinear goals of these variables
project_attributes(Target,All),
related_linear_vars(Target,Again), % project drops/adds vars
all_attribute_goals(Again,Gs,Nonlin),
empty_assoc(D0),
copy(Term/Gs,TmpCopy,D0,_), % strip constraints
nb_setval(clpqr_dump,TmpCopy),
fail
; catch(nb_getval(clpqr_dump,Copy/Constraints),_,fail),
nb_delete(clpqr_copy_term)
).
% l2c(Lst,Conj)
%
% converts a list to a round list: [a,b,c] -> (a,b,c) and [a] becomes a
l2c([X|Xs],Conj) :-
( Xs = []
-> Conj = X
; Conj = (X,Xc),
l2c(Xs,Xc)
).
% proper_varlist(List)
%
% Returns whether Lst is a list of variables.
% First clause is to avoid unification of a variable with a list.
proper_varlist(X) :-
var(X),
!,
fail.
proper_varlist([]).
proper_varlist([X|Xs]) :-
var(X),
proper_varlist(Xs).
% related_linear_vars(Vs,All)
%
% Generates a list of all variables that are in the classes of the variables in
% Vs.
related_linear_vars(Vs,All) :-
empty_assoc(S0),
related_linear_sys(Vs,S0,Sys),
related_linear_vars(Sys,All,[]).
% related_linear_sys(Vars,Assoc,List)
%
% Generates in List, a list of all to classes to which variables in Vars
% belong.
% Assoc should be an empty association list and is used internally.
% List contains elements of the form C-C where C is a class and both C's are
% equal.
related_linear_sys([],S0,L0) :- assoc_to_list(S0,L0).
related_linear_sys([V|Vs],S0,S2) :-
( get_attr(V,itf,Att),
arg(6,Att,class(C))
-> put_assoc(C,S0,C,S1)
; S1 = S0
),
related_linear_sys(Vs,S1,S2).
% related_linear_vars(Classes,[Vars|VarsTail],VarsTail)
%
% Generates a difference list of all variables in the classes in Classes.
% Classes contains elements of the form C-C where C is a class and both C's are
% equal.
related_linear_vars([]) --> [].
related_linear_vars([S-_|Ss]) -->
{
class_allvars(S,Otl)
},
cpvars(Otl),
related_linear_vars(Ss).
% cpvars(Vars,Out,OutTail)
%
% Makes a new difference list of the difference list Vars.
% All nonvars are removed.
cpvars(Xs) --> {var(Xs)}, !.
cpvars([X|Xs]) -->
( { var(X) }
-> [X]
; []
),
cpvars(Xs).
% nonlin_crux(All,Gss)
%
% Collects all pending non-linear constraints of variables in All.
% This marks all nonlinear goals of the variables as run and cannot
% be reversed manually.
nonlin_crux(All,Gss) :-
collect_nonlin(All,Gs,[]), % collect the nonlinear goals of variables All
% this marks the goals as run and cannot be reversed manually
nonlin_strip(Gs,Gss).
% nonlin_strip(Gs,Solver,Res)
%
% Removes the goals from Gs that are not from solver Solver.
nonlin_strip([],[]).
nonlin_strip([_:What|Gs],Res) :-
( What = {G}
-> Res = [G|Gss]
; Res = [What|Gss]
),
nonlin_strip(Gs,Gss).
all_attribute_goals([]) --> [].
all_attribute_goals([V|Vs]) -->
dump_linear(V),
dump_nonzero(V),
all_attribute_goals(Vs).
% mapping(L1,L2,AssocIn,AssocOut)
%
% Makes an association mapping of lists L1 and L2:
% L1 = [L1H|L1T] and L2 = [L2H|L2T] then the association L1H-L2H is formed
% and the tails are mapped similarly.
mapping([],[],D0,D0).
mapping([T|Ts],[N|Ns],D0,D2) :-
put_assoc(T,D0,N,D1),
mapping(Ts,Ns,D1,D2).
% copy(Term,Copy,AssocIn,AssocOut)
%
% Makes a copy of Term by changing all variables in it to new ones and
% building an association between original variables and the new ones.
% E.g. when Term = test(A,B,C), Copy = test(D,E,F) and an association between
% A and D, B and E and C and F is formed in AssocOut. AssocIn is input
% association.
copy(Term,Copy,D0,D1) :-
var(Term),
( get_assoc(Term,D0,New)
-> Copy = New,
D1 = D0
; put_assoc(Term,D0,Copy,D1)
).
copy(Term,Copy,D0,D1) :-
nonvar(Term), % Term is a functor
functor(Term,N,A),
functor(Copy,N,A), % Copy is new functor with the same name and arity as Term
copy(A,Term,Copy,D0,D1).
% copy(Nb,Term,Copy,AssocIn,AssocOut)
%
% Makes a copy of the Nb arguments of Term by changing all variables in it to
% new ones and building an association between original variables and the new
% ones.
% See also copy/4
copy(0,_,_,D0,D0) :- !.
copy(1,T,C,D0,D1) :- !,
arg(1,T,At1),
arg(1,C,Ac1),
copy(At1,Ac1,D0,D1).
copy(2,T,C,D0,D2) :- !,
arg(1,T,At1),
arg(1,C,Ac1),
copy(At1,Ac1,D0,D1),
arg(2,T,At2),
arg(2,C,Ac2),
copy(At2,Ac2,D1,D2).
copy(N,T,C,D0,D2) :-
arg(N,T,At),
arg(N,C,Ac),
copy(At,Ac,D0,D1),
N1 is N-1,
copy(N1,T,C,D1,D2).
|